
2/8/11

1

Enabling Technologies for a Programmable
Many-core

Ben Juurlink
TU Berlin

Partner and work package leader

January 22, 2011 PEPPHER workshop, Crete 2

Disclaimer

§  Presentation (partially) personal view on ENCORE
§  Minor focus on TU Berlin activities

§  Contains some grammar mistakes
§  No time for sanity check (FP7 deadline)
§  Some grammar mistakes on purpose

§  To save space
§  ENCORE view matters most

2/8/11

2

January 22, 2011 PEPPHER workshop, Crete 3

Outline

§  Consortium
§  Objectives
§  Programming Model
§  Runtime System
§  Preliminary Evaluation of Programming Model
§  Hardware Support for Runtime System
§  Conclusions & Future Work

January 22, 2011 PEPPHER workshop, Crete 4

ENCORE consortium

§  Funded under FP7 Objective ICT 2009.3.6 - Computing Systems
§  3-year STREP project (March 2010 - February 2012)

ISRAEL INSTITUTE
OF TECHNOLOGY

2/8/11

3

January 22, 2011 PEPPHER workshop, Crete 5

Project Objectives

§  To achieve breakthrough on usability, code portability, and
performance scalability of multicore systems
§  Define easy to use parallel programming model
§  Develop intelligent runtime management system

§ Hide complexity of parallel programming
§ Detect + manage parallelism
§ Detect + manage data locality

§ Hide complexity of underlying architecture
§ Heterogeneous processors
§ Physically distributed memory (NUMA)
§ Software managed memory hierarchy

§  Design scalable parallel architecture
§ Providing support to the runtime system

ENCORE Programming Model

§  Start from mainstream programming language (C)
§  Extend sequential code with #pragma annotations
§  Programmer identifies pieces of code to be executed as tasks

§  Also identifies task inputs and outputs, and specifies requirements
§  Tasks need not be parallel

§  Runtime system will detect and exploit parallelism
§  Programmer is not directly concerned with parallelism

for (i=0; i<height; i+=16)
 for (j=0; j<width; j+=16)
 mb_decode(&frame[i][j]);

Imperative code
for (i=0; i<height; i+=16)
 for (j=0; j<width; j+=16)
#pragma omp task \
 input([16][16] frame[i-16][j]) \
 input([16][16] frame[i][j-16]) \
 inout([16][16] frame[i][j])
 mb_decode(&frame[i][j]);

OmpSs

programmer

2/8/11

4

January 22, 2011 PEPPHER workshop, Crete 7

Task Dependency Graph

§  Input/output clauses allow to build task dependency graph
§  Expressions evaluated at runtime

for (i=0; i<height; i+=16)
 for (j=0; j<width; j+=16)
#pragma omp task \
 input([16][16] frame[i-16][j]) \
 input([16][16] frame[i][j-16]) \
 inout([16][16] frame[i][j])
 mb_decode(&frame[i][j]);

1,1

1,2

1,3

2,1

2,2 3,1

2,3 3,2

3,3

January 22, 2011 PEPPHER workshop, Crete 8

Task Dependency Graph
§  Dependency graph used by runtime system to

§  ensure correctness of execution
§  task cannot start before its predecessors have finished

§  optimize performance, e.g.,
§  reduce overhead of submitting tasks by task bundling
§  improve data locality by exploiting in/out usage information

1,1

1,2

1,3

2,1

2,2 3,1

2,3 3,2

1,1

1,1

1,1

1,1

mapped to Core 0

mapped to Core 1

mapped to Core 2

mapped to Core 3

2/8/11

5

January 22, 2011 PEPPHER workshop, Crete 9

Runtime System

§  Compiler transforms pragmas to calls to runtime system (RTS)
§  Runtime system responsible for:

§  Building dependency graph
§  Extracting parallel tasks from dependency graph
§  Offloading tasks to accelerators (if applicable)
§  Managing data transfers
§  Maintaining data coherence
§  Performing optimizations while maintaining correctness

§  Task bundling
§ Memory renaming to resolve WAW and WAR hazards
§  Double buffering
§  Scheduling for locality

January 22, 2011 PEPPHER workshop, Crete 10

Execution Model

§  Single master thread that submits tasks to runtime system
§  Tasks can also generate new tasks if dependency graphs disjoint

