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Overview 

 Our part in PEPPHER 

 Provide library of lock-free data structures 

 Prior work on load balancing on graphics processors 

 Compared blocking global queue synchronization with a non-blocking 

 Compared with non-blocking work-stealing scheme 

 Auto-tuning of application 

 Data structures in work-stealing 

 Why and how? 

 Why is non-blocking important for graphics processor? 

 Queues, stacks and deques – How do they match up? 

 Conclusion and further work 
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PEPPHER 

 Generic lock-free data structures for component programmers and 
the PEPPHER run-time 

 Queues 

 Stacks 

 Dictionaries 

 Skip-lists 

 Priority Queues 

 … 

 Adapted to heterogeneous systems where possible 

 Optimal implementation selected by run-time system 
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Why Lock-Free? 

 Mutual exclusion 

 Locks limits concurrency 

 Busy waiting – repeated checks to see if lock has been released or not 

 Convoying – processes stack up before locks 

 

 Lock-freedom is a progress guarantee 

 In practice it means that 

 A fast process doesn’t 
have to wait for a slow 
or dead process 

 No deadlocks 

 Shown to scale better than blocking 
approaches 

 

Daniel Cederman and Philippas Tsigas 4 

Definition 
For all possible 

executions, at least one 
concurrent operation 
will succeed in a finite 

number of its own steps 



Dynamic Load Balancing on GPUs 

 In earlier work we have compared different load balancing schemes on 
graphics processors 

 We asked the question: can dynamic load balancing using a single 
global queue  improve performance over static load balancing 

 And: blocking or lock-free? Does it make any difference 
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Static Dynamic 



Auto-tuning 
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 Sweep through thread and thread block count to find 
optimal settings 

 Supported by PEPPHER 

 

Blocking queue on a 9600GT using two different distributions 



Dynamic Load Balancing on GPUs 

 Results showed that the lock-free synchronization outperformed 
the blocking one 

 But the result was similar to static load balancing 

 We then compared the global queue approach with a  
lock-free work-stealing scheme 
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Dynamic Load Balancing on GPUs 

 We found that work-stealing could perform much better 
than static load balancing 

 But how much does the type of data structure used within 
the work-stealing scheme affect the result? 
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Work-Stealing 



Work-stealing – Why and how? 

 Main idea 

 Each processing unit has a local task pool 

 When the local task pool is empty, try stealing from another pool 

 Lower communication and synchronization cost 

 Steals are rare 

 Single enqueuer 

 Task locality 

 Better cache use 

 Don’t need to move or 
generate data as often 
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Tasks Tasks Tasks Tasks 

CPU1 CPU2 CPU3 CPU4 



Work-stealing Scheme 
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Applications 



Four-in-a-row 

 Computer opponent 

 Move decided by looking n steps ahead using a minimax algorithm 
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Four-in-a-row - Details 

 Every child represents a move by either the computer or a human player 

 When no move is possible or the cut-off depth has been reached, 
use a heuristic to calculate a score 

 Propagate results upward assuming both players play optimal 
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Score 
2 in a row -> 2p or -2p 
3 in a row -> 4p or -4p 
4 in a row -> ∞ or -∞ 

4 2 6 

4 2 

4 2 

Slot 1 Slot 2 Slot 8 

Level 1 - Computer 

Level 2 - Human 

Level 3 - Computer 

-∞ 

-∞ 



Octree Partitioning 

 Recursively divide a set of particles in each dimension to create octants 

 Stop when less than n elements in the octant 
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Octree Partitioning - Details 

 Count the number of elements that go to each octant 

 Use prefix sum to find their correct destination 

 Move elements and create up to eight new sub-tasks if necessary 
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Hardware 
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Implemented in CUDA 

Nvidia GTX 480 

30 Multiprocessors 
(240 CUDA cores) 



Daniel Cederman and Philippas Tsigas 18 

Data Structures in Work-Stealing 



 Two (or three) basic operations 

Task Pool Operations 
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Put 
Steal 

Get 

Only used locally 

Could be same operation 



Lock-based Queue 

 Circular array 

 Get operation protected by lock 

 Single enqueuer 

 Thief tries to acquire lock once 
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X X X 

Head Tail 



Lock-based Queue - Results 
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Locks Not Supported on GPUs 

 Fairness of hardware scheduler unknown 

 Thread block holding the lock might be swapped out indefinitely 

 Locks are discouraged in CUDA and OpenCL 

 

 Locks limit concurrency 

 Busy waiting expensive 

 

 Highly disjoint memory access in work-stealing 
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Lock-free Queue 

 Algorithm by Yi and Tsigas 

 Circular array 

 Lazy head and tail update 
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Lock-free Queue - Results 
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Lock-free Queue - Results 
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Why so many tasks? 
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Lock-based Stack 

 Get/Put operation protected by lock 

 Single enqueuer gives no benefit 

 Thief tries to acquire lock once 
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Lock-based Stack - Results 
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Lock-based Stack - Results 
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Lock-free Deque 

 Algorithm by Arora et al. 

 Local get is FILO (short queue), steal is FIFO (many children) 

 Steal always uses CAS, get only when on last element 
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Lock-free Deque - Results 
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Lock-free Deque - Results 
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 Lock-free data structures are needed on GPUs 
 No performance penalty 

 Often significant performance improvements – depending on contention 

 No One Type Data Structure Fits All Applications 
 One application improved performance when tasks were performed in FILO 

order instead of FIFO 

 Different applications benefit from different behavior of the data structure, 
which in turn requires different lock-free data structures 

 Further work 
 Dependencies/grouping - Memory management - PEPPHER benchmarks 

 

 Our part in PEPPHER is to provide generic lock-free data structures 
 Can be used for work-stealing, but it is not the main intent 

 Providing a library for the component programmer is 

 Should be high performance, portable, scalable and easy to use 

Conclusions and further work 
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Thank you for listening! 


