
Incremental Migration of C and Fortran
Applications to GPGPU using HMPP
Peppher 2011

•  Many applications can benefit from GPU computing
o  Linear Algebra, signal processing
o  Bio informatics, molecular dynamics
o  Magnetic resonance imaging, tomography
o  Reverse time migration, electrostatic
o  …

•  Porting legacy codes to GPU computing is a major
challenge
o  Can be very expensive
o  Require to minimize porting risks
o  Should be based on future-proof approach
o  Implies application and performance programmers to cooperate

•  A good methodology is paramount to reduce porting cost
o  HMPP provides an efficient solution

www.caps-entreprise.com 2

Introduction

Peppher 2011

•  A directive based multi-language programming
environment
o  Help keeping software independent from hardware targets
o  Provide an incremental tool to exploit GPU in legacy applications
o  Avoid exit cost, can be future-proof solution

•  HMPP provides
o  Code generators from C and Fortran to GPU (CUDA or OpenCL)
o  A compiler driver that handles all low level details of GPU

compilers
o  A runtime to allocate and manage GPU resources

•  Source to source compiler
o  CPU code does not require compiler change
o  Complement existing parallel APIs (OpenMP or MPI)

www.caps-entreprise.com 3

What is HMPP? (Hybrid Manycore Parallel Programming)

Peppher 2011

•  Focus on the main bottleneck
o  Communication between GPUs and CPUs

•  Allow incremental development
o  Up to full access to the hardware features

•  Work with other parallel APIs (e.g. OpenMP, MPI)
o  Orchestrate CPU and GPU computations

•  Consider multiple languages
o  Avoid asking users to learn a new language

•  Consider resource management
o  Generate robust software

•  Exploit vendor tools/compilers
o  Do not replace, complement

www.caps-entreprise.com 4

HMPP Main Design Considerations

Peppher 2011

•  HMPP parallel programming model is
parallel loop centric

•  CUDA and OpenCL parallel programming models are thread
centric

www.caps-entreprise.com 5

How Does HMPP Differ from CUDA or
OpenCL?

void saxpy(int n, float alpha,
 float *x, float *y){
#pragma hmppcg parallel
for(int i = 0; i<n; ++i)
 y[i] = alpha*x[i] + y[i];
}

__global__
void saxpy_cuda(int n, float
alpha,
float *x, float *y) {
int i = blockIdx.x*blockDim.x +
threadIdx.x;
 if(i<n) y[i] = alpha*x[i]+y[i];
}

int nblocks = (n + 255) / 256;
saxpy_cuda<<<nblocks,
256>>>(n, 2.0, x, y);

Peppher 2011

•  A codelet is a pure function that can be remotely
executed on a GPU

•  Regions are a short cut for writing codelets

www.caps-entreprise.com 6

HMPP Codelets and Regions

#pragma hmpp myfunc codelet, …
void saxpy(int n, float alpha, float x[n], float y[n])
{
#pragma hmppcg parallel
 for(int i = 0; i<n; ++i)
 y[i] = alpha*x[i] + y[i];
}

#pragma hmpp myreg region, …
{
 for(int i = 0; i<n; ++i)
 y[i] = alpha*x[i] + y[i];
}

Peppher 2011

•  Target clause specifies what GPU code to generate
o  GPU can be CUDA or OpenCL

•  Choice of the implementation at runtime can be different!
o  The runtime select among the available hardware and code

www.caps-entreprise.com 7

Codelet Target Clause

#pragma hmpp myLabel codelet, target=[GPU], args[C].io=out
void myFunc(int n, int A[n], int B[n], int C[n]){
 ...
}

#pragma hmpp myLabel codelet, target=CUDA

#pragma hmpp myLabel codelet, target=OpenCL

NVIDIA only GPU

NVIDIA & AMD GPU, AMD CPU
Peppher 2011

•  The arguments of codelet are also allocated in the GPU device
memory
o  Must exist on both sides to allow backup execution
o  No hardware mechanism to ensure consistencies
o  Size must be known to perform the data transfers

•  Are defined by the io clause (in Fortran use intent instead)
o  in (default) : read only in the codelet
o  out: completely defined, no read before a write
o  inout: read and written

•  Using inappropriate inout generates extra PCI bus traffic

www.caps-entreprise.com 8

HMPP Codelets Arguments

#pragma hmpp myLabel codelet, args[B].io=out, args[C].io=inout
void myFunc(int n, int A[n], int B[n], int C[n]){
 for(int i=0 ; i<n ; ++i){
 B[i] = A[i] * A[i];
 C[i] = C[i] * A[i];
 }
}

Peppher 2011

•  The callsite
directive specifies
the use of a codelet
at a given point in
your application.