§  RTS builds dependency graph and submits tasks to worker cores
§  Worker cores execute tasks and request RTS new tasks when done

for (i=0; i<n; i+=16)
 for (j=0; j<n; j+=16) {
 wd = nanos_create_wd(..,
 input-output_info);
 nanos_submit(wd);
 }

master core

worker
1

RTS

task MGT core /
master core thread

mb_decode(){
 ...;
}

worker
2

worker
3

worker
n

2/8/11

6

January 22, 2011 PEPPHER workshop, Crete 11

Runtime Library Structure

§  slide 16 Alex Duran

January 22, 2011 PEPPHER workshop, Crete 12

Supported Platforms

§  SMP
§  SMP-NUMA

§  Makes copies of input/output data in local memory
§  SMP-Cluster

§  Makes copies across the network
§  CUDA

§  Manages copies to/from GPUs with overlapping
§  ENCORE

2/8/11

7

January 22, 2011 PEPPHER workshop, Crete 13

Preliminary Performance Evaluation

§  How well does OmpSs perform on non-HPC applications?

§  Next performance evaluation uses SMPSs
§  SMP-instance of StarSs
§  StarSs subset of OmpSs features

§  Performance evaluation preliminary
§  SMPSs startup cost not included (=large, negligible for large

applications)
§  Still need to analyze results in detail

§  “Non-biased” comparison
§  TU Berlin not involved in SMPSs development

January 22, 2011 PEPPHER workshop, Crete 14

Experimental Setup

§  Platform:
§  64-core cc-NUMA
§  HP DL980 G7

§  8x Xeon X7560 (Nehalem EX)
§  Benchmarks:

§  Kernels: mainly from EEMBC MultiBench
§  Applications: H.264 decoding
§  Workloads: set of several kernels/applications

§  Methodology:
§  Started with EEMBC MultiBench
§  Stripped away MITH framework
§  Ported to Pthreads
§  Ported to SMPSs

§  Compare SMPSs to Pthreads

2/8/11

8

January 22, 2011 PEPPHER workshop, Crete 15

C-ray Kernel

§  Brute force raytracer
§  500 (SMPSs) / 700 (Pthreads) LoC
§  Unoptimized, simple, clean
§  Distributes (blocks of) scanlines to workers

0

5

10

15

20

25

30

35

Sp
ee
du
p

1 2 4 8 16 32 64
Thread count

Apples-to-apples: c-ray [small]

Pthreads
SMPSs-2.2

0

10

20

30

40

50

60

Sp
ee
du
p

1 2 4 8 16 32 64
Thread count

Apples-to-apples: c-ray [large]

Pthreads
SMPSs-2.2

January 22, 2011 PEPPHER workshop, Crete 16

Ray-Rot Workload

§  C-ray feeds binary output to rotate kernel
§  Pipelining parallelism (easier to exploit in SMPSs)
§  Introduces additional dependencies
§  Rotation angle is 90°

0

2

4

6

8

10

12

Sp
ee
du
p

1 2 4 8 16 32 64
Thread count

Apples-to-apples: ray-rot [small]

Pthreads
SMPSs-2.2

0

5

10

15

20

25

30

35

40

45

50

Sp
ee
du
p

1 2 4 8 16 32 64
Thread count

Apples-to-apples: ray-rot [large]

Pthreads
SMPSs-2.2

2/8/11

9

January 22, 2011 PEPPHER workshop, Crete 17

Rot-cc Workload

§  Rotate feeds binary output to rgbcmy kernel
§  Pipelined, dependent, requires regions
§  Cache performance deteriorates
§  Rotation angle is 90°

0

1

2

3

4

5

6

7

Sp
ee
du
p

1 2 4 8 16 32 64
Thread count

Programming Models - Speedup

SMPSs[barrier]
SMPSs[regions]
Pthreads

0

2

4

6

8

10

12

14

Ex
ec
ut
io
n
tim
e
[s
]

1 2 4 8 16 32 64
Thread count

Programming Models - Execution time

SMPSs[barrier]
SMPSs[regions]
Pthreads

January 22, 2011 PEPPHER workshop, Crete 18

Preliminary Conclusions from
Preliminary Performance Evaluation

§  OmpSs / SMPSs is good
§  For several benchmarks SMPSs performs better than Pthreads
§  Serial program behavior maintained
§  (Often) programs just ‘work’ after adding pragmas
§  Very easy to exploit DLP using task-level parallelism

§  Task-based parallel programming model in development
§  Documentation can be improved
§  Compiler does not support all constructs
§  Parameter list ‘explosion’
§  Programming style restrictions (syntax / structure) (bad?)

