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Overview
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B Our part in PEPPHER
= Provide library of lock-free data structures
B Prior work on load balancing on graphics processors
m Compared blocking global queue synchronization with a non-blocking
m Compared with non-blocking work-stealing scheme
m Auto-tuning of application
m Data structures in work-stealing
= Why and how?
= Why is non-blocking important for graphics processor?
m Queues, stacks and deques — How do they match up?

B Conclusion and further work

Daniel Cederman and Philippas Tsigas



PEPPHER

@
»
\

PEPPHER %’

B Generic lock-free data structures for component programmers and
the PEPPHER run-time

m Queues

m Stacks 1 23 3 10 12 7
m Dictionaries ; 2|6 1‘3 .cl;
= Skip-lists 17 15

m Priority Queues 14

M Adapted to heterogeneous systems where possible
B Optimal implementation selected by run-time system
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Why Lock-Free?
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B Mutual exclusion
m Locks limits concurrency
m Busy waiting — repeated checks to see if lock has been released or not
m Convoying — processes stack up before locks

B Lock-freedom is a progress guarantee

® In practice it means that Definition

m A fast process doesn't For all possible

hav wait for a slow i
ave to wa executions, at least one

or dead process :
concurrent operation

m No deadlocks . . . .
_ will succeed in a finite

approaches
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Dynamic Load Balancing on GPUs
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m In earlier work we have compared different load balancing schemes on
graphics processors

B We asked the question: can dynamic load balancing using a single
global queue improve performance over static load balancing

® And: blocking or lock-free? Does it make any difference
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. Auto-tuning
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m Sweep through thread and thread block count to find
optimal settings
M Supported by PEPPHER
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I Dynamic Load Balancing on GPUs
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B Results showed that the lock-free synchronization outperformed
the blocking one

®m But the result was similar to static load balancing

m We then compared the global queue approach with a
lock-free work-stealing scheme
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- Dynamic Load Balancing on GPUs
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m We found that work-stealing could perform much better
than static load balancing

m But how much does the type of data structure used within
the work-stealing scheme affect the result?
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Work-Stealing
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Work-stealing — Why and how?
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® Main idea

m Each processing unit has a local task pool

= When the local task pool is empty, try stealing from another pool
B Lower communication and synchronization cost

m Steals are rare
= Single enqueuer

B Task locality
m Better cache use

= Don’t need to move or
generate data as often

S
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Work-stealing Scheme
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Steal task
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Applications
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Four-in-a-row
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B Computer opponent
® Move decided by looking 1 steps ahead using a minimax algorithm
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v Four-in-a-row - Details
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B Every child represents a move by either the computer or a human player

B When no move is possible or the cut-off depth has been reached,
use a heuristic to calculate a score

B Propagate results upward assuming both players play optimal

Slot1 Slot?2 Slot 8
Level 1 - Computer 4 2 nnn 6
Level 2 - Human -00 4 nmn 2
/\ Score
Level 3 - Computer | -0 4 | wawm ) 2 inarow ->2p or-2p

3inarow->4por-4p
4in arow -> 00 or -00
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. Octree Partitioning
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B Recursively divide a set of particles in each dimension to create octants
B Stop when less than 77 elements in the octant

Daniel Cederman and Philippas Tsigas
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Octree Partitioning - Details
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B Count the number of elements that go to each octant
W Use prefix sum to find their correct destination
B Move elements and create up to eight new sub-tasks if necessary
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leplemented in CUDA}

/ \%%m . 30 Multiprocessors
NG . (240 CUDA cores)

[ Nvidia GTX 480 }
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Data Structures in Work-Stealing
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Task Pool Operations
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m Two (or three) basic operations

Put

.

Only used locally

Could be same operation
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Lock-based Queue
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m Circular array

B Get operation protected by lock
M Single enqueuer

B Thief tries to acquire lock once

Tail

U
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o Lock-based Queue - Results
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Locks Not Supported on GPUs
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B Fairness of hardware scheduler unknown
Thread block holding the lock might be swapped out indefinitely
W Locks are discouraged in CUDA and OpenCL

M Locks limit concurrency
® Busy waiting expensive

B Highly disjoint memory access in work-stealing

Daniel Cederman and Philippas Tsigas
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Lock-free Queue
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m Algorithm by Yi and Tsigas
m Circular array
B Lazy head and tail update

Head Tail

U U
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Lock-free Queue - Results
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Lock-free Queue - Results
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Why so many tasks?
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g o fwfu]e]s]e]s Breadth-First

Do It Depth-First Instead
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Lock-based Stack
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B Get/Put operation protected by lock
B Single enqueuer gives no benefit
B Thief tries to acquire lock once

Daniel Cederman and Philippas Tsigas

27



Lock-based Stack - Results
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Lock-based Stack - Results
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Lock-free Deque
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® Algorithm by Arora et al.
M Local getis FILO (short queue), steal/is FIFO (many children)
W Stealalways uses CAS, getonly when on last element

O @

Put
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I Lock-free Deque - Results
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Lock-free Deque - Results

2
CRIERY
PEPPHER ¢
N\ e
X0 e
) 0/6 O(J‘(
AN
N
<O . .
Max Queue Size Max Queue Size
45 40
40 35
35
30
v v
N o3 N
v n s
1 v
S 25 =
L g
g 2 (o
3 5
15
= ' =
10
10
. e==| ock-based stack ===Lock-free deque . - - -
0 T T T T T ) 0 T T T T T
2 3 4 5 6 7 500K imMm 2M am M 10M
Look-ahead steps Number of particles

Daniel Cederman and Philippas Tsigas 32



Conclusions and further work

&

PEPPHER 02))

B Lock-free data structures are needed on GPUs

= No performance penalty
m Often significant performance improvements — depending on contention

B No One Type Data Structure Fits All Applications
= One application improved performance when tasks were performed in FILO
order instead of FIFO
m Different applications benefit from different behavior of the data structure,
which in turn requires different lock-free data structures
® Further work
m Dependencies/grouping - Memory management - PEPPHER benchmarks

M Our part in PEPPHER is to provide generic lock-free data structures
m Can be used for work-stealing, but it is notthe main intent
m Providing a library for the component programmer /s
m Should be Aigh performance, portable, scalable and easy to use
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Thank you for listening!
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