
This project is part of the portfolio of the
G.3 - Embedded Systems and Control Unit
Information Society and Media Directorate-General
European Commission

www.peppher.eu

Copyright © 2010 The PEPPHER Consortium

Contract Number: 248481
Total Cost [€]: 3.44 million
Starting Date: 2010-01-01

Duration: 36 months

Data Structures in Work-Stealing

Daniel Cederman and Philippas Tsigas

Distributed Computing and Systems

Chalmers University of Technology

PEPPHER Workshop

Overview

 Our part in PEPPHER

 Provide library of lock-free data structures

 Prior work on load balancing on graphics processors

 Compared blocking global queue synchronization with a non-blocking

 Compared with non-blocking work-stealing scheme

 Auto-tuning of application

 Data structures in work-stealing

 Why and how?

 Why is non-blocking important for graphics processor?

 Queues, stacks and deques – How do they match up?

 Conclusion and further work

Daniel Cederman and Philippas Tsigas 2

PEPPHER

 Generic lock-free data structures for component programmers and
the PEPPHER run-time

 Queues

 Stacks

 Dictionaries

 Skip-lists

 Priority Queues

 …

 Adapted to heterogeneous systems where possible

 Optimal implementation selected by run-time system

Daniel Cederman and Philippas Tsigas 3

Why Lock-Free?

 Mutual exclusion

 Locks limits concurrency

 Busy waiting – repeated checks to see if lock has been released or not

 Convoying – processes stack up before locks

 Lock-freedom is a progress guarantee

 In practice it means that

 A fast process doesn’t
have to wait for a slow
or dead process

 No deadlocks

 Shown to scale better than blocking
approaches

Daniel Cederman and Philippas Tsigas 4

Definition
For all possible

executions, at least one
concurrent operation
will succeed in a finite

number of its own steps

Dynamic Load Balancing on GPUs

 In earlier work we have compared different load balancing schemes on
graphics processors

 We asked the question: can dynamic load balancing using a single
global queue improve performance over static load balancing

 And: blocking or lock-free? Does it make any difference

Daniel Cederman and Philippas Tsigas 5

Static Dynamic

Auto-tuning

Daniel Cederman and Philippas Tsigas 6

 Sweep through thread and thread block count to find
optimal settings

 Supported by PEPPHER

Blocking queue on a 9600GT using two different distributions

Dynamic Load Balancing on GPUs

 Results showed that the lock-free synchronization outperformed
the blocking one

 But the result was similar to static load balancing

 We then compared the global queue approach with a
lock-free work-stealing scheme

Daniel Cederman and Philippas Tsigas 7

0

20

40

60

80

100

120

140

Blocking
Queue

Lock-Free
Queue

Static

Ti
m

e
 (

m
s)

Dynamic Load Balancing on GPUs

 We found that work-stealing could perform much better
than static load balancing

 But how much does the type of data structure used within
the work-stealing scheme affect the result?

Daniel Cederman and Philippas Tsigas 8

0

20

40

60

80

100

120

140

Blocking
Queue

Lock-Free
Queue

Static Lock-Free
Work-Stealing

Ti
m

e
 (

m
s)

Daniel Cederman and Philippas Tsigas 9

Work-Stealing

Work-stealing – Why and how?

 Main idea

 Each processing unit has a local task pool

 When the local task pool is empty, try stealing from another pool

 Lower communication and synchronization cost

 Steals are rare

 Single enqueuer

 Task locality

 Better cache use

 Don’t need to move or
generate data as often

Daniel Cederman and Philippas Tsigas 10

Tasks Tasks Tasks Tasks

CPU1 CPU2 CPU3 CPU4

Work-stealing Scheme

Daniel Cederman and Philippas Tsigas 11

Work
done?

Try to get task

New
tasks?

Perform task

Got
task?

Add tasks

My Task Pool

No, backoff
and retry

Yes

No, continue

Task

Task

Task

Task

Task

Done

Steal task
Pool

empty?

Yes

Acquire task

Add tasks

Daniel Cederman and Philippas Tsigas 12

Applications

Four-in-a-row

 Computer opponent

 Move decided by looking n steps ahead using a minimax algorithm

Daniel Cederman and Philippas Tsigas 13

Four-in-a-row - Details

 Every child represents a move by either the computer or a human player

 When no move is possible or the cut-off depth has been reached,
use a heuristic to calculate a score

 Propagate results upward assuming both players play optimal

Daniel Cederman and Philippas Tsigas 14

Score
2 in a row -> 2p or -2p
3 in a row -> 4p or -4p
4 in a row -> ∞ or -∞

4 2 6

4 2

4 2

Slot 1 Slot 2 Slot 8

Level 1 - Computer

Level 2 - Human

Level 3 - Computer

-∞

-∞

Octree Partitioning

 Recursively divide a set of particles in each dimension to create octants

 Stop when less than n elements in the octant

Daniel Cederman and Philippas Tsigas 15

Octree Partitioning - Details

 Count the number of elements that go to each octant

 Use prefix sum to find their correct destination

 Move elements and create up to eight new sub-tasks if necessary

Daniel Cederman and Philippas Tsigas 16

Hardware

Daniel Cederman and Philippas Tsigas 17

Implemented in CUDA

Nvidia GTX 480

30 Multiprocessors
(240 CUDA cores)

Daniel Cederman and Philippas Tsigas 18

Data Structures in Work-Stealing

 Two (or three) basic operations

Task Pool Operations

Daniel Cederman and Philippas Tsigas 19

Put
Steal

Get

Only used locally

Could be same operation

Lock-based Queue

 Circular array

 Get operation protected by lock

 Single enqueuer

 Thief tries to acquire lock once

Daniel Cederman and Philippas Tsigas 20

X X X

Head Tail

Lock-based Queue - Results

Daniel Cederman and Philippas Tsigas 21

1

10

100

1000

10000

2 3 4 5 6 7

To
ta

l t
im

e
 s

p
e

n
t

(l
o

g
m

s)

