The MPI 3.0 Standard

..

Richard Graham T T

Mellanox

TECHNOLOGIES

Contributing Organizations

Mellanox

= Argonne National Laboratory
= Bull

= Cisco Systems, Inc

= Cray Inc.

= CSCS

= ETH Zurich

= Fujitsu Ltd.

" German Research School for
Simulation Sciences

= The HDF Group

= Hewlett-Packard

= |International Business Machines
= |BM India Private Ltd

= [ndiana University

= |nstitut National de Recherche en
Informatique et Automatique (INRIA)

© MELLANOX TECHNOLOGIES

Institute for Advanced Science &
Engineering Corporation

Intel Corporation
Lawrence Berkeley National Laboratory

Lawrence Livermore National
Laboratory

Los Alamos National Laboratory
Mellanox Technologies, Inc.
Microsoft Corporation

NEC Corporation

National Oceanic and Atmospheric
Administration, Global Systems
Division

NVIDIA Corporation

Oak Ridge National Laboratory

The Ohio State University

Mellanox

Contributing Organizations — Cont’d

= Oracle America = University of Houston
= Platf = University of lllinois at Urbana-
= RIKEN AICS Champaign

= University of Stuttgart, High

i} : onal Lab : Performance Computing Center
Sandia National Laboratories Stuttgart (HLRS)

= RunTime Computing Solutions, LLC

" Technical University of Chemnitz = University of Tennessee, Knoxville

" Tokyo Institute of Technology = University of Tokyoorm Computing

= University of Alabama at Birmingham
= University of Chicago

© MELLANOX TECHNOLOGIES 3

Outline

Mellanox

= MPI 3.0 Goals

= MPI 3.0 major additions
* Nonblocking collectives
 MPI Tool Interface
* Noncollective communicator creation

* RMA enhancements

* New Fortran bindings

* Neigborhood collectives

* Enhanced Datatype support

* Large data counts

* Matched probe

* Topology Aware Communicator Creation

= What did not make it into MPI1 3.0

= What was removed from MPI

= What was deprecated from MPI

= Expected Implementation Timelines
= What next ?

© MELLANOX TECHNOLOGIES 4

MPI 3.0 - Scope

Mellanox

Additions to the standard that are needed for better platform and application
support. These are to be consistent with MPI being a library providing
process group management and data exchange. This includes, but is
not limited to, issues associated with scalability (performance and

robustness), multi-core support, cluster support, and application support.

Backwards compatibility may be maintained -
Routines may be deprecated or deleted

© MELLANOX TECHNOLOGIES

A\

Mellanox

Nonblocking Collectives

© MELLANOX TECHNOLOGIES 6

Nonblocking Collective Operations

Mellanox

"= |dea
* Collective communication initiation and completion separated
 Offers opportunity to overlap computation and communication

» Each blocking collective operation has a corresponding nonblocking
operation

* May have multiple outstanding collective communications on the same
communicator

* Ordered initialization
= Reference Implementation (LIbNBC) stable
= Several production implementations

© MELLANOX TECHNOLOGIES 7

A\

Mellanox

Neighborhood Collectives

© MELLANOX TECHNOLOGIES 8

Sparse Collective Operations on Process Topologies

Mellanox

= MPI process topologies (Cartesian and (distributed) graph) usable
for communication
e MPI_NEIGHBOR_ALLGATHER(V)
« MPI_NEIGHBOR_ALLTOALL(V,W)
 Also nonblocking variants

= |f the topology is the full graph, then neighbor routine is identical to
full collective communication routine
* Exception: s/rdispls in MPI_NEIGHBOR_ALLTOALLW are MPI_Aint

= Allow for optimized communication scheduling and scalable
resource binding

© MELLANOX TECHNOLOGIES 9

A\

Mellanox

MPI Tool Interface

© MELLANOX TECHNOLOGIES 10

Mellanox

» Extend tool support in MPI-3 beyond the PMPI
Interface

= Document state of the art for de-facto standard APIs

© MELLANOX TECHNOLOGIES 11

Mellanox

New MPI Tools Chapter (Chapter 14)

