/&
(7
&

PEPPHER %’

Programmability &
Portability
PEPPHER Workshop
Data Structures in Work-Stealing
§ @% Daniel Cederman and Philippas Tsigas
Distributed Computing and Systems
% m § Chalmers University of Technology
This project is part of the portfolio of the Contract Number: 248481
G.3 - Embedded Systems and Control Unit www.peppher.eu Total Cost [€]: 3.44 million 7
IETJfg;?aiogosn?giesZoannd Media Directorate-General Copyright © 2010 The PEPPHER Consortium Starting Date: 2010-01-01

Duration: 36 months ~ SeveyH FRaMEwoRK



Overview

&

PEPPHER 0}})

B Our part in PEPPHER
= Provide library of lock-free data structures
B Prior work on load balancing on graphics processors
m Compared blocking global queue synchronization with a non-blocking
m Compared with non-blocking work-stealing scheme
m Auto-tuning of application
m Data structures in work-stealing
= Why and how?
= Why is non-blocking important for graphics processor?
m Queues, stacks and deques — How do they match up?

B Conclusion and further work

Daniel Cederman and Philippas Tsigas



PEPPHER

@
»
\

PEPPHER %’

B Generic lock-free data structures for component programmers and
the PEPPHER run-time

m Queues

m Stacks 1 23 3 10 12 7
m Dictionaries ; 2|6 1‘3 .cl;
= Skip-lists 17 15

m Priority Queues 14

M Adapted to heterogeneous systems where possible
B Optimal implementation selected by run-time system

H T
i > 17 >L @ @

12 4 31

Daniel Cederman and Philippas Tsigas



Why Lock-Free?

&

PEPPHER 0}})

B Mutual exclusion
m Locks limits concurrency
m Busy waiting — repeated checks to see if lock has been released or not
m Convoying — processes stack up before locks

B Lock-freedom is a progress guarantee

® In practice it means that Definition

m A fast process doesn't For all possible

hav wait for a slow i
ave to wa executions, at least one

or dead process :
concurrent operation

m No deadlocks . . . .
_ will succeed in a finite

approaches

Daniel Cederman and Philippas Tsigas



Dynamic Load Balancing on GPUs

&

PEPPHER 02))

m In earlier work we have compared different load balancing schemes on
graphics processors

B We asked the question: can dynamic load balancing using a single
global queue improve performance over static load balancing

® And: blocking or lock-free? Does it make any difference

Static Dynamic

| Core . | Core . | Core . | Core | | Core | Core | Core . | Core |

I I I I I I I I
T% sk Tagk

Task

Task

Task Task Task Task
Subtask Subtask

| :
I Subtask Subtask

Subtask Subtask
Subtask

Subtask

Daniel Cederman and Philippas Tsigas



. Auto-tuning
® #:\

\

PEPPHER %’

m Sweep through thread and thread block count to find
optimal settings
M Supported by PEPPHER

2000 -
1500
1000

500

Time (ms)

0

P~ 80
Threads
96 N " 96
112 Y~ 112

128 128
Blocking queue on a 9600GT using two different distributions

Blocks 80

Time (ms)

Daniel Cederman and Philippas Tsigas



I Dynamic Load Balancing on GPUs

PEPPHER ¢’

B Results showed that the lock-free synchronization outperformed
the blocking one

®m But the result was similar to static load balancing

m We then compared the global queue approach with a
lock-free work-stealing scheme

140 ~

120 -+

o 100 -

80 -~
60 -

Time (m

40
20 A

Blocking Lock-Free Static
Queue Queue

Daniel Cederman and Philippas Tsigas



- Dynamic Load Balancing on GPUs
S5

\

PEPPHER %’

m We found that work-stealing could perform much better
than static load balancing

m But how much does the type of data structure used within
the work-stealing scheme affect the result?

140 ~

120 ~

[any
o
o

(e}
o

Time (ms)

N
o

N
o
1

o

Blocking Lock-Free Static Lock-Free
Queue Queue Work-Stealing

Daniel Cederman and Philippas Tsigas



PEPPHER %’

Work-Stealing

Daniel Cederman and Philippas Tsigas



Work-stealing — Why and how?

