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•  Many applications can benefit from GPU computing 
o  Linear Algebra, signal processing 
o  Bio informatics, molecular dynamics 
o  Magnetic resonance imaging, tomography 
o  Reverse time migration, electrostatic 
o  … 

•  Porting legacy codes to GPU computing is a major 
challenge 
o  Can be very expensive 
o  Require to minimize porting risks 
o  Should be based on future-proof approach 
o  Implies application and performance programmers to cooperate 

•  A good methodology is paramount to reduce porting cost 
o  HMPP provides an efficient solution 
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Introduction 

Peppher 2011 



•  A directive based multi-language programming 
environment 
o  Help keeping software independent from hardware targets 
o  Provide an incremental tool to exploit GPU in legacy applications 
o  Avoid exit cost, can be future-proof solution 

•  HMPP provides 
o  Code generators from C and Fortran to GPU (CUDA or OpenCL) 
o  A compiler driver that handles all low level details of GPU 

compilers 
o  A runtime to allocate and manage GPU resources  

•  Source to source compiler 
o  CPU code does not require compiler change 
o  Complement existing parallel APIs (OpenMP or MPI) 
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What is HMPP? (Hybrid Manycore Parallel Programming) 
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•  Focus on the main bottleneck 
o  Communication between GPUs and CPUs 

•  Allow incremental development 
o  Up to full access to the hardware features 

•  Work with other parallel APIs (e.g. OpenMP, MPI) 
o  Orchestrate CPU and GPU computations 

•  Consider multiple languages 
o  Avoid asking users to learn a new language 

•  Consider resource management 
o  Generate robust software 

•  Exploit vendor tools/compilers 
o  Do not replace, complement 
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HMPP Main Design Considerations 
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•  HMPP parallel programming model is  
parallel loop centric 

•  CUDA and OpenCL parallel programming models are thread 
centric 

www.caps-entreprise.com 5 

How Does HMPP Differ from CUDA or 
OpenCL? 

void saxpy(int n, float alpha,  
           float *x, float *y){ 
#pragma hmppcg parallel 
for(int i = 0; i<n; ++i) 
    y[i] = alpha*x[i] + y[i]; 
} 

__global__ 
void saxpy_cuda(int n, float 
alpha,  
float *x, float *y) { 
int i = blockIdx.x*blockDim.x + 
threadIdx.x; 
 if(i<n) y[i] = alpha*x[i]+y[i]; 
} 

int nblocks = (n + 255) / 256; 
saxpy_cuda<<<nblocks, 
256>>>(n, 2.0, x, y); 
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•  A codelet is a pure function that can be remotely 
executed on a GPU 

•  Regions are a short cut for writing codelets 
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HMPP Codelets and Regions 

#pragma hmpp myfunc codelet, … 
void saxpy(int n, float alpha, float x[n], float y[n])
{ 
#pragma hmppcg parallel 
  for(int i = 0; i<n; ++i) 
    y[i] = alpha*x[i] + y[i]; 
} 

#pragma hmpp myreg region, … 
{ 
  for(int i = 0; i<n; ++i) 
    y[i] = alpha*x[i] + y[i]; 
} 
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•  Target clause specifies what GPU code to generate 
o  GPU can be CUDA or OpenCL 

•  Choice of the implementation at runtime can be different! 
o  The runtime select among the available hardware and code 
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Codelet Target Clause 

#pragma hmpp myLabel codelet, target=[GPU], args[C].io=out 
void myFunc( int n, int A[n], int B[n], int C[n]){ 
  ... 
} 

#pragma hmpp myLabel codelet, target=CUDA 

#pragma hmpp myLabel codelet, target=OpenCL 

NVIDIA only GPU 

NVIDIA & AMD GPU, AMD CPU 
Peppher 2011 



•  The arguments of codelet are also allocated in the GPU device 
memory 
o  Must exist on both sides to allow backup execution 
o  No hardware mechanism to ensure consistencies 
o  Size must be known to perform the data transfers 

