
1

Quality-of-Service and Resource management support in
Task-Centric Models

Artur Podobas, Mats Brorsson, Vladimir Vlassov

{podobas,matsbror,vladv}@kth.se

2

Contributions

Show that it is possible (with benefits) to achieve QoS in
user-space with task-centric programming models

Increase the resource awareness of task-centric runtime
systems

Empower the task-centric programming with timing
constrained tasks

Reduced power consumption

3

Outline

 What is QoS?
 Task-Centric scheduling and QoS-awareness
 Timing as a QoS constraint
 Current ideas and implementation
 Preliminary Results
 Conclusions

4

What is Quality-of-Service?

 Maximize the user's perceived experience
 QoS-needs exist in all system abstraction layers

• Multimedia, Web browsers,...
• Operating System,...
• NoC interconnects,...

 Often combined with Resource-management
• Enough resources to satisfy application QoS
• …but also not too many to prevent degradation of

other applications or to limit power consumption

5

Task-Centric scheduling and QoS-awareness

The task-centric paradigm:
 Exploiting dynamic parallelism within an application

 Programmer exposes available parallelism encapsulated as tasks
 A task can dynamically generate new tasks

 The task-centric scheduler distributes work across the acquired
resources

#pragma omp task in() out() inout()

merge(v1,v2,N);

#pragma omp task in() out inout()

{

...

}

Distributed
Scheduler

P0
P0

P0
P4

6

Task-Centric scheduling and QoS-awareness

 There already exists tons of research concerning QoS
and resource-management

• Are they not adaptable to the task-centric paradigm?

 Not necessarily...
• Existing solutions are within kernel-, hypervisor- or

middleware-space
• They do not assume multiple layers of scheduling

(OS/user-level run-time for multiprogrammed
workloads)

7

Task-Centric scheduling and QoS-awareness

 However, a task-centric runtime system contains a
scheduler:

• A distributed scheduler that assigns tasks to cores
and which may also control resources (preferably in
cooperation with the OS)

• Middleware can get incorrect readings of an
application’s resource usage

• The task-centric runtime system knows what tasks
exist, will exist, and about history

8

Timing as a QoS constraint – Soft real-time systems

 We chose to use timing to specify QoS demands of the
application:

• Let the programmer specify the timing behavior of
tasks

• The timing should be specified so-that violating the
constraint will result in a degraded experience for the
user

 The timing-constraints will guide the scheduler in taking
decisions

• Tasks with tightest timing constraints execute first

• Allow the scheduler to drop tasks predicted to violate
their timing constraints

• Predict what resources can be turned off to save power
and when additional resources are needed

9

Timing as a QoS constraint

 Extensions to the existing OpenMP directive to support
timing-behavior

#pragma omp task deadline(time) release_after(time)
ON_ERROR(OMP_SKIP | OMP_NO_SKIP)

deadline() – Specifies the latest time a task should finish executing.

release_after() – Specified the earliest time a task can start executing.

ON_ERROR() - Specifies if this task may or may not be dropped

10

Timing as a QoS constraint

now = omp_get_wtime();

#pragma omp task deadline(now + 5 ms)
fft_array();

Task creation point

Task's timing constraint
now now + 5ms

11

Current ideas and implementation

 The two global goals of the runtime scheduler are:
• Strive to minimize the amount of tasks violating their

timing constraints
• Re-actively or pro-actively conserve resource

according to the needs of the application (throughout
execution) to reduce power consumption

12

Current ideas and implementation

 Goal 1: “Strive to minimize the amount of tasks
violating their timing constraints”

 Solution:
• Integrate an Earliest-Deadline-First, queuing policy to ensure that

the scheduler always executes tasks with the earliest deadline

• Integrate an critical queue that handle tasks that, according to their
history and timing constraints, might miss their deadline

task1 task2 task3

0

5000

10000

15000

Predictor

EDF-queue Critical-queue

13

Current Ideas and Implementation

 Goals 2: “Re-actively or pro-actively conserve
resources according to the needs of the application
(throughout execution)”

 Current Solution:
• A “fuzzy-logic” approach monitoring the critical-queue

and current timing violations to (de-) active resources

Resource regulator

Critical-queue

Target
Miss ratio

Amount of timing
Violations

<

P1 P2 ... Pn

14

Current Ideas and Implementation

 We are using the Nanos++ runtime library (under the
OmpSs programming model)

• Plug-in based customization
• Compiler assisted development using the Mercurium

compiler
• Existing debugging tool-chains: Paraver

15

Preliminary results

 We ported Nanos++ to the
TilePRO64 processor

 The TilePRO64:
 64 small but energy

efficient cores
 VLIW
 700 MHz clock

frequency

• We soldered and attached
a National Instruments
Data-acquisition (NI USB-
6210) device to the
TilePRO64's power pins

Soldered
header-pins

16

Preliminary results

TilePRO64

Wire

Data-Acquisiton
device

17

Preliminary results

 We executed the H.264 video decoder on the TilePRO64
 For the QoS-aware scheduler, we set a target of <2%

timing violations
 We compare the results against a timing-unaware

scheduler, the Breadth-First scheduler
 In these examples, only the deadline() clause was used

 No task dropping
 Three scenarios:

1. Not enough resources to meet timing constraints

2. Enough resources to meeting timing constraints

3. All resources available; letting the scheduler decide.

18

Preliminary results

 H.264 running an HD movie with two cores.
 Timing constraint set towards a 10 fps execution

 Overall power consumption increase: 0.7%
 Investigation need, but likely due to complexity of

scheduler

Breadth-Firs t

QoS-aw are

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

Timing violations

H.264 with two cores

F
ra

c
ti
o

n
 m

is
s

e
s

19

Preliminary results

 H.264 running a HD movie with 12 cores
 Timing constraints set towards a 10 fps execution

 Overall power consumption decrease: ~5%

Breadth-First QoS-aw are

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

1,60%

1,80%

2,00%

Timing violations

H.264 with 12 cores

F
ra

ct
io

n
 m

is
s

e
s

20

Preliminary results

 H.264 decoder running a movie with 56 cores
 Timing constraints set towards a 10 fps execution

 Overall power consumption decrease: ~17%

Breadth-First QoS-aw are

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

Timing violations

H.264 with 56 cores

F
ra

ct
io

n
 m

is
s

e
s

21

Conclusions

 In majority of cases, power consumption is decreased
compared to a timing un-aware scheduler

 A scheduler that guarantees that tasks with earliest
deadline are executed first

 User-friendliness and portability increase; let the runtime
system decide about resources

22

Future work

 Future work include
• Refining the resource controlling model.
• Further decrease the overhead of our scheduling

policy
• Evaluate on more benchmarks

23

Acknowledgments

 Thanks to C.C. Chi and prof B. Juurlink of TU Berlin for
the OmpSs version of H.264

 Thanks to M. Själander and S. McKee's team of
Chalmers for the support concerning the power
measurements

24

Thank you

	Quality-of-Service and Resource management support in Task-Centric Models
	Contributions
	Outline
	What is Quality-of-Service?
	Task-Centric scheduling and QoS-awareness
	Slide 6
	Slide 7
	Timing as a QoS constraint – Soft real-time systems
	Timing as a QoS constraint
	Slide 10
	Current ideas and implementation
	Slide 12
	Current Ideas and Implementation
	Slide 14
	Preliminary results
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Conclusions
	Future work
	Acknowledgments
	Thank you