= Replaces the existing Profiling Interface Chapter

= Two subsections:
* MPI Profiling Interface, aka. PMPI or MPI interpositioning interface
- Unchanged capabilities to MPI 2.2
- Minor extensions and clarifications to work with new Fortran bindings
* MPI Tool Information Interface, aka. the MPI_T interface
- Access to internal, potentially implementation specific information
- Two types of information:
= Control: typically used for configuration information
= Performance: typically used to report MPI internal performance data
- “PAPI-like” interface for software counters within MPI

= Prototype available as part of latest MPICH2
 Additional experiments on MVAPICH-2

© MELLANOX TECHNOLOGIES 12

Mellanox

Overview of MPI_T Functionality

= Goal: provide tools with access to MPI internal information
* MPI implementation agnostic: tools query available information
* Access to configuration/control and performance variables

Examples of Performance Vars. Examples for Control Vars.

» Number of packets sent » Parameters like Eager Limit
» Time spent blocking » Startup control
» Memory allocated » Buffer sizes and management

= Two phase approach
* Tool/Users queries all existing variables by name
* Once variable has been found, allocate handle for access
» With handle, variable contents can be read (and possibly written)

= Additional features/properties:
* MPI_T can be used before MPI_Init / after MPI_Finalize
» Optional variable grouping and access to semantic information

© MELLANOX TECHNOLOGIES 13

Mellanox

Granularity of PMPI Information M

MPI_Recv gQ NG

MPI Function

+ Information is the same for all MPI implementations
- MPIl implementation is a black box

© MELLANOX TECHNOLOGIES 14

Granularity of MPL_T Information

Mellanox

Example: MVAPICH2

MPI_Recv
MPI Function
ADI-3 Layer

Polling Counter,
Queue Length \

CH3 Layer DCMFED
1 MRAIL PSM NEMESIS
Time in \
Layer PSM

Counter

© MELLANOX TECHNOLOGIES

%é

Consumptio
Yn

15

Some of MPI T’s Concepts

e Query API for all MPI_T variables / 2 phase approach
— Setup: Query all variables and select from them
— Measurement: allocate handles and read variables

User Requesting a Performance Variable from MPI_T

v W

— Other features and properties
* Ability to access variables before MPI_Init and after MPI_Finalize
* Optional scoping of variables to individual MPI objects, e.g., communicatol
* Optional categorization of variables

A\

Mellanox

Noncollective Communicator Creation

© MELLANOX TECHNOLOGIES 17

Group-Collective Communicator Creation

Mellanox

= MPI-2: Comm. creation is collective

= MPI-3: New group-collective creation
 Collective only on members of new comm.

1. Avoid unnecessary synchronization
* Enable asynchronous multi-level parallelism

2. Reduce overhead
* Lower overhead when creating small communicators

3. Recover from failures
 Failed processes in parent communicator can’t participate

4. Enable compatibility with Global Arrays

* In the past: GA collectives implemented on top of MPI Send/Recv

© MELLANOX TECHNOLOGIES 18

A\

Mellanox

RMA Enhancements

© MELLANOX TECHNOLOGIES 19

MPI-3 RMA

Mellanox

= Major Extension to RMA
* New capabilities
* Backward compatibility to MPI 2.2

= Major Extensions
* New ways to create MPIl Windows
New read-modify-write operations
New Request-based operations
New synchronization operations
Additional memory model for cache-coherent systems
* Other extensions to simplify use

© MELLANOX TECHNOLOGIES 20

Mellanox

New Ways to Create MPl_Win

= MPIl_Win_allocate
 Allocate memory at creation; permits coordinated allocation (e.g., symmetric
allocation for scalability)
= MPIl_Win_create dynamic
 Attach (and detach) memory after creation; permits more dynamic use of MPI
RMA

= MPIl_Win_allocate_shared

 Allocate shared memory (where supported); permits direct (load/store) use of
shared memory within MPI-only programs

© MELLANOX TECHNOLOGIES 21

Mellanox

New Read-Modify-Write Operations

= MP|_Get_accumulate — Extends MPI_Accumulate to also return
value

= MP|_Fetch_and_op, MPI_Compare_and_swap — Atomic, single
word updates; intended to provide higher performance than
general MPI_Get_accumulate