Look-ahead steps

Total Time

1

10

100

1000

10000

500K 1M 2M 4M 8M 10M

To
ta

l t
im

e
 s

p
e

n
t

(l
o

g
m

s)

Number of particles

Total Time

≈3000ms
≈2000ms

Locks Not Supported on GPUs

 Fairness of hardware scheduler unknown

 Thread block holding the lock might be swapped out indefinitely

 Locks are discouraged in CUDA and OpenCL

 Locks limit concurrency

 Busy waiting expensive

 Highly disjoint memory access in work-stealing

Daniel Cederman and Philippas Tsigas 22

Lock-free Queue

 Algorithm by Yi and Tsigas

 Circular array

 Lazy head and tail update

Daniel Cederman and Philippas Tsigas 23

X X X

Head Tail

Lock-free Queue - Results

Daniel Cederman and Philippas Tsigas 24

1

10

100

1000

10000

2 3 4 5 6 7

To
ta

l t
im

e
 s

p
e

n
t

(l
o

g
m

s)

Look-ahead steps

Total Time

Lock-based Lock-free

1

10

100

1000

10000

500K 1M 2M 4M 8M 10M

To
ta

l t
im

e
 s

p
e

n
t

(l
o

g
m

s)

Number of particles

Total Time

Lock-based Lock-free

Similar
result Similar

result

Lock-free Queue - Results

Daniel Cederman and Philippas Tsigas 25

1

10

100

1000

10000

100000

2 3 4 5 6 7

M
ax

 Q
u

e
u

e
 S

iz
e

 (
lo

g)

Look-ahead steps

Max Queue Size

Lock-based Lock-free

1

10

100

1000

10000

500K 1M 2M 4M 8M 10M

M
ax

 Q
u

e
u

e
 S

iz
e

 (
lo

g)

Number of particles

Max Queue Size

Lock-based Lock-free

≈20000
≈3000

Why so many tasks?

Daniel Cederman and Philippas Tsigas 26

3

7

1

6 4 5

10 11 8 9 12 13 14 15

2

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

Breadth-First

Do It Depth-First Instead

Lock-based Stack

 Get/Put operation protected by lock

 Single enqueuer gives no benefit

 Thief tries to acquire lock once

Daniel Cederman and Philippas Tsigas 27

X X X

Top

Lock-based Stack - Results

Daniel Cederman and Philippas Tsigas 28

1

10

100

1000

10000

100000

2 3 4 5 6 7

M
ax

 Q
u

e
u

e
 S

iz
e

 (
lo

g)

Look-ahead steps

Max Queue Size

Queue Stack

1

10

100

1000

10000

500K 1M 2M 4M 8M 10M

M
ax

 Q
u

e
u

e
 S

iz
e

 (
lo

g)

Number of particles

Max Queue Size

Queue Stack
From ≈20000

to ≈40 From ≈3000
to ≈30

Lock-based Stack - Results

Daniel Cederman and Philippas Tsigas 29

0

500

1000

1500

2000

2500

3000

3500

Queue Stack

Ti
m

e
 (
≈m

s)

Total Time

0

500

1000

1500

2000

2500

Queue Stack

Ti
m

e
 (
≈m

s)

Total Time
Significant

change
No change

Lock-free Deque

 Algorithm by Arora et al.

 Local get is FILO (short queue), steal is FIFO (many children)

 Steal always uses CAS, get only when on last element

Daniel Cederman and Philippas Tsigas 30

X X

Head Tail

Put

Steal

Get

Lock-free Deque - Results

Daniel Cederman and Philippas Tsigas 31

1

10

100

1000

10000

2 3 4 5 6 7

To
ta

l t
im

e
 s

p
e

n
t

(l
o

g
m

s)

Look-ahead steps

Total Time

Lock-based stack

Lock-free deque

1

10

100

1000

10000

500K 1M 2M 4M 8M 10M

To
ta

l t
im

e
 s

p
e

n
t

(l
o

g
m

s)

Number of particles

Total Time

Lock-based stack

Lock-free deque

Lock-free Deque - Results

Daniel Cederman and Philippas Tsigas 32

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7

M
ax

 Q
u

e
u

e
 S

iz
e

Look-ahead steps

Max Queue Size

Lock-based stack Lock-free deque

0

5

10

15

20

25

30

35

40

500K 1M 2M 4M 8M 10M

M
ax

 Q
u

e
u

e
 S

iz
e

Number of particles

Max Queue Size

Lock-based stack Lock-free deque

 Lock-free data structures are needed on GPUs
 No performance penalty

 Often significant performance improvements – depending on contention

 No One Type Data Structure Fits All Applications
 One application improved performance when tasks were performed in FILO

order instead of FIFO

 Different applications benefit from different behavior of the data structure,
which in turn requires different lock-free data structures

 Further work
 Dependencies/grouping - Memory management - PEPPHER benchmarks

 Our part in PEPPHER is to provide generic lock-free data structures
 Can be used for work-stealing, but it is not the main intent

 Providing a library for the component programmer is

 Should be high performance, portable, scalable and easy to use

Conclusions and further work

Daniel Cederman and Philippas Tsigas 33

Daniel Cederman and Philippas Tsigas 34

Thank you for listening!

