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Overview 

 Our part in PEPPHER 

 Provide library of lock-free data structures 

 Prior work on load balancing on graphics processors 

 Compared blocking global queue synchronization with a non-blocking 

 Compared with non-blocking work-stealing scheme 

 Auto-tuning of application 

 Data structures in work-stealing 

 Why and how? 

 Why is non-blocking important for graphics processor? 

 Queues, stacks and deques – How do they match up? 

 Conclusion and further work 
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PEPPHER 

 Generic lock-free data structures for component programmers and 
the PEPPHER run-time 

 Queues 

 Stacks 

 Dictionaries 

 Skip-lists 

 Priority Queues 

 … 

 Adapted to heterogeneous systems where possible 

 Optimal implementation selected by run-time system 
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Why Lock-Free? 

 Mutual exclusion 

 Locks limits concurrency 

 Busy waiting – repeated checks to see if lock has been released or not 

 Convoying – processes stack up before locks 

 

 Lock-freedom is a progress guarantee 

 In practice it means that 

 A fast process doesn’t 
have to wait for a slow 
or dead process 

 No deadlocks 

 Shown to scale better than blocking 
approaches 
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Definition 
For all possible 

executions, at least one 
concurrent operation 
will succeed in a finite 

number of its own steps 



Dynamic Load Balancing on GPUs 

 In earlier work we have compared different load balancing schemes on 
graphics processors 

 We asked the question: can dynamic load balancing using a single 
global queue  improve performance over static load balancing 

 And: blocking or lock-free? Does it make any difference 
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Static Dynamic 



Auto-tuning 
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 Sweep through thread and thread block count to find 
optimal settings 

 Supported by PEPPHER 

 

Blocking queue on a 9600GT using two different distributions 



Dynamic Load Balancing on GPUs 

 Results showed that the lock-free synchronization outperformed 
the blocking one 

 But the result was similar to static load balancing 

 We then compared the global queue approach with a  
lock-free work-stealing scheme 
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Dynamic Load Balancing on GPUs 

 We found that work-stealing could perform much better 
than static load balancing 

 But how much does the type of data structure used within 
the work-stealing scheme affect the result? 
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Work-Stealing 



Work-stealing – Why and how? 

 Main idea 

 Each processing unit has a local task pool 

 When the local task pool is empty, try stealing from another pool 

 Lower communication and synchronization cost 

 Steals are rare 

 Single enqueuer 

 Task locality 

 Better cache use 

 Don’t need to move or 
generate data as often 
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Tasks Tasks Tasks Tasks 

CPU1 CPU2 CPU3 CPU4 



Work-stealing Scheme 
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Work 
done? 

Try to get task 

New 
tasks? 
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and retry 

Yes 

No, continue 

Task 

Task 

Task 

Task 

Task 

Done 

Steal task 
Pool 

empty? 

Yes 

Acquire task 

Add tasks 
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Applications 



Four-in-a-row 

 Computer opponent 

 Move decided by looking n steps ahead using a minimax algorithm 
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Four-in-a-row - Details 

 Every child represents a move by either the computer or a human player 

 When no move is possible or the cut-off depth has been reached, 
use a heuristic to calculate a score 

 Propagate results upward assuming both players play optimal 
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Score 
2 in a row -> 2p or -2p 
3 in a row -> 4p or -4p 
4 in a row -> ∞ or -∞ 

4 2 6 

4 2 

4 2 

Slot 1 Slot 2 Slot 8 

Level 1 - Computer 

Level 2 - Human 

Level 3 - Computer 

-∞ 

-∞ 



Octree Partitioning 

 Recursively divide a set of particles in each dimension to create octants 

 Stop when less than n elements in the octant 
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Octree Partitioning - Details 

 Count the number of elements that go to each octant 

 Use prefix sum to find their correct destination 

 Move elements and create up to eight new sub-tasks if necessary 
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Hardware 
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Implemented in CUDA 

Nvidia GTX 480 

30 Multiprocessors 
(240 CUDA cores) 
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Data Structures in Work-Stealing 



 Two (or three) basic operations 

Task Pool Operations 
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Put 
Steal 

Get 

Only used locally 

Could be same operation 



Lock-based Queue 

 Circular array 

 Get operation protected by lock 

 Single enqueuer 

 Thief tries to acquire lock once 
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X X X 

Head Tail 



Lock-based Queue - Results 
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Locks Not Supported on GPUs 

 Fairness of hardware scheduler unknown 

 Thread block holding the lock might be swapped out indefinitely 

 Locks are discouraged in CUDA and OpenCL 

 

 Locks limit concurrency 

 Busy waiting expensive 

 

 Highly disjoint memory access in work-stealing 
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Lock-free Queue 

 Algorithm by Yi and Tsigas 

 Circular array 

 Lazy head and tail update 
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Lock-free Queue - Results 
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Lock-free Queue - Results 
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Why so many tasks? 
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Lock-based Stack 

 Get/Put operation protected by lock 

 Single enqueuer gives no benefit 

 Thief tries to acquire lock once 
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Lock-based Stack - Results 
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Lock-based Stack - Results 
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Lock-free Deque 

 Algorithm by Arora et al. 

 Local get is FILO (short queue), steal is FIFO (many children) 

 Steal always uses CAS, get only when on last element 
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Lock-free Deque - Results 

Daniel Cederman and Philippas Tsigas 31 

1

10

100

1000

10000

2 3 4 5 6 7

To
ta

l t
im

e
 s

p
e

n
t 

(l
o

g 
m

s)
 

Look-ahead steps 

Total Time 

Lock-based stack

Lock-free deque

1

10

100

1000

10000

500K 1M 2M 4M 8M 10M

To
ta

l t
im

e
 s

p
e

n
t 

(l
o

g 
m

s)
 

Number of particles 

Total Time 

Lock-based stack

Lock-free deque



Lock-free Deque - Results 
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 Lock-free data structures are needed on GPUs 
 No performance penalty 

 Often significant performance improvements – depending on contention 

 No One Type Data Structure Fits All Applications 
 One application improved performance when tasks were performed in FILO 

order instead of FIFO 

 Different applications benefit from different behavior of the data structure, 
which in turn requires different lock-free data structures 

 Further work 
 Dependencies/grouping - Memory management - PEPPHER benchmarks 

 

 Our part in PEPPHER is to provide generic lock-free data structures 
 Can be used for work-stealing, but it is not the main intent 

 Providing a library for the component programmer is 

 Should be high performance, portable, scalable and easy to use 

Conclusions and further work 
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Thank you for listening! 