•  Are defined by the io clause (in Fortran use intent instead) 
o  in (default) : read only in the codelet 
o  out: completely defined, no read before a write 
o  inout: read and written 

•  Using inappropriate inout generates extra PCI bus traffic 
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HMPP Codelets Arguments 

#pragma hmpp myLabel codelet, args[B].io=out, args[C].io=inout 
void myFunc( int n, int A[n], int B[n], int C[n]){ 
    for( int i=0 ; i<n ; ++i){ 
        B[i] = A[i] * A[i]; 
        C[i] = C[i] * A[i]; 
    } 
} 

Peppher 2011 



•  The callsite 
directive specifies 
the use of a codelet 
at a given point in 
your application. 

•  callsite 
directive performs a 
Remote Procedure 
Call onto the GPU 
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Running a Codelet or Section on a GPU - 1  

#pragma hmpp call1 codelet, target=CUDA 
#pragma hmpp call2 codelet, target=OpenCL 
void myFunc(int n, int A[n], int B[n]){ 
    int i; 
    for (i=0 ; i<n ; ++i) 
        B[i] = A[i] + 1; 
} 

void main(void) 
{ 
    int X[10000], Y[10000], Z[10000]; 
    … 
    #pragma hmpp call1 callsite,  … 
    myFunc(10000, X, Y); 
    ... 
    #pragma hmpp call2 callsite,  … 
    myFunc(1000, Y, Z); 
    … 
} 
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•  By default, a CALLSITE directive implements the whole 
Remote Procedure Call (RPC) sequence 

•  An RPC sequence consists in 5 steps: 
o  (1)  Allocate the GPU and the memory 
o  (2)  Transfer the input data: CPU => GPU 
o  (3)  Compute 
o  (4)  Transfer the output data: GPU=> CPU 
o  (5)  Release the GPU and the memory 
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Running a Codelet or Section on a GPU - 2 
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•  Tuning hybrid code consists in 
o  Reducing penalty when allocating and releasing GPUs 
o  Reducing data transfer time 
o  Optimizing performance of the GPU kernels 
o  Using CPU cores in parallel with the GPU 

•  HMPP provides a set of directives to address these 
optimizations 

•  The objective is to get efficient CPU and GPU computations 
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Tuning Hybrid Codes 
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•  Hybrid code performance is very sensitive to the amount of 
CPU-GPU data transfers 
o  PCIx bus is a serious bottleneck (< 10 GBs vs 150 GBs) 

•  Various techniques 
o  Reduce data transfer occurrences 
o  Share data on the GPU between codelets 
o  Map codelet arguments to the same GPU space 
o  Perform partial data transfers 

•  Warning: dealing with two address spaces may introduce 
inconsistencies 
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Reducing Data Transfers between CPUs and 
GPUs 
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•  GPU kernel tuning set-up parallel loop suitable for GPU 
architectures 

•  Multiple issues to address 
o  Memory accesses 
o  Thread grid tuning 
o  Register usage tuning 
o  Shared memory usage 
o  Removing control flow divergence 

•  In many cases, CPU code structure conflicts with GPU 
efficient code structure 
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Tuning GPU Kernels 
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•  Prerequisite 
o  Understand your performance goal 

•  Memory bandwidth needs are a good potential performance indicator 
o  Know your hotspots 

•  Beware of Amdahl’s law 
o  Ensure you know how to validate the output of your application 

•  Rounding may differs on GPUs 
o  Determine if you goal can be achieved 

•  How many CPUs and GPUs are necessary? 
•  Is there similar existing codes for GPUs (in CUDA, OpenCL or HMPP)? 