= Now possible to build O(1) mutex; perform mutex-free updates

© MELLANOX TECHNOLOGIES 22

Mellanox

New Request-Based Operations

= MPIl_Rput, MPI_Rget, MPI_Raccumulate, MPI_Rget_accumulate

* Provide MPI request; can use any MPI request test or completion operation
(e.g., MPI_Waitany)

* Only valid within passive-target epoch
- E.g., between MPI_Win_lock/MPI_Win_unlock

* Provides one way to complete MPI RMA operations within a passive target
epoch

© MELLANOX TECHNOLOGIES 23

New Synchronization Operations

Mellanox

= Permitted only within passive target epoch

= Flush

 MPI1_Win_flush, MPI_Win_flush_all completes all pending RMA operations at
origin and target

 MPI_Win_flush_local, MPI_Win_flush_local_all completes all pending RMA
operations at origin

= Sync
» Synchronizes public and private copies of win (refers to MPI memory model and
subtle issues of memory consistency)

= Request operations (the “R” versions) on previous slide
* Permit completion of specific RMA operations

© MELLANOX TECHNOLOGIES 24

New “Unified” Memory Model

Mellanox

= MPI 2 RMA Memory model does not require cache coherence;
matched fastest systems at the time. Now called the “Separate”
model, reflecting the description of public and private copies

= MPI 3 adds new “Unified” Memory model, reflecting the fact that
the public and private copies are the same memory

= Users can query which is supported (new MPI_WIN_MODEL
attribute on an MPI window)

© MELLANOX TECHNOLOGIES 25

Mellanox

Other MPI RMA Extensions

= Some behavior, such as conflicting accesses, now have undefined
behavior rather than erroneous

» Behavior of correct MPI 2.2 programs unchanged; simplifies use of MPI as a
target for other RMA programming models that allow conflicting accesses

= Accumulate operations ordered by default

* No “right” choice — some algorithms much easier if RMA operations ordered,;
some hardware much faster if ordering not required.

* Info key “accumulate_ordering” (on window create) can request relaxation of
ordering

= New MPI_Win_lock_all/MPI_Win_unlock_all for passive target
epoch for all processes in Win.

© MELLANOX TECHNOLOGIES 26

A\

Mellanox

New Fortran Bindings

© MELLANOX TECHNOLOGIES 27

Brief overview of the requirements for new MPI 3.0

Fortran bindings : Mellanox

= Requirements
comply with Fortran standard (for the first time)

enhance type safety
suppress argument checking for choice buffers
guarantee of correct asynchronous operations ’?‘
* for user convenience

- provide users with convenient migration path @

- allow some optional arguments (e.g., ierror) @

- support sub-arrays @
* for vendor convenience

- allow vendors to take advantage of the C interoperability standard

Slide: Courtesy of Jeff Squyres and Craig Rasmussen

© MELLANOX TECHNOLOGIES 28

Three methods of Fortran support

Mellanox

- USE mpi_fos ~ SHE .
* This is the only Fortran support method that is consistent with the Fortran
standard (Fortran 2008 + TR 29113 and later).
* This method is highly recommended for all MPI applications.
* Mandatory compile-time argument checking & unique MPI handle types.
* Convenient migration path.
= USE mpi
* This Fortran support method is inconsistent with the Fortran standard, and its
use is therefore not recommended.
* It exists only for backwards compatibility.

andatory compile-time argument checking (but all handles match with
INTEGER). 39

= INCLUDE ‘mpif.n’

* The use of the include file mpif.nh is strongly discouraged starting with MP1-3.0.
40

Does not guarantees compile-time argument checking.

Does not solve the optimization problems with nonblocking calls,

and is therefore inconsistent with the Fortran standard.

It exists only for backwards compatibility with legacy MPI applications.

© MELLANOX TECHNOLOGIES 29

10 e) PR R

The mpi_f08 Module
Mainly for
implementer’s reasons.

= Example: 2@@3 Not relevant for users.

