Scalable Algorithms for Constructing Balanced Spanning

Trees on System-ranked Process Groups

Akhil Langer, Ramprasad Venkataraman, Laxmikant V. Kale

PPL
I][

Parallel Programming Laboratory
University of lllinois

September 25 2012

(BN ECT RV ETETET) EL I E I (S S BV [VIG W S panning Trees on Unranked Process Groups September 25 2012

1/26

Pitch

@ Not all messaging needs fully-capable communicators
@ lts worthwhile to consider cheaper constructs

@ We propose:

Unranked or System-ranked Process Groups

User cannot choose member ranks

Cheap and Scalable Creation Mechanisms
Shrink-and-Balance
Rank-and-Hash

@ ~ 100X faster than MPI_Comm_split on 32K cores of IBM BG/P

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups

September 25 2012 2 /26

Is process group creation/management scalable?

@ Memory capacity is growing slower than available concurrency

Runtime systems have to adopt resource-conserving mechanisms J

@ Typical Process Group Implementations

» Each member can id everyone else
» Storage: O(n) (on each member process)
» Time for creation: O(nlogn)

@ Applications can create many such groups simultaneously

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 3 /26

Is process group creation/management scalable?

@ Memory capacity is growing slower than available concurrency

Runtime systems have to adopt resource-conserving mechanisms J

@ Typical Process Group Implementations

» Each member can id everyone else
» Storage: O(n) (on each member process)
» Time for creation: O(nlogn)

@ Applications can create many such groups simultaneously

How can we use less than O(n) memory?

Distributed enrollment
Distributed storage

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 3 /26

Achieving distributed enrollment

Central specification of membership

MPI_Group_incl(
MPI_Group group,

int n,

int *ranks, < not scalable
MPI_Group *newgroup)

Distributed enrollment

MPI_Comm_split(
MPI_Comm comm,

int color,

int key,

MPI_Comm *newcomm)

v

(BN OV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 4 /26

Achieving distributed storage

@ Distributed Tables

EuroMPI 2010
A Scalable MPI Comm split Algorithm for Exascale Computing.

Sack, P., Gropp, W.
In: Recent Advances in the Message Passing Interface. pp. 110. EuroMPI10 (2010)

(BN OV ETETET) EL N E I (S S BV [VIG N S panning Trees on Unranked Process Groups September 25 2012 5/ 26

Achieving distributed storage

@ Distributed Tables

EuroMPI 2010

A Scalable MPI Comm split Algorithm for Exascale Computing.
Sack, P., Gropp, W.
In: Recent Advances in the Message Passing Interface. pp. 110. EuroMPI10 (2010)

@ Process Chains
EuroMPI 2011

Exascale algorithms for generalized MPIl comm split.
Moody, A., Ahn, D., Supinski, B.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI11 (2011)

(BN ECT RV ETETET) EL I E I (S S BV [VI§ W Spanning Trees on Unranked Process Groups September 25 2012 5/ 26

Achieving distributed storage

@ Distributed Tables
EuroMPI 2010

A Scalable MPI Comm split Algorithm for Exascale Computing.
Sack, P., Gropp, W.
In: Recent Advances in the Message Passing Interface. pp. 110. EuroMPI10 (2010)

@ Process Chains
EuroMPI 2011

Exascale algorithms for generalized MPIl comm split.
Moody, A., Ahn, D., Supinski, B.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI11 (2011)

@ Unranked / System-Ranked Process Groups

EuroMPI 2012

Scalable Algorithms for Constructing Balanced Spanning Trees on System-Ranked
Process Groups Langer, A., Venkataraman, R., Kale L.
In: Recent Advances in the Message Passing Interface. pp. 9-18. EuroMPI12 (2012)

(BN ECT RV ETETET) EL N E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 5/ 26

System-Ranked Process Group

@ User cannot specify or influence ranks of members

MPI_Comm_split(
MPI_Comm comm,
int color,

int key,

MPI_Comm *newcomm)

@ Ranks are assigned by runtime system

@ Hence, any mapping of application logic / data to ranks has to be
handled manually after creation

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 6 /26

Are user-supplied ranks needed all the time?

barrier, broadcast, reduce, allreduce)

@ Input / output not dependent on ranks

@ Assume commutative operators

@ Sizeable fraction of collective communication in applications involve
these operations 1 2 3

@ Several algorithms can be expressed with just these collectives

!NERSC6 Workload Analysis and Benchmark Selection Process.
Antypas, K., Shalf, J., Wasserman, H.
Tech. Rep. LBNL-1014E, Lawrence Berkeley National Lab(2008)
2 Automatic MPI Counter Profiling.
Rabenseifner, R.
In: 42nd CUG Conference(2000)
3Parallel Scaling Characteristics of Selected NERSC User Project Codes
Skinner, D., Verdier, F., Anand, H., Carter, J., Durst, M., Gerber, R.
Tech. Rep. LBNL/PUB-904, Lawrence Berkeley National Lab (2005)

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 7 /26

Problem Statement

Represent process groups using spanning trees

@ Low memory footprint
(distributed storage)