•  Define an incremental approach 
o  Ensure to check the results at each step 

•  Two phase approach 
o  Phase 1: Application programmers validate the computed results 
o  Phase 2: Performance programmers focus on GPU code tuning and 

data transfer reduction 
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Methodology to Port Applications 
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Methodology to Port Applications 
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A corporate project 

• Purchasing Department 
• Scientists 
• IT Department 

• Exploit CPU and GPU 
• Reduce CPU-GPU data transfers 
• Optimize GPU kernel execution 
• Provide feedback to application  
programmers for improving algorithm 
data structures/…  

• Consider multiple GPUs 

• Optimize CPU code 
• Exhibit application SIMT parallelism 

• Push application hotspot on GPU 
• Validate CPU-GPU  execution 

• Understand your performance goal (analysis, 
definition and  achievment) 

• Know your hotspots  (analysis,  
code reorganization, hotspot selection) 

• Establish a validation process 
• Set a continuous integration 
process with the validation Define your 

parallel 
project 

Port your 
application 

on GPU 

Optimize your 
GPGPU 

application 

Phase 1 

Phase 2 

Hotspots Parallelization 

Tuning 

GPGPU operational 
application with 
known potential 

Hours to Days Days to Weeks 

Weeks to Months 



Methodology Overview 
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Focus on Hotspots 
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Profile your CPU 
application 

Build a coherent 
kernel set 
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Build Your GPU Computation with HMPP 
Directives (1)  

Construct your 
GPU group of 

codelet 
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Build Your GPU Computation with HMPP 
Directives (2) 

… and use 
Codelets in the 

application  
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Tune Your Kernels for GPUs with 
CAPS HMPP Wizard (1/2) 

Analyze your memory 
access pattern 

Use HMPPCG Directives 
and make your kernel 

GPU friendly 
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Tune Your Kernels for GPUs with 
CAPS HMPP Wizard (2/2) 
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CAPS Tools to  
Port Your Applications – 

Phase 2 
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Optimizing Tools 
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Analyze the GPU Code Porting Efficiency 

Get a precise view of HMPP element behavior 

Get statistics on GPU operations 
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Tune the GPU Execution Integration  
in Your Application with HMPP Directives 

Optimize out 
transfers from kernel 

calls 

Optimize the GPU 
allocation and 
operate data 
prefetching 
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Analyze and profile kernel execution  
on the GPU with HMPP Performance Analyzer 

Get precise and specific 
information about the 

kernel behavior 

Explore and Exploit at 
best the GPU power 

from the C source level 
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Optimize the GPU Kernel Code Generation with  
HMPPCG Directives 

Control loop 
transformations using 

directives 

Control the loop 
distribution over the GPU 

(grid generation) 



Examples of Ported 
Applications 



•  Smoothed particles hydrodynamics 
o  Effort: 2 man-month 
o  Size: 22kLoC of F90 (SP or DP, MPI) 
o  GPU C1060 improvement: x 2 over serial code on Nehalem (x1.1 DP) 
o  Main difficulty: kernels limited to 70% of the execution time 

•  3D Poisson equation, conjugate gradient 
o  Effort: 2 man-month  
o  Size: 2kLoC of F90 (DP)  
o  CPU improvement: x 2 
o  GPU C1060 improvement: x 5 over serial code on Nehalem 
o  Main porting operation: highly optimizing kernels 
o  Main difficulty: none 
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Examples of Ported Applications – 1  

The ra;o performance over resource 
 is the important informa;on here. 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•  Electron propagation - solver 
o  Effort: 2 man-month 
o  Size: 10 kLoC of F95 (DP, MPI) 
o  CPU improvement: x 1.3 
o  GPU C1060 improvement: x 1.15 over 4 thread code on 

Nehalem 
o  Main porting operation: solver algorithm modifications 
o  Main difficulty: small matrices, many data transfers 

•  3D combustion code 
o  Effort: 2 man-month 
o  Size: x100 kLoC of F90 (DP) 
o  GPU C1060 improvement: ~x1 (data transfer limited) over serial 

code on Nehalem; C2050 x1.3 
o  Main difficulty: execution profile shows few hot-spots (70%) 
o  Next: code/algo. is being reviewed according to current results 
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Examples of Ported Applications - 2 
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•  Euler equations 
o  Effort: <1 man-month 
o  Size: ~40kLoC of F90 (DP) 
o  CPU improvement: x 3 over the original code 
o  GPU C1060 improvement: x 3 over serial code on Nehalem 
o  Main porting operation: specializing the code for the main execution 

configuration 
o  Main difficulty: reorganizing computational kernels (CPU dev. legacy) 

