Taming Heterogeneous Parallelism with Domain Specific Languages

Kunle Olukotun
Pervasive Parallelism Laboratory
Stanford University
PPL Research Goal

- Unleash full power of future computing platforms
 - Make parallel application development practical for the masses (Joe the programmer)
 - Parallel applications without parallel programming
Guiding Observations

- Heterogeneous parallel hardware
 - Computing is energy constrained
 - Specialization: energy and area efficient parallel computing

- Must hide low-level issues from most programmers
 - Explicit parallelism won’t work (10K-100K threads)
 - Only way to get simple and portable programs

- No single discipline can solve all problems
 - Apps, PLs, runtime, OS, architecture
 - Need vertical integration
 - Hanrahan, Aiken, Rosenblum, Kozyrakis, Horowitz
\[
\text{Power} = \text{Energy}_{op} \times \frac{\text{Ops}}{\text{second}}
\]
Heterogeneous Hardware

- Heterogeneous HW for energy efficiency
 - Multi-core, ILP, threads, data-parallel engines, custom engines

- H.264 encode study

Source: Understanding Sources of Inefficiency in General-Purpose Chips (ISCA’10)
Heterogeneous Parallel Architectures

Driven by energy efficiency
Heterogeneous Parallel Programming

- Pthreads
- OpenMP
- CUDA
- OpenCL
- Verilog
- VHDL
- MPI
- Sun T2
- Nvidia Fermi
- Altera FPGA
- Cray Jaguar
Programmability Chasm

Applications

Scientific Engineering
Virtual Worlds
Personal Robotics
Data Informatics

Too many different programming models
It is possible to write one program and run it on all these machines.
Programmability Chasm

Applications

Scientific Engineering
Virtual Worlds
Personal Robotics
Data informatics

Ideal Parallel Programming Language

Pthreads
OpenMP

Sun
T2

CUDA
OpenCL

Nvidia
Fermi

Verilog
VHDL

Altera
FPGA

MPI

Cray
Jaguar

Too many different programming models
The Ideal Parallel Programming Language

Performance

Productivity

Generality
Successful Languages

- Performance
- Productivity
- Generality

Languages: Python, C/C++, Ruby
True Hypothesis \Rightarrow Domain Specific Languages

- Performance
- Productivity
- Generality

- Domain Specific Languages
- C/C++
- Python
- Ruby
Domain Specific Languages

- Domain Specific Languages (DSLs)
 - Programming language with restricted expressiveness for a particular domain
 - High-level and usually declarative
Benefits of Using DSLs for Parallelism

Productivity
- Shield average programmers from the difficulty of parallel programming
- Focus on developing algorithms and applications and not on low level implementation details

Performance
- Match high level domain abstraction to generic parallel execution patterns
- Restrict expressiveness to more easily and fully extract available parallelism
- Use domain knowledge for static/dynamic optimizations

Portability and forward scalability
- DSL & Runtime can be evolved to take advantage of latest hardware features
- Applications remain unchanged
- Allows innovative HW without worrying about application portability
PPL Vision

Applications
- Scientific Engineering
- Virtual Worlds
- Personal Robotics
- Data Informatics

Domain Specific Languages
- Rendering
- Physics (Liszt)
- Data Analysis
- Probabilistic (RandomT)
- Machine Learning (OptiML)

Domain Embedding Language (Scala)
- Polymorphic Embedding
- Staging
- Static Domain Specific Opt.

Parallel Runtime (Delite, Sequoia, GRAMPS)
- Task & Data Parallelism
- Locality Aware Scheduling

Hardware Architecture
- OOO Cores
- SIMD Cores
- Threaded Cores
- Specialized Cores

- Programmable Hierarchies
- Scalable Coherence
- Isolation & Atomicity
- On-chip Networks
- Pervasive Monitoring
New Problem

- We need to develop all of these DSLs

- Current DSL methods are unsatisfactory
Current DSL Development Approaches

- **Stand-alone DSLs**
 - Can include extensive optimizations
 - Enormous effort to develop to a sufficient degree of maturity
 - Actual Compiler/Optimizations
 - Tooling (IDE, Debuggers, ...)
 - Interoperation between multiple DSLs is very difficult