2/8/11

10

January 22, 2011 PEPPHER workshop, Crete 19

Architecture Support for Runtime System

§  In OmpSs / StarSs, runtime takes care of
§  Task dependency determination

§  Task B depends on task A if output of A overlaps input of B
§  Scheduling while

§  Reducing task issuing overhead
§  Optimizing data locality

§  This can take a lot of time
§  Reduces scalability when threads are fine grain
§  Coarse grain threads reduce scalability also

§  Lose-lose situation
§  Next evaluation performed using CellSs

§  Cell instance of StarSs
§  “Complex dependencies (CD)” pattern

§  H.264-like dependencies

Scalability of CellSs Runtime System

Scalability of StarSS with the CD benchmark

0

2

4

6

8

10

12

14

16

1.0 10.0 100.0 1000.0 10000.0
Task size (us)

Sc
al

ab
ili

ty

16 SPEs

8 SPEs

4 SPEs

2 SPEs

1 SPE

max = 14.5

Scalability
= 4.9 max

H.264 MB decoding:
Average = 20µs

§  “Optimal” CellSs configuration

2/8/11

11

Scalability of CellSs

Paraver trace of CD (task size 19µs)

idle

Nexus: HW Support for TPU

Task “life cycle”:

TPU

SPE SPE SPE SPE

SPE SPE SPE SPE

PPE TC TC TC TC

TC TC TC TC

Task Descriptor

task_func
no_params
p1_io_type
p1_pointer

p1_x_length
p1_y_lenght
p1_y_stride
p2_io_type

…

1. Create task descriptor and send its address to TPU.

1

2. Load task descriptor.

2

3. Process task descriptor; update task pool

3

4. Add ready tasks to ready queue.

4

5. Read ready queue; process; inform TPU.

5

6. Update task pool.

6
Pipelined for throughput

2/8/11

12

Nexus TPU Design

ptr size

in buffer

status
register

address kick-off list

producers table

address #deps kick-off list

consumer table

id *descriptor status #deps

task table

descriptor 1
descriptor 2

task storage

descriptor
loader

descriptor
handler

finish
handler

id *descriptor

ready queue

id

finish buffer

Preliminary Evaluation Results for Nexus

ISO-efficiency 80%

1

10

100

1000

2 4 8 16

number of SPUs

ta
sk

 s
iz

e
(u

s)

StarSS

Manual

StarSS + Nexus 47 us

5.1 us

9x
13x

134 us

10 us

2/8/11

13

January 22, 2011 PEPPHER workshop, Crete 25

Preliminary Conclusions on Nexus

§  Runtime System of CellSs / OmpSs can become bottleneck
§  Mainly for fine-grain tasks

§  HW support (Nexus) can remove bottleneck
§  Up to 100+ (?) cores

§  Detailed VHDL model will be designed, implemented, and
evaluated in ENCORE

January 22, 2011 PEPPHER workshop, Crete 26

Conclusions

§  ENCORE targets
§  Programmability
§  Performance portability
§  Right kind of hardware support

§  Preliminary SMPSs vs. Pthreads comparison shows
§  Satisfactory performance achieved with little programming effort

§  Preliminary Nexus task manager
§  Runtime system not bottleneck until 100+ cores

2/8/11

14

January 22, 2011 PEPPHER workshop, Crete 27

Future Work in ENCORE

§  Programming model
§  Region dependency checking

§  Allows to capture more complex dependency patterns
§  Improve runtime scheduling

§  Based on locality
§  Based on QoS

§  Applications and performance evaluation
§  Can we effectively and efficiently implement H.264 decoding in

OMPSs?

§  Hardware support for runtime system
§  VHDL model of Nexus++ in FPGA multicore prototype

§  . . .

§  Stay tuned at http://www.encore-project.eu

Backup Slides

January 22, 2011 PEPPHER workshop, Crete

2/8/11

15

Heterogeneity

January 22, 2011 PEPPHER workshop, Crete

#pragma omp task input([BS][BS] A, [BS][BS] B) inout([BS][BS] C)!
void matmul(float *A, float *B, float *C) {!
 // original sequential matmul!
}!
!
#pragma omp target device(cuda) implements(matmul) copy_deps!
void matmul_cuda (float *A, float *B, float *C) {!
 // optimized kernel for cuda!
}!
!
// library function!
#pragma omp target device(cell) implements(matmul) copy_deps!
void matmul_spe(float *A, float *B, float *C);!