•  Tsunami/flood simulation 
o  Effort: 0.5 man-month 
o  Size: ~4kLoC (DP, MPI) 
o  GPU C1060 improvement: x 1.28 over serial code on Nehalem  

(kernels speedup x30 and x18) 
o  Next: highlight more parallelism, reducing data transfers (high 

performance potential) 
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Examples of Ported Applications - 3 
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•  Weather models (GTC 2010 talk, M. Govett, NOAA) 
o  Effort: 1 man-month (part of the code already ported) 
o  GPU C1060 improvement: 10x over the serial code on Nehalem 
o  Main porting operation: reduction of CPU-GPU transfers 
o  Main difficulty: GPU memory size is the limiting factor 
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Examples of Ported Applications - 5 
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Computer vision & Medical 

MultiView Stereo 
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•  Resource spent 
o  1 man-month 

•  Size 
o  ~1kLoC of C99 (DP) 

•  HMPP Basic version (1hour) 
o  GPU C2050 improvement 

•  X 30 
o  Main porting operation 

•  Adding 4 directives 

•  HMPP fine tune version (2 
weeks) 
o  GPU C2050 improvement 

•  X 500 
o  Main porting operation 

•  Rethinking algorithm 
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•  Heterogeneous architectures are becoming 
ubiquitous 
o  In HPC centers but not only 
o  Tremendous opportunities but not always easy to seize 
o  CPU and GPU have to be used simultaneously 

•  Legacy codes still need to be ported 
o  An efficient methodology is required 
o  A methodology supporting tools is needed and must provide a set of 

consistent views 
o  The legacy style is not helping 
o  Highlighted parallelism for GPU is useful for future manycores  

•  HMPP based programming 
o  Helps implementing incremental strategies 
o  Is being complemented by a set of tools 
o  Engage in an Open Standard path with Pathscale  

www.caps-entreprise.com 34 

Conclusion 
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•  Preload data before codelet call 
o  Load data as soon as possible 
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Reducing Data Transfers Occurrences 

int main(int argc, char **argv) { 

#pragma hmpp sgemm allocate, args[vin1;vin2;vout].size={size,size} 
    . . . 

#pragma hmpp sgemm advancedload, args[vin1;m;n;k;alpha;beta] 

 for( j = 0 ; j < 2 ; j++ ) {       
#pragma hmpp sgemm callsite &  
#pragma hmpp sgemm  args[m;n;k;alpha;beta;vin1].advancedload=true  
    sgemm( size, size, size, alpha, vin1, vin2, beta, vout );  
    . . . 
 } 

 . . . 
#pragma hmpp sgemm release 

Preload data 

Avoid reloading data 
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•  Share data 
between 
codelets of the 
same group 
o  Keep data 

on the HWA 
between two 
codelet calls 

o  Avoid 
useless data 
transfers 
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Sharing Data Between Codelets with 
Resident Data 

#pragma hmpp <process> group, target=CUDA
#pragma hmpp <process> resident
float initValue = 1.5f, offset[9];
…
#pragma hmpp <process> reset1 codelet, args[t].io=out
void reset(float t[M][N]){
  int i,j;
  for (i = 0; i < M; i += 1) {
    for (j = 0; j < N; j += 1) {
      t[i][j] = initValue + offset[(i+j)%9];
    }
  }
}
#pragma hmpp <process> process codelet, args[a].io=inout
void process(real a[M][N], real b[M][N]){
  int i,j;
  for (i = 0; i < M; i += 1) {
    for (j = 0; j < N; j += 1) {
      a[i][j] = cos(a[i][j]) + cos(b[i][j]) - initValue;
    }
  }
}
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