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Contributions

Show that it is possible (with benefits) to achieve QoS in 
user-space with task-centric programming models

Increase the resource awareness of task-centric runtime 
systems

Empower the task-centric programming with timing 
constrained tasks

Reduced power consumption
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Outline
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 Timing as a QoS constraint
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What is Quality-of-Service?

 Maximize the user's perceived experience
 QoS-needs exist in all system abstraction layers

• Multimedia, Web browsers,...
• Operating System,...
• NoC interconnects,...

 Often combined with Resource-management
• Enough resources to satisfy application QoS
• …but also not too many to prevent degradation of 

other applications or to limit power consumption
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Task-Centric scheduling and QoS-awareness

The task-centric paradigm:
 Exploiting dynamic parallelism within an application

 Programmer exposes available parallelism encapsulated as tasks
 A task can dynamically generate new tasks

 The task-centric scheduler distributes work across the acquired 
resources

#pragma omp task in() out() inout()

merge(v1,v2,N);

#pragma omp task in() out inout()

{

...

}

Distributed
Scheduler
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Task-Centric scheduling and QoS-awareness

 There already exists tons of research concerning QoS 
and resource-management

• Are they not adaptable to the task-centric paradigm?

 Not necessarily...
• Existing solutions are within kernel-, hypervisor- or 

middleware-space
• They do not assume multiple layers of scheduling 

(OS/user-level run-time for multiprogrammed 
workloads)
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Task-Centric scheduling and QoS-awareness

 However, a task-centric runtime system contains a 
scheduler:

• A distributed scheduler that assigns tasks to cores 
and which may also control resources (preferably in 
cooperation with the OS)

• Middleware can get incorrect readings of an 
application’s resource usage

• The task-centric runtime system knows what tasks 
exist, will exist, and about history 
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Timing as a QoS constraint – Soft real-time systems

 We chose to use timing to specify QoS demands of the 
application:

• Let the programmer specify the timing behavior of 
tasks

• The timing should be specified so-that violating the 
constraint will result in a degraded experience for the 
user

 The timing-constraints will guide the scheduler in taking 
decisions

• Tasks with tightest timing constraints execute first

• Allow the scheduler to drop tasks predicted to violate 
their timing constraints

• Predict what resources can be turned off to save power 
and when additional resources are needed
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Timing as a QoS constraint

 Extensions to the existing OpenMP directive to support 
timing-behavior

#pragma omp task deadline(time) release_after(time) 
ON_ERROR(OMP_SKIP | OMP_NO_SKIP)

deadline() –        Specifies the latest time a task should finish executing.

release_after() – Specified the earliest time a task can start executing.

ON_ERROR()  - Specifies if this task may or may not be dropped
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Timing as a QoS constraint

now =  omp_get_wtime();

#pragma omp task deadline(now + 5 ms)
fft_array();

Task creation point

Task's timing constraint
now now + 5ms
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Current ideas and implementation

 The two global goals of the runtime scheduler are:
• Strive to minimize the amount of tasks violating their 

timing constraints
• Re-actively or pro-actively conserve resource 

according to the needs of the application (throughout 
execution) to reduce power consumption
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Current ideas and implementation

 Goal 1: “Strive to minimize the amount of tasks 
violating their timing constraints”

 Solution:
• Integrate an Earliest-Deadline-First, queuing policy to ensure that 

the scheduler always executes tasks with the earliest deadline

• Integrate an critical queue that handle tasks that, according to their 
history and timing constraints, might miss their deadline

task1 task2 task3
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Current Ideas and Implementation

 Goals 2: “Re-actively or pro-actively conserve 
resources according to the needs of the application 
(throughout execution)”

 Current Solution:
• A “fuzzy-logic” approach monitoring the critical-queue 

and current timing violations to (de-) active resources

Resource regulator

Critical-queue

Target
Miss ratio

Amount of timing
Violations

<

P1 P2 ... Pn
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Current Ideas and Implementation

 We are using the Nanos++ runtime library (under the 
OmpSs programming model)

• Plug-in based customization
• Compiler assisted development using the Mercurium 

compiler
• Existing debugging tool-chains: Paraver
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Preliminary results

 We ported Nanos++ to the 
TilePRO64 processor

 The TilePRO64:
 64 small but energy 

efficient cores
 VLIW
 700 MHz clock 

frequency

• We soldered and attached 
a National Instruments 
Data-acquisition (NI USB-
6210) device to the 
TilePRO64's power pins

Soldered 
header-pins
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Preliminary results

TilePRO64

Wire

Data-Acquisiton 
device
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Preliminary results

 We executed the H.264 video decoder on the TilePRO64
 For the QoS-aware scheduler, we set a target of <2% 

timing violations
 We compare the results against a timing-unaware 

scheduler, the Breadth-First scheduler
 In these examples, only the deadline() clause was used

 No task dropping
 Three scenarios:

1. Not enough resources to meet timing constraints

2. Enough resources to meeting timing constraints

3. All resources available; letting the scheduler decide.
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Preliminary results

 H.264 running an HD movie with two cores.
 Timing constraint set towards a 10 fps execution

 Overall power consumption increase: 0.7%
 Investigation need, but likely due to complexity of 

scheduler
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Preliminary results

 H.264 running a HD movie with 12 cores
 Timing constraints set towards a 10 fps execution

 Overall power consumption decrease: ~5%
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Preliminary results

 H.264 decoder running a movie with 56 cores
 Timing constraints set towards a 10 fps execution

 Overall power consumption decrease: ~17%
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Conclusions

 In majority of cases, power consumption is decreased 
compared to a timing un-aware scheduler

 A scheduler that guarantees that tasks with earliest 
deadline are executed first

 User-friendliness and portability increase; let the runtime 
system decide about resources
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Future work

 Future work include
• Refining the resource controlling model.
• Further decrease the overhead of our scheduling 

policy
• Evaluate on more benchmarks
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