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror) BIND(C)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: bufTFortran compatible buffer}

INTEGER, INTENT(IN) :: count, source, tag declaration allows correct
compller optlmlzatlons
TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm Unique handle types allow |27
- best compile-time
INTEGER, OPTIONAL, INTENT(OUT) :: ierr INTENT > Compiler-based | 38
optimizations & checking

MPI_Wait(request, status, ierror) BIND(C)
TYPE(MPI_Request), INTENT(INOUT) :: re
TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror OPTIONAL ierror:
MPI routine can be called | g

without ierror argument

Fortran structure, i.e.,

Status is now a
a Fortran derived type

© MELLANOX TECHNOLOGIES 30

Mellanox

Major changes

= Support method: 26
USE mpi or INCLUDE ‘mpif.h’ - USE mpi_f08
= Status 30

INTEGER, DIMENSION(MPI_STATUS_SIZE) :: status
- TYPE(MPI_Status) :: status

status(MPIl_SOURCE) - status%MPI_SOURCE
status(MPIl_TAG) - status%MPIl_TAG
status(MPI_ERROR) - status%MPI_ERROR

Additional routines and declarations are provided for the

language interoperability of the status information between
4 N

n C’
= Fortran mpi_f08, and
= Fortran mpi & mpif.h

~ /

© MELLANOX TECHNOLOGIES 31

Major changes, continued

= Unique handle types, e.g.,

* INTEGER new_comm

= Handle comparisons, e.g.,

-

- req .EQ. MPI_REQUEST NULL

= Conversion in mixed applications:
* Both modules (mpi & mpi_f08) contain the declarations for all handles.

SUBROUTINE a

USE mpi

INTEGER :: splitcomm

CALL MPI_COMM_SPLIT(..., splitcomm)
CALL b(splitcomm)

END

SUBROUTINE b(splitcomm)

USE mpi_f08

INTEGER :: splitcomm

TYPE(MPI_Comm) :: splitcomm_f08

CALL MPI_Send(..., MPI_Comm(splitcomm))
lor

splitcomm_f08%MPI_VAL = splitcomm

CALL MPI_Send(..., splitcomm_f08)

END

© MELLANOX TECHNOLOGIES

TYPE, BIND(C) :: MPI_Comm

INTEGER :: MPI_VAL

asinC END TYPE MPI_Comm

- TYPE(MPI_Comm) :: new_comm

27

[No change through overloaded operator]

req .EQ. MPI_REQUEST_NULL

SUBROUTINE a

USE mpi_f08

TYPE(MPI_Comm) :: splitcomm

CALL MPI_Comm_split(..., splitcomm)
CALL b(splitcomm)

END

SUBROUTINE b(splitcomm)

USE mpi

TYPE(MPI_Comm) :: splitcomm

INTEGER :: splitcomm_old

CALL MPI_SEND(..., splitcomm%MPI_VAL)
or

splitcomm_old = splitcomm%MPI_VAL
CALL MPI_SEND(..., splitcomm_old)

END

\

32

Major changes, continued

Mellanox

= SEQUENCE and BIND(C) derived application types can be used
as buffers in MPI operations.

= Alignment calculation of basic datatypes:
* In MPI-2.2, it was undefined in which environment the alignments are taken.
* There is no sentence in the standard.
* It may depend on compilation options!
* In MPI-3.0, still undefined, but recommended to use a BIND(C) environment.
 Implication (for C and Fortran!):

- If an array of structures (in C/C++) or derived types (in Fortran) should be
communicated, it is recommended that

- the user creates a portable datatype handle and
- applies additionally MPI_TYPE_CREATE_RESIZED to this datatype handle.

© MELLANOX TECHNOLOGIES 33

Mellanox

Other enhancements

= Unused ierror
INCLUDE ‘mpif.h’
I wrong call:
CALL MPI_SEND(...., MPI_COMM_WORLD)
I = terrible implications because ierror=0 is written somewhere to the memory

= \With the new module 29

USE mpi_f08 %
I Correct call, because ierror is optional:

CALL MPI_SEND(...., MPI_COMM_WORLD)

© MELLANOX TECHNOLOGIES 34

Other enhancements, continued

Mellanox

= With the mpi & mpi_f08 module:

* Positional and keyword-based argument lists 33
- CALL MPI_SEND(sndbuf, 5, MPI_REAL, right, 33, MPI_COMM_WORLD)

- CALL MPI1_SEND(buf=sndbuf, count=5, datatype=MPI_REAL,
dest=right, tag=33, comm=MPI_COMM_WORLD)

The keywords are defined in the language bindings.
Same keywords for both modules.