•  callsite
directive performs a
Remote Procedure
Call onto the GPU

www.caps-entreprise.com 9

Running a Codelet or Section on a GPU - 1

#pragma hmpp call1 codelet, target=CUDA
#pragma hmpp call2 codelet, target=OpenCL
void myFunc(int n, int A[n], int B[n]){
 int i;
 for (i=0 ; i<n ; ++i)
 B[i] = A[i] + 1;
}

void main(void)
{
 int X[10000], Y[10000], Z[10000];
 …
 #pragma hmpp call1 callsite, …
 myFunc(10000, X, Y);
 ...
 #pragma hmpp call2 callsite, …
 myFunc(1000, Y, Z);
 …
}

Peppher 2011

•  By default, a CALLSITE directive implements the whole
Remote Procedure Call (RPC) sequence

•  An RPC sequence consists in 5 steps:
o  (1) Allocate the GPU and the memory
o  (2) Transfer the input data: CPU => GPU
o  (3) Compute
o  (4) Transfer the output data: GPU=> CPU
o  (5) Release the GPU and the memory

www.caps-entreprise.com 10

Running a Codelet or Section on a GPU - 2

Allocate 
GPU 

Transfer 
IN data 

GPU Compute 
Transfer 
OUT 
data 

Release 
GPU 

1 2 3 4 5

CPU Compute 

CPU
Fallback

Peppher 2011

•  Tuning hybrid code consists in
o  Reducing penalty when allocating and releasing GPUs
o  Reducing data transfer time
o  Optimizing performance of the GPU kernels
o  Using CPU cores in parallel with the GPU

•  HMPP provides a set of directives to address these
optimizations

•  The objective is to get efficient CPU and GPU computations

www.caps-entreprise.com 11

Tuning Hybrid Codes

Peppher 2011

•  Hybrid code performance is very sensitive to the amount of
CPU-GPU data transfers
o  PCIx bus is a serious bottleneck (< 10 GBs vs 150 GBs)

•  Various techniques
o  Reduce data transfer occurrences
o  Share data on the GPU between codelets
o  Map codelet arguments to the same GPU space
o  Perform partial data transfers

•  Warning: dealing with two address spaces may introduce
inconsistencies

www.caps-entreprise.com 12

Reducing Data Transfers between CPUs and
GPUs

Peppher 2011

•  GPU kernel tuning set-up parallel loop suitable for GPU
architectures

•  Multiple issues to address
o  Memory accesses
o  Thread grid tuning
o  Register usage tuning
o  Shared memory usage
o  Removing control flow divergence

•  In many cases, CPU code structure conflicts with GPU
efficient code structure

www.caps-entreprise.com 13

Tuning GPU Kernels

Peppher 2011

•  Prerequisite
o  Understand your performance goal

•  Memory bandwidth needs are a good potential performance indicator
o  Know your hotspots

•  Beware of Amdahl’s law
o  Ensure you know how to validate the output of your application

•  Rounding may differs on GPUs
o  Determine if you goal can be achieved

•  How many CPUs and GPUs are necessary?
•  Is there similar existing codes for GPUs (in CUDA, OpenCL or HMPP)?

•  Define an incremental approach
o  Ensure to check the results at each step

•  Two phase approach
o  Phase 1: Application programmers validate the computed results
o  Phase 2: Performance programmers focus on GPU code tuning and

data transfer reduction

www.caps-entreprise.com 14

Methodology to Port Applications

Peppher 2011

Methodology to Port Applications

www.caps-entreprise.com 15

A corporate project

• Purchasing Department
• Scientists
• IT Department

• Exploit CPU and GPU
• Reduce CPU-GPU data transfers
• Optimize GPU kernel execution
• Provide feedback to application
programmers for improving algorithm
data structures/…

• Consider multiple GPUs

• Optimize CPU code
• Exhibit application SIMT parallelism

• Push application hotspot on GPU
• Validate CPU-GPU execution

• Understand your performance goal (analysis,
definition and achievment)