@ Recursive, splitting of original tree
(distributed enrollment)

@ Immediate availability of efficient
synchronization / housekeeping

@ Can use spanning tree for the target
collectives too
To support system-ranked groups

Starting from a parent tree, construct balanced spanning tree over enrolled
members only

(BN OV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 8 /26

The Reference Centralized Algorithm

(BN ECT RV ETETET) EL I E I (S S BV [VIG W S panning Trees on Unranked Process Groups September 25 2012 9 /26

The Reference Centralized Algorithm

o Upward pass: gatherv
Members of new group contribute their process ids

@ Downward pass
pick immediate children and split the remaining list

e O(m +logn) time and O(m) memory *

4 ..
m is size of the new subtree

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 10 / 26

The Shrink-and-Balance Algorithm

(BN ECT RV ETETET) EL I E I (S S BV [VIG W S panning Trees on Unranked Process Groups September 25 2012 11 /26

Algorithm: Shrink-and-Balance

Upward Pass

@ Use enrollment data to shrink original spanning tree by excluding
non-participating processes
@ “fill" holes with member processes

> leaf process
» immediate child process

o leaf process - send min(d; j , subtree_size(v)) = O(logn) candidate
fillers to the parent

o O(logn) space and O(log®n) time

4di,k is depth of a rank i process in a balanced spanning tree of branching factor k
di,k = |logy (i(k — 1) +1)]

(BN ECT RV ETETET) EL I E I (S S BV [VI§ W Spanning Trees on Unranked Process Groups September 25 2012 12 /26

Algorithm: Shrink-and-Balance

Upward pass

s A8

(d)

(BN OV ETETET) EL I ET I (S S BV [VIG N Spanning Trees on Unranked Process Groups September 25 2012 13 /26

Algorithm: Shrink-and-Balance

Downward Pass

o Upward pass yields participants-only spanning tree that need not be
balanced

@ Balance tree while minimizing vertex migrations

» compute ideal height of a perfectly balanced spanning tree

» target height yields max size of subtrees®

> based on current size, mark subtrees as vertex suppliers and consumers,
respectively

» request supplier for vertex if child is missing (takes O(logn) time)
“matchmaking” step to assign suppliers to one or more consumers

» vertex concludes its role by calling balancing step on its children

e O(log?n) time, as a child could be missing at each level

5 . h_
maz_size = £ =1

k—1
(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 14 / 26

The Rank-and-Hash Algorithm

(BN ECT RV ETETET) EL I E I (S S BV [VIG W S panning Trees on Unranked Process Groups September 25 2012 15 / 26

Algorithm: Rank-and-Hash

Upward Pass

@ Reduction

@ Store size of each subtree

(BN OV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 16 / 26

Algorithm: Rank-and-Hash

Upward Pass

@ Reduction

@ Store size of each subtree

(a) Subtree sizes after the upward pass

(BN OV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 16 / 26

Algorithm: Rank-and-Hash

Downward Pass

@ Size of tree determines available ranks [0, m)
@ Range split amongst subtrees based on their sizes

@ Splitting continues down the original spanning tree until all available
ranks divided

@ Non-participating processes not assigned any ranks

(BN ECT RV ETETET) EL N ET I (S S BV [VIG N Spanning Trees on Unranked Process Groups September 25 2012 17 / 26

Algorithm: Rank-and-Hash

Downward Pass

@ Size of tree determines available ranks [0, m)
@ Range split amongst subtrees based on their sizes

@ Splitting continues down the original spanning tree until all available
ranks divided

@ Non-participating processes not assigned any ranks

1 3 5 6

(c) Ranks after the downward pass

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 17 / 26

Algorithm: Rank-and-Hash

Identifying Tree Neighbors

@ Process ids of parent and children discovered through intermediary processes

@ id of intermediary process (H;), for rank ¢ computed via a hash function

(BN ECT RV ETE=TET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 18 / 26

Algorithm: Rank-and-Hash

Identifying Tree Neighbors

Process ids of parent and children discovered through intermediary processes
id of intermediary process (H;), for rank i computed via a hash function

Each rank 4, sends its id to H; and H, (where, p is rank of its parent)

Receive msgs from H; and H,, with ids of children and parent, respectively

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 18 / 26

Experimental Setup

@ Time measured between broadcast on original spanning tree and
reduction on the newly constructed tree

@ Sample from a uniform distribution «(0, 1) and use participation
probability p to determine participation of a process in the group.