* Remark: Some keywords are changed since MPI-2.2 33
- For consistency reasons, or
- To prohibit conflicts with Fortran keywords, e.g., type, function.

© MELLANOX TECHNOLOGIES 35

Major enhancement with a full MPI-3.0 implementation

Mellanox

=" The following features require Fortran 2003 + TR
29113

» Subarrays may be passed to nonblocking routines%a

- This feature is available if the LOGICAL compile-time constan
MPI_SUBARRAYS SUPPORTED == .TRUE.

 Correct handling of buffers passed to nonblocking routinessz

- If the application has declared the buffer as ASYNCHRONOUS within
he scope from which the nonblocking MPI routine and its
MPI_Wait/Test is called,

- and the LOGICAL compile-time constant
MPI_ASYNC PROTECTS NONBLOCKING == .TRUE.

* These features must be available in MPI-3.0 if the target
compiler is Fortran 2003+TR 29113 compliant.

- For the mpi module and mpif.h, it is a question of the quality of the MPI
library.

© MELLANOX TECHNOLOGIES 36

Minor changes

Mellanox

= MPI_ALLOC MEM, MPI_WIN_ALLOCATE,
MPI_WIN_ALLOCATE_SHARED 35
and MPI_WIN_SHARED QUERY return a base_ addr.

* In MPI-2.2, it is declared as INTEGER(KIND=MPI_ADDRESS_KIND)
and may be usable for non-standard Cray-pointer,
see Example 8.2 of the use of MPI_ALLOC_MEM

* In MPI-3.0 in the mpi_f08 & mpi module, these routines are overloaded with a
routine that returns a TYPE(C_PTR) pointer,
see Example 8.1

= The buffer_addr argumet in MPI_BUFFER_DETACH is incorrectly
defined 31
and therefore unused.

= Callbacks are defined with explicit interfaces
PROCEDURE(MPI_...) BIND(C) 41+42

= A clarification about comm_copy_attr fn callback, 34
see MPI_COMM_CREATE_KEYVAL.:
* Returned flag in Fortran must be LOGICAL, i.e., . TRUE. or .FLASE.

© MELLANOX TECHNOLOGIES 37

Mellanox

Status of reference implementation

* An initial implementation of the MPI 3.0 Fortran bindings are available in Open
MPI

A full implementation will not be available until compilers implement new Fortran
syntax added specifically to support MPI

- need ASYNCHRONOUS attribute for nonblocking routines

- need TYPE(*), DIMENSION(..) syntax to support subarrays
= e.g. MPI_lIrecv(Array(3:13:2), ...)

© MELLANOX TECHNOLOGIES 39

A\

Mellanox

Enhanced Datatype Support

© MELLANOX TECHNOLOGIES 40

Datatype Chapter

Mellanox

EEEEEEEEEEEE

= Full support for MPI_Aint, MPI_Offset and MPI_Count. These types
are now allowed in reduction operations (ticket #187).

= Support for large counts. New versions of MPIl_Get_elements,
MPI_Get_count, MPI_Set_elements, MPIl_Type_size that take an
MPI1_Count type instead of an int for the count parameter (postfixed
by X) (ticket #265).

= Full support for C++ types in both Fortran and C)(ticket #340).

= New datatype creating function MPIl_Type_ create_hindexed_block
similar to MPI_Type create indexed_block introduced in 2.2 (ticket
#280).

© MELLANOX TECHNOLOGIES 41

A\

Mellanox

Large Counts

© MELLANOX TECHNOLOGIES 42

Large Counts

Mellanox

= MPI-2.2

* All counts are int / INTEGER
* Producing longer messages through derived datatypes may cause problems

= MPI1-3.0
* New type to store long counts:
- MP1_Count / INTEGER(KIND=MPI_COUNT _KIND)
» Additional routines to handle “long” derived datatypes:
- MPI_Type_size x, MPI_Type_get _extent x, MPIl _Type get true_ extent x
* “long” count information within a status:
- MPI_Get_elements_x, MPI_Status_set_elements_x
« Communication routines are not changed !!!
* Well-defined overflow-behavior in existing MPI1-2.2 query routines:

- count in MPI_GET_COUNT, MPI_GET_ELEMENTS, and
size in MPI_PACK _ SIZE and MPI_TYPE_SIZE
Is set to MPI_UNDEFINED when that argument would overflow.