• Know your hotspots (analysis,
code reorganization, hotspot selection)

• Establish a validation process
• Set a continuous integration
process with the validation Define your

parallel
project

Port your
application

on GPU

Optimize your
GPGPU

application

Phase 1

Phase 2

Hotspots Parallelization

Tuning

GPGPU operational
application with
known potential

Hours to Days Days to Weeks

Weeks to Months

Methodology Overview

www.caps-entreprise.com 16

Compile and run Check results

Profile

Allocation dominating

Communication
dominating

Compute dominating

Use allocate/release
directives

Optimize data
transfers

Optimize codelet code

select

Identify hotspots

Hotspots parallel ?

Pick new hotspots

Reconsider algorithms Hotspots compute
intensive enough ?

Construct the codelets

Compile, Run, and
Check results

Code appropriate to
GPU ?

Rewrite

yes

yes

no
no

no

yes

Compile, Run, and
Check results

HMPP
Performance

Analyzer

HMPP
Post-analysis

tool

Pre-analysis tool

HMPP
Wizard &

Feedback

Peak Performance
achieved

Phase 1 : Domain Field

Phase 2 : Computer

Sciences Field

GPGPU operational
application with
known potential

BEGIN

Focus on Hotspots

www.caps-entreprise.com 17 Peppher 2011

Profile your CPU
application

Build a coherent
kernel set

www.caps-entreprise.com 18 Peppher 2011

Build Your GPU Computation with HMPP
Directives (1)

Construct your
GPU group of

codelet

www.caps-entreprise.com 19 Peppher 2011

Build Your GPU Computation with HMPP
Directives (2)

… and use
Codelets in the

application

www.caps-entreprise.com 20 Peppher 2011

Tune Your Kernels for GPUs with
CAPS HMPP Wizard (1/2)

Analyze your memory
access pattern

Use HMPPCG Directives
and make your kernel

GPU friendly

www.caps-entreprise.com 21

Tune Your Kernels for GPUs with
CAPS HMPP Wizard (2/2)

Peppher 2011

CAPS Tools to
Port Your Applications –

Phase 2

www.caps-entreprise.com 23 Peppher 2011

Optimizing Tools

www.caps-entreprise.com 24 Peppher 2011

Analyze the GPU Code Porting Efficiency

Get a precise view of HMPP element behavior

Get statistics on GPU operations

www.caps-entreprise.com 25 Peppher 2011

Tune the GPU Execution Integration
in Your Application with HMPP Directives

Optimize out
transfers from kernel

calls

Optimize the GPU
allocation and
operate data
prefetching

www.caps-entreprise.com 26 Peppher 2011

Analyze and profile kernel execution
on the GPU with HMPP Performance Analyzer

Get precise and specific
information about the

kernel behavior

Explore and Exploit at
best the GPU power

from the C source level

www.caps-entreprise.com 27 Peppher 2011

Optimize the GPU Kernel Code Generation with
HMPPCG Directives

Control loop
transformations using

directives

Control the loop
distribution over the GPU

(grid generation)

Examples of Ported
Applications

•  Smoothed particles hydrodynamics
o  Effort: 2 man-month
o  Size: 22kLoC of F90 (SP or DP, MPI)
o  GPU C1060 improvement: x 2 over serial code on Nehalem (x1.1 DP)
o  Main difficulty: kernels limited to 70% of the execution time

•  3D Poisson equation, conjugate gradient
o  Effort: 2 man-month
o  Size: 2kLoC of F90 (DP)
o  CPU improvement: x 2
o  GPU C1060 improvement: x 5 over serial code on Nehalem
o  Main porting operation: highly optimizing kernels
o  Main difficulty: none

www.caps-entreprise.com 29

Examples of Ported Applications – 1

The ra;o performance over resource 
 is the important informa;on here.  