&

PEPPHER 0}))

® Main idea

m Each processing unit has a local task pool

= When the local task pool is empty, try stealing from another pool
B Lower communication and synchronization cost

m Steals are rare
= Single enqueuer

B Task locality
m Better cache use

= Don’t need to move or
generate data as often

S
Tasks Tasks Tasks Tasks
CPU1 CPU2 CPU3 CPU4

Daniel Cederman and Philippas Tsigas

10



Work-stealing Scheme

Yes
>< Done
Steal task
S
f@w
1
Try to get task < Acquire task | My Task Pool
Task
No, backoff Got
and retry task? Task
Task
Perform task
Task
No, continue New :
tasks?
Add tasks [ Add tasks > Task

Daniel Cederman and Philippas Tsigas

11



PEPPHER %’

Applications

Daniel Cederman and Philippas Tsigas

12



Four-in-a-row

¢
PEPPHER 09)

B Computer opponent
® Move decided by looking 1 steps ahead using a minimax algorithm

1 2 3 H

X X X X]X[O
0 0l0[X X[0l0 O X X 000X
5 6 { 8 [
X X O X
X X[O X|X O X X O
0] XXO 0O XXO o[o]x X 0 00X X0
X 000 X X 000 X X000 X X 000 X

Daniel Cederman and Philippas Tsigas 13



v Four-in-a-row - Details
»

PEPPHER 'b‘;

B Every child represents a move by either the computer or a human player

B When no move is possible or the cut-off depth has been reached,
use a heuristic to calculate a score

B Propagate results upward assuming both players play optimal

Slot1 Slot?2 Slot 8
Level 1 - Computer 4 2 nnn 6
Level 2 - Human -00 4 nmn 2
/\ Score
Level 3 - Computer | -0 4 | wawm ) 2 inarow ->2p or-2p

3inarow->4por-4p
4in arow -> 00 or -00

Daniel Cederman and Philippas Tsigas 14



. Octree Partitioning
® #:\‘

PEPPHER %’

B Recursively divide a set of particles in each dimension to create octants
B Stop when less than 77 elements in the octant

Daniel Cederman and Philippas Tsigas

15



Octree Partitioning - Details

TS

PEPPHER '2))

B Count the number of elements that go to each octant
W Use prefix sum to find their correct destination
B Move elements and create up to eight new sub-tasks if necessary

* * * ‘
* + | K K
o QOO
* A N
ol O O OO OO0

Daniel Cederman and Philippas Tsigas 16



,, Hardware
& 2

g TN

PEPPHER '2})

leplemented in CUDA}

/ \%%m . 30 Multiprocessors
NG . (240 CUDA cores)

[ Nvidia GTX 480 }

Daniel Cederman and Philippas Tsigas 17



&N

PEPPHER '2})

Data Structures in Work-Stealing

Daniel Cederman and Philippas Tsigas

18



Task Pool Operations

@

PEPPHER '2})

m Two (or three) basic operations

Put

.

Only used locally

Could be same operation

Daniel Cederman and Philippas Tsigas

19



Lock-based Queue

TS

PEPPHER '2))

m Circular array

B Get operation protected by lock
M Single enqueuer

B Thief tries to acquire lock once

Tail

U

Daniel Cederman and Philippas Tsigas

20



o Lock-based Queue - Results

PEPPHER %’

oV e
oo c,\(e
A O

¢o° . .

Total Time Total Time
10000 10000

£ ~3000ms e

ap 0% ) ap 9 ~2000ms

0 0

- =

c c

8. 100 8_ 100

(7] (7]

(<)) (<))

E E

wd L

G 10 © 10

o o

~ ~

1 T T T T ) 1 T T T T T
2 3 4 5 6 7 500K iMm 2M am 8V 10M

Look-ahead steps Number of particles

Daniel Cederman and Philippas Tsigas 21



Locks Not Supported on GPUs

&

PEPPHER 0}))

B Fairness of hardware scheduler unknown
Thread block holding the lock might be swapped out indefinitely
W Locks are discouraged in CUDA and OpenCL

M Locks limit concurrency
® Busy waiting expensive

B Highly disjoint memory access in work-stealing

Daniel Cederman and Philippas Tsigas

22



Lock-free Queue

\,.0 L )

PEPPHER '2})

m Algorithm by Yi and Tsigas
m Circular array
B Lazy head and tail update

Head Tail

U U

Daniel Cederman and Philippas Tsigas

23



\,.0 L D

Lock-free Queue - Results

PEPPHER '2})

10000

1000 -

100

100

10 +

10

Total time spent (log ms)
Total time spent (log ms)