@ Repeatable seeds to ensure identical groups across runs

@ Algorithms implemented in Charm++

@ Runs on BG/P “Intrepid”

(BN ECT RV ETETET) EL I E I (S S BV [VIG W S panning Trees on Unranked Process Groups September 25 2012 19 / 26

Results

Performance Comparison on up to 128k cores of BG/P

- =0.01 =0.1 =0.3
) 513 p 513 p 513 p:
s
8 212 212 212
&
<
LQ
€
£ i
o ey
£
=
8 8 8
2K 8k 16k 32k 64k 128k24k 8k 16k 32k 64k 128k24k 8k 16k 32k 64k 128k
513 p=0.6 213 p=0.9
g 217 212
S Legend
11 PR o
b e—e centralized
S 210 i ¥--v Rank-and-Hash
€ . _— :, m B Shrink-and-Balance
£ 2% W
o
E 28
= a4k 8k 16k 32k 64k 128k <4k 8k 16k 32k 64k 128k

number of processes

(BN ECT RV ETETET) EL I E I (S S BV [VIG W S panning Trees on Unranked Process Groups September 25 2012 20 / 26

Results

Performance Comparison on up to 128k cores of BG/P

@ Distributed schemes outperform the centralized scheme at modest
process counts (except for very small p)
@ Shrink-and-Balance slower than Rank-and-Hash
> longer critical path

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 21 /26

Results

Performance Comparison on up to 128k cores of BG/P

@ Distributed schemes outperform the centralized scheme at modest
process counts (except for very small p)
@ Shrink-and-Balance slower than Rank-and-Hash
> longer critical path

@ Both schemes attain the goal of reduced memory footprint!

(BN ECT RV ETETET EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 21 /26

Results

Normalized message counts w.r.t. the centralized scheme on 128k cores of BG/P

— Shrink-and-Balance
mm Rank-and-Hash

w
o

|l
o U o

Normalized Message Count

et
4]

04001 0,01 0.1 0.3 0.6 09 099
participation probability

Shrink-and-Balance has far fewer messages
than Rank-and-Hash

at p = 0.6, number of messages sent by
Centralized, Shrink-and-Balance and
Rank-and-Hash were 2.1, 2.6 and

4.9 x 105, respectively

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 22 /26

Results

Normalized message counts w.r.t. the centralized scheme on 128k cores of BG/P

— Shrink-and-Balance
mm Rank-and-Hash

w
o

|l
o U o

Normalized Message Count

et
4]

04001 0,01 0.1 0.3 0.6 09 099
participation probability

Shrink-and-Balance has far fewer messages
than Rank-and-Hash

at p = 0.6, number of messages sent by
Centralized, Shrink-and-Balance and
Rank-and-Hash were 2.1, 2.6 and

4.9 x 105, respectively

@ Shrink-and-Balance may perform better when

> multiple groups are being formed simultaneously
> group formation occurs simultaneous with other communication in the application

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups September 25 2012 22 /26

Results
Comparison with MPI_Comm_split on 32k cores of BG/P

o MPI_Comm_split comparison with multi-color Rank-and-Hash

Group Creation Time (in milliseconds)

splits MPI-Comm-split Rank-and-Hash

1 134.968 0.708
2 106.573 0.713
4 96.989 0.760
8 93.536 0.785

(BN ECT RV ETETET) EL I E I (S S BV [VIG W S panning Trees on Unranked Process Groups September 25 2012 23 /26

Related Work

@ Moody et al® proposed generalized MP1_Comm _split

> process groups as chain - O(1) space and O(logn) time

> requires O(n) messaging to exchange process ids during collective call

> does collective communication using binary spanning trees

@ Several differences

> lesser dependencies on remote information for progress of collective

hence, more prominent for one-sided transfer calls supported by some network

messaging APIs

> construct spanning trees of arbitrary branching factors
Broadcast time on 32k core of BG/P

1

1600|

. 1400

@ 5 N
8 8 o
8 8 8

time (microseconds|

e
3
3

N
8
3

Message size (bytes)
-- 32
- 256
4096

— 16384

7 5
branching factor

Moody, A., Ahn, D., de Supinski, B.: Exascale algorithms for generalized MPl comm split. In: Recent Advances in the

Message Passing Interface. pp. 9 - 18. EuroMPI11 (2011)

(BN ECT RV ETETET) EL I E I (S S BV [VIG W Spanning Trees on Unranked Process Groups

September 25 2012

24 / 26

Summary

Space and time complexities for different group creation schemes

MPI(typical) Centralized Shrink-&-Balance Rank-&-Hash

Space O(n) O(m) O(logn) o(1)
Time O(n+mlogm) O(m+logn) O(log®n) O(logn)
Msg Count nlogn n+m Q(n+m) n+4m+ 7
Max Msg Size O(n) O(m) O(logn) 0(1)

(BN ECT RV ETETET) EL I E I (S S BV [VIG W S panning Trees on Unranked Process Groups September 25 2012 25/ 26

Summary

@ System assigned ranks eliminate sorting of user-supplied keys
@ Spanning-Tree based groups

» Balanced

> k-ary

» Low memory usage

» Outperforms traditional creation mechanisms

o Evaluate performance in the presence of other computation and
communication akin to real application execution scenarios

@ Account for network-topology by executing these algorithms
hierarchically

(BN ECT RV ETETET) EL I E I (S S BV [VIG W S panning Trees on Unranked Process Groups September 25 2012 26 / 26

	System-Ranked Process Groups
	Problem Statement
	The Reference Centralized Algorithm
	The Shrink-and-Balance Algorithm
	The Rank-and-Hash Algorithm
	Results
	Experimental Setup
	Performance
	Message Counts
	Comparison with MPI_Comm_Split

	Related Work
	Summary and Future Work