Peppher 2011

•  Electron propagation - solver
o  Effort: 2 man-month
o  Size: 10 kLoC of F95 (DP, MPI)
o  CPU improvement: x 1.3
o  GPU C1060 improvement: x 1.15 over 4 thread code on

Nehalem
o  Main porting operation: solver algorithm modifications
o  Main difficulty: small matrices, many data transfers

•  3D combustion code
o  Effort: 2 man-month
o  Size: x100 kLoC of F90 (DP)
o  GPU C1060 improvement: ~x1 (data transfer limited) over serial

code on Nehalem; C2050 x1.3
o  Main difficulty: execution profile shows few hot-spots (70%)
o  Next: code/algo. is being reviewed according to current results

www.caps-entreprise.com 30

Examples of Ported Applications - 2

Peppher 2011

•  Euler equations
o  Effort: <1 man-month
o  Size: ~40kLoC of F90 (DP)
o  CPU improvement: x 3 over the original code
o  GPU C1060 improvement: x 3 over serial code on Nehalem
o  Main porting operation: specializing the code for the main execution

configuration
o  Main difficulty: reorganizing computational kernels (CPU dev. legacy)

•  Tsunami/flood simulation
o  Effort: 0.5 man-month
o  Size: ~4kLoC (DP, MPI)
o  GPU C1060 improvement: x 1.28 over serial code on Nehalem

(kernels speedup x30 and x18)
o  Next: highlight more parallelism, reducing data transfers (high

performance potential)

www.caps-entreprise.com 31

Examples of Ported Applications - 3

Peppher 2011

•  Weather models (GTC 2010 talk, M. Govett, NOAA)
o  Effort: 1 man-month (part of the code already ported)
o  GPU C1060 improvement: 10x over the serial code on Nehalem
o  Main porting operation: reduction of CPU-GPU transfers
o  Main difficulty: GPU memory size is the limiting factor

www.caps-entreprise.com 32

Examples of Ported Applications - 5

Peppher 2011

Computer vision & Medical

MultiView Stereo

www.caps-entreprise.com 33

•  Resource spent
o  1 man-month

•  Size
o  ~1kLoC of C99 (DP)

•  HMPP Basic version (1hour)
o  GPU C2050 improvement

•  X 30
o  Main porting operation

•  Adding 4 directives

•  HMPP fine tune version (2
weeks)
o  GPU C2050 improvement

•  X 500
o  Main porting operation

•  Rethinking algorithm

Peppher 2011

•  Heterogeneous architectures are becoming
ubiquitous
o  In HPC centers but not only
o  Tremendous opportunities but not always easy to seize
o  CPU and GPU have to be used simultaneously

•  Legacy codes still need to be ported
o  An efficient methodology is required
o  A methodology supporting tools is needed and must provide a set of

consistent views
o  The legacy style is not helping
o  Highlighted parallelism for GPU is useful for future manycores

•  HMPP based programming
o  Helps implementing incremental strategies
o  Is being complemented by a set of tools
o  Engage in an Open Standard path with Pathscale

www.caps-entreprise.com 34

Conclusion

Peppher 2011

•  Preload data before codelet call
o  Load data as soon as possible

www.caps-entreprise.com 36

Reducing Data Transfers Occurrences

int main(int argc, char **argv) {

#pragma hmpp sgemm allocate, args[vin1;vin2;vout].size={size,size}
 . . .

#pragma hmpp sgemm advancedload, args[vin1;m;n;k;alpha;beta]

 for(j = 0 ; j < 2 ; j++) {
#pragma hmpp sgemm callsite &
#pragma hmpp sgemm args[m;n;k;alpha;beta;vin1].advancedload=true
 sgemm(size, size, size, alpha, vin1, vin2, beta, vout);
 . . .
 }

 . . .
#pragma hmpp sgemm release

Preload data

Avoid reloading data

Peppher 2011

•  Share data
between
codelets of the
same group
o  Keep data

on the HWA
between two
codelet calls

o  Avoid
useless data
transfers

www.caps-entreprise.com 37

Sharing Data Between Codelets with
Resident Data

#pragma hmpp <process> group, target=CUDA
#pragma hmpp <process> resident
float initValue = 1.5f, offset[9];
…
#pragma hmpp <process> reset1 codelet, args[t].io=out
void reset(float t[M][N]){
 int i,j;
 for (i = 0; i < M; i += 1) {
 for (j = 0; j < N; j += 1) {
 t[i][j] = initValue + offset[(i+j)%9];
 }
 }
}
#pragma hmpp <process> process codelet, args[a].io=inout
void process(real a[M][N], real b[M][N]){
 int i,j;
 for (i = 0; i < M; i += 1) {
 for (j = 0; j < N; j += 1) {
 a[i][j] = cos(a[i][j]) + cos(b[i][j]) - initValue;
 }
 }
}

Peppher 2011