2 | 3 | 4 | 5 | 6 | 7
Look-ahead steps

Total Time

1000 -

Lock-based esslock-free

Similar
result

500K

im 2M am 8Mm 10M
Number of particles

Daniel Cederman and Philippas Tsigas

24



Lock-free Queue - Results

&0
PEPPHER ¢’

|2
. A0 X
AN o°
\S

((0 Max Queue Size

100000 10000

Lock-free Lock-based ==l ock-free
~ 10000 -~ — :
éﬂ éﬂ 1000 - ~3000 J,
(V] (V]
N 1000 e
(V) (V)
g g 100
J] (J]
- 100 -
of of
o o
E o E 10
1 T T T T T ) 1 T T T T T
2 3 4 5 6 7 500K imMm 2M aM 8M 10M
Look-ahead steps Number of particles

Daniel Cederman and Philippas Tsigas 25



Why so many tasks?

&N
PEPPHER ¢
[}
e b i bl b .5
aEEEEEEE

g o fwfu]e]s]e]s Breadth-First

Do It Depth-First Instead

Daniel Cederman and Philippas Tsigas

26



Lock-based Stack

TS

PEPPHER '2))

B Get/Put operation protected by lock
B Single enqueuer gives no benefit
B Thief tries to acquire lock once

Daniel Cederman and Philippas Tsigas

27



Lock-based Stack - Results

<ﬁi=’ ‘

PEPPHER '2})
,<0®
D
O
<o

Max Queue Size

100000 ~

From 20000

[ERN
o

to 240

1000

100

Max Queue Size (log)

=
o

2 | 3 | 4 | 5 | 6 | 7
Look-ahead steps

Max Queue Size (log)

10000

1000 -

100

10

Max Queue Size

From =3000
to =30

500K iMm 2M am 8V
Number of particles

10M

Daniel Cederman and Philippas Tsigas

28



Lock-based Stack - Results

Significant
change

— 2500 -+

No change

2000 -

1500

1000 -

Time (=ms)

500 -

Queue Stack Queue Stack

Daniel Cederman and Philippas Tsigas 29



Lock-free Deque

&

PEPPHER 02))

® Algorithm by Arora et al.
M Local getis FILO (short queue), steal/is FIFO (many children)
W Stealalways uses CAS, getonly when on last element

O @

Put

Daniel Cederman and Philippas Tsigas

30



I Lock-free Deque - Results
® .

PEPPHER '2})

< A O

o) . .
(< Total Time Total Time

10000 10000

e=m] ock-based stack
Té? Lock-free deque / g -
00 1000 00 1000
o o >
= =
c c o
Q Q
o 100 o 100
v v
m v
£ £
L L
E 10 E 10
° 2 e==] ock-based stack
Lock-free deque
1 T T T T T 1 1 T T T T T
2 3 4 5 6 7 500 1M 2M 4M  8M  10M
Look-ahead steps Number of particles

Daniel Cederman and Philippas Tsigas



Lock-free Deque - Results

2
CRIERY
PEPPHER ¢
N\ e
X0 e
) 0/6 O(J‘(
AN
N
<O . .
Max Queue Size Max Queue Size
45 40
40 35
35
30
v v
N o3 N
v n s
1 v
S 25 =
L g
g 2 (o
3 5
15
= ' =
10
10
. e==| ock-based stack ===Lock-free deque . - - -
0 T T T T T ) 0 T T T T T
2 3 4 5 6 7 500K imMm 2M am M 10M
Look-ahead steps Number of particles

Daniel Cederman and Philippas Tsigas 32



Conclusions and further work

&

PEPPHER 02))

B Lock-free data structures are needed on GPUs

= No performance penalty
m Often significant performance improvements — depending on contention

B No One Type Data Structure Fits All Applications
= One application improved performance when tasks were performed in FILO
order instead of FIFO
m Different applications benefit from different behavior of the data structure,
which in turn requires different lock-free data structures
® Further work
m Dependencies/grouping - Memory management - PEPPHER benchmarks

M Our part in PEPPHER is to provide generic lock-free data structures
m Can be used for work-stealing, but it is notthe main intent
m Providing a library for the component programmer /s
m Should be Aigh performance, portable, scalable and easy to use

Daniel Cederman and Philippas Tsigas 33



&N

PEPPHER ¢

Thank you for listening!

Daniel Cederman and Philippas Tsigas

34