- **Purely embedded DSLs ⇒ “just a library”**
 - Easy to develop (can reuse full host language)
 - Easier to learn DSL
 - Can Combine multiple DSLs in one program
 - Can Share DSL infrastructure among several DSLs
 - Hard to optimize using domain knowledge
 - Target same architecture as host language

Need to do better
Goal: Develop embedded DSLs that perform as well as stand-alone ones

Intuition: General-purpose languages should be designed with DSL embedding in mind
Mixes OO and FP paradigms
- Targets JVM
- Expressive type system allows powerful abstraction
- Scalable language
- Stanford/EPFL collaboration on leveraging Scala for parallelism
- “Language Virtualization for Heterogeneous Parallel Computing” Onward 2010, Reno
Lightweight Modular Staging Approach

Modular Staging provides a hybrid approach

- DSLs adopt front-end from highly expressive embedding language
- Stand-alone DSL implements everything
- Can customize IR and participate in backend phases

Typical Compiler

GPCE’10: Lightweight modular staging: a pragmatic approach to runtime code generation and compiled DSLs
Delite DSL Infrastructure

- Provide a common IR that can be extended while still benefitting from generic analysis and opt.
- Extend common IR and provide IR nodes that encode data parallel execution patterns
 - Now can do parallel optimizations and mapping
- DSL extends most appropriate data parallel nodes for their operations
 - Now can do domain-specific analysis and opt.
- Generate an execution graph, kernels and data structures
Delite Execution

- Maps the machine-agnostic DSL compiler output onto the machine configuration for execution
- Walk-time scheduling produces partial schedules
- Code generation produces fused, specialized kernels to be launched on each resource
- Run-time executor controls and optimizes execution

- Partial schedules, Fused & specialized kernels
- Run-Time

- Schedule Dispatch, Dynamic load balancing, Memory management, Lazy data transfers, Kernel auto-tuning, Fault tolerance

- Application Inputs

- Delite Execution Graph
- Kernels (Scala, C, Cuda, Verilog, …)
- Data Structures (arrays, trees, graphs, …)

- Machine Inputs

- Cluster
- SMP
- GPU

- Code Generator
 Fusion, Specialization, Synchronization

- Walk-Time

- Scheduler
Solvers for mesh-based PDEs
- Complex physical systems
- Huge domains
- Millions of cells
- Example: Unstructured Reynolds-averaged Navier Stokes (RANS) solver

Goal: simplify code of mesh-based PDE solvers
- Write once, run on any type of parallel machine
- From multi-cores and GPUs to clusters
Liszt Language Features

- Minimal Programming language
 - Arithmetic, short vectors, functions, control flow

- Built-in mesh interface for arbitrary polyhedra
 - Vertex, Edge, Face, Cell
 - Optimized memory representation of mesh

- Collections of mesh elements
 - Element Sets: faces(c:Cell), edgesCCW(f:Face)

- Mapping mesh elements to fields
 - Fields: val vert_position = position(v)

- Parallelizable iteration
 - forall statements: for(f <- faces(cell)) { ... }
for (edge <- edges(mesh)) {
 val flux = flux_calc(edge)
 val v0 = head(edge)
 val v1 = tail(edge)
 Flux(v0) += flux
 Flux(v1) -= flux
}

Code contains possible write conflicts!
We use architecture specific strategies guided by domain knowledge
- MPI: Ghost cell-based message passing
- GPU: Coloring-based use of shared memory
Using 8 cores per node, scaling up to 96 cores (12 nodes, 8 cores per node, all communication using MPI)
Scaling mesh size from 50K (unit-sized) cells to 750K (16x) on a Tesla C2050. Comparison is against single threaded runtime on host CPU (Core 2 Quad 2.66Ghz). Single-Precision: 31.5x, Double-precision: 28x
OptiML: A DSL for ML

- Machine Learning domain
 - Learning patterns from data
 - Applying the learned models to tasks
 - Regression, classification, clustering, estimation
 - Computationally expensive
 - Regular and irregular parallelism