© MELLANOX TECHNOLOGIES 43

A\

Mellanox

Matched Probe

© MELLANOX TECHNOLOGIES 44

Thread-safe probe: MPI_()MPROBE & MPI_()MRECV

Mellanox

= MPI_PROBE & MPI_RECYV together are not thread-safe:
* Within one MPI process, thread A may call MPI_PROBE
* Another tread B may steal the probed message
* Thread A calls MPI_RECV, but may not receive the probed message

= New thread-safe interface:
 MPI_IMPROBE(source, tag, comm, flag, message, status) or

« MPI_MPROBE(source, tag, comm, message, status) Message handle,
together with e.g., stored in a thread-

- MPI_MRECV/(buf, count, datatype, message, status) ok____local variable
 MPI_IMRECV(buf, count, datatype, messaie, request)

© MELLANOX TECHNOLOGIES 45

A\

Mellanox

Topology Aware Communicator Creation

© MELLANOX TECHNOLOGIES 46

Topology-aware communicator creation

Mellanox

= Allows you to create a communicator whose processes can create
a shared memory region
« MPI_Comm_split_type(comm, comm_type, key, info, split_comm)
* More generally: it splits a communicator into subcommunicators
split._comm of a certain type:

- MPI_COMM_TYPE_SHARED: shared memory capability
- Other implementation specific types are possible: rack, switch, etc.

© MELLANOX TECHNOLOGIES 47

A\

Mellanox

Removed Functionality

© MELLANOX TECHNOLOGIES 48

Removed Functionality

Mellanox

= Current state
* Deprecated in MPI 2.2
e Technical aspects
* Supports MPI namespace
» Support for exception handling
* Not what most C++ programmers expect

* Special C++ types are supported through
additional MPI predefined datatypes

* MPI_CXX_BOOL bool
MPI_CXX_FLOAT_COMPLEX std::complex<float>

* MPI_CXX _DOUBLE_COMPLEX std::complex<double>
MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

= Removed MPI-1.1 functionality (deprecated since MPI-2.0):

* Routines: MPI_ADDRESS, MPI_ERRHANDLER_CREATE / GET / SET,
MPI_TYPE_EXTENT / HINDEXED / HVECTOR / STRUCT / LB / UB

e Datatypes: MPI LB/ UB
e Constants MPI_COMBINER_HINDEXED/HVECTOR/STRUCT _INTEGER

* Removing deprecated functions from the examples and definition of
MPI_TYPE _GET _EXTENT

© MELLANOX TECHNOLOGIES 49

A\

Mellanox

Deprecated Functionality

© MELLANOX TECHNOLOGIES 50

A\

Mellanox

Did Not Make It In

© MELLANOX TECHNOLOGIES 51

Mellanox

Major Functionality

= Immediate versions of nonblocking file I/O operations

= Fault Tolerance

= Helper Threads

= Clarification on multiple MPI processes in same address space

© MELLANOX TECHNOLOGIES 52

A\

Mellanox

Expected Implementation Timelines
What next ?

© MELLANOX TECHNOLOGIES 53

Expected Implementation Time Lines

A\

Mellanox

TECHNDOLOGIES

_ e e e

NB collectives

Tool Interface

Non-collective comm create

RMA

FTN Bindings

Neighborhood collectives

New Data Types

Large Counts

Matched Probe

Topology Aware Comm Create

Done

End 2012

End 2012

Done

Done

Done

Done

Done

Done

Done

11/12

11/12

Done

Done

11/12

Done

Done

Early 2013

Early 2013

Early 2013

Mid 2013

Mid 2013

Early 2013

Early 2013

Mid 2013

Early 2013

Early 2013

54

- IBMPE o Eﬁlnlggg

NB collectives Mid 2013 Q4 2013 MPICH2+rel Q4 2012
delta

Tool Interface End 2013 2013 staged

Non-collective comm End 2013
create

RMA Mid 2013
FTN Bindings Mid 2013
Neighborhood

collectives

New Data Types Mid 2013
Large Counts

Matched Probe Mid 2013
Topology Aware Comm

©oMELLA Create

A\

Mellanox

THANK YOU

© MELLANOX TECHNOLOGIES 56