- Motivation for OptiML
 - Raise the level of abstraction
 - Use domain knowledge to identify coarse-grained parallelism
 - Single source → multiple heterogeneous targets
 - Domain specific optimizations
OptiML Language Features

- Provides a familiar (MATLAB-like) language and API for writing ML applications
 - Ex. `val c = a * b` (a, b are Matrix[Double])

- Implicitly parallel data structures
 - General data types: Vector[T], Matrix[T]
 - Independent from the underlying implementation
 - Special data types: TrainingSet, TestSet, IndexVector, Image, Video ..
 - Encode semantic information

- Implicitly parallel control structures
 - `sum{...}, (0:end) {...}, gradient { ... }, untilconverged { ... }`
 - Allow anonymous functions with restricted semantics to be passed as arguments of the control structures
Example OptiML / MATLAB code (Gaussian Discriminant Analysis)

```
// x : TrainingSet[Double]
// mu0, mu1 : Vector[Double]
val sigma = sum(0,x.numSamples) {
  if (x.labels(_) == false) {
    (x(_)-mu0).trans.outer(x(_)-mu0)
  } else {
    (x(_)-mu1).trans.outer(x(_)-mu1)
  }
}
```

```
% x : Matrix, y: Vector
% mu0, mu1: Vector

n = size(x,2);
sigma = zeros(n,n);

parfor i=1:length(y)
  if (y(i) == 0)
    sigma = sigma + (x(i,:)-mu0)\*(x(i,:)-mu0);
  else
    sigma = sigma + (x(i,:)-mu1)\*(x(i,:)-mu1);
  end
end
```

ML-specific data types

Implicitly parallel control structures

Restricted index semantics

OptiML code (parallel) MATLAB code
Experimental Setup

- 4 Different implementations
 - OptiML+Delite
 - MATLAB (Original, GPU, Jacket)

- System 1: Performance Tests
 - Intel Nehalem
 - 2 sockets, 8 cores, 16 threads
 - 24 GB DRAM
 - NVIDIA GTX 275 GPU

- System 2: Scalability Tests
 - Sun Niagara T2+
 - 4 sockets, 32 cores, 256 threads
 - 128 GB DRAM
Performance Study (CPU)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Normalized Execution Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDA</td>
<td></td>
</tr>
<tr>
<td>SVM</td>
<td></td>
</tr>
<tr>
<td>Naive Bayes</td>
<td></td>
</tr>
<tr>
<td>K-means</td>
<td></td>
</tr>
<tr>
<td>LBP</td>
<td></td>
</tr>
<tr>
<td>RBM</td>
<td></td>
</tr>
</tbody>
</table>

- **GDA**
- **SVM**
- **Naive Bayes**
- **K-means**
- **LBP**
- **RBM**

Legend:
- **Blue**: OptiML
- **Orange**: Parallelized MATLAB
Performance Study (GPU)

Normalized Speedup

OptiML MATLAB (GPU) MATLAB (Jacket GPU)

GDA RBM SVM KM NB LBP

Speedup relative to 1 core OptiML execution time on Nehalem system
Scalability Study (T2+)

![Graph showing Speedup vs. Threads for different algorithms: GDA, NB, K-means, SVM, LBP, RBM. The x-axis represents the number of threads, ranging from 1 to 128. The y-axis represents the speedup, ranging from 0.50 to 64.00. Each algorithm has a distinct line color or marker, indicating the performance improvement with increasing thread counts.](Pervasive Parallelism Laboratory)
Domain Specific Optimizations

![Bar chart showing speedup relative to 8 core execution time on Nehalem system]

Speedup relative to 8 core execution time on Nehalem system.
Conclusions

- DSLs can provide the answer to the heterogeneous parallel programming problem

- Need to simplify the process of generating DSLs for parallelism
 - Need programming languages to be designed for flexible embedding
 - Lightweight modular staging in Scala allows for more powerful embedded DSLs
 - Delite provides a framework for adding parallelism

- Early embedded DSL results are very promising