
Region-Based Memory Management
for Task Dataflow Models

Dimitrios S. Nikolopoulos

Joint work with: Spyros Lyberis and Polyvios Pratikakis
Computer Architecture and VLSI Systems Laboratory (CARV)

Institute of Computer Science (ICS)
Foundation for Research and Technology – Hellas (FORTH)

EPoPPEA, January 24, 2012

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 1 / 25

Outline

1 Introduction
Contribution

2 Memory Management with Nested Regions

3 Task and Region Semantics
By example
Formal Definition

4 Distributed Memory Regions

5 Early Experimental Results

6 Conclusions

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 2 / 25

The Problem
Manycore Processors and Shared Memory

Shared memory can be hard to scale to many cores
I Cache coherence becomes expensive
I Causes excessive communication, memory contention

Manycore processors that relax shared memory abstraction
I AMD Opteron: 12 cores, NUMA, MMU per core
I Cell Broadband Engine: 1 + 8 cores, no shared memory
I GPUs: Thousands of cores, small shared memories between few cores
I Intel Single Chip Cloud: 48 cores, no shared memory

Increased demand for parallel software development
I Threads and shared memory: accessible, error-prone
I Message-passing: tedious, experts-only
I Both are non-deterministic: difficult to debug and understand

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 3 / 25

Task-parallelism for distributed and shared memory

Available in several contemporary programming models (Sequoia,
Cilk, OMPSs)

Recursive task-parallelism
I Parallel programs are composed from nested parallel tasks

Annotate each task with its memory footprint

Runtime system performs dependency analysis, scheduling, all
required data transfers

Support region-based memory management
I Easier to express irregular task footprints
I Enables use of dynamic data structures

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 4 / 25

Benefits

Shared memory abstraction
I Resemble shared memory programming
I Runtime system hides data transfers among core memories
I Use memory footprints to transfer required data locally before starting

a task
I Alternatively, schedule a task near the data

Message-passing execution semantics
I Tasks compute on local data
I Hierarchical scheduling, easier to scale to more cores
I Remove shared-memory bottleneck
I No need for complicated SDSM protocol on every access

Deterministic
I Implicit, correct synchronization
I Repeatable behavior
I Formal proof

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 5 / 25

Outline

1 Introduction
Contribution

2 Memory Management with Nested Regions

3 Task and Region Semantics
By example
Formal Definition

4 Distributed Memory Regions

5 Early Experimental Results

6 Conclusions

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 6 / 25

Motivation for Regions

Task memory footprints are easy to express if the are composed of
few objects, contiguous in memory

What if the task memory footprint is:
I A linked list or part of it?
I A tree or part of it?
I A graph or part of it?

Hard to use many common linked data structures

Hard to express irregular algorithms and applications

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 7 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

region G

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

region G

region L

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

region G

region L region R

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

region G

region L region R

v0

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

region G

region L region R

v0

v1

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}

region G

region L region R

v0

v1 v2

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 8 / 25

Outline

1 Introduction
Contribution

2 Memory Management with Nested Regions

3 Task and Region Semantics
By example
Formal Definition

4 Distributed Memory Regions

5 Early Experimental Results

6 Conclusions

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 9 / 25

Example
Tasks and Regions

f(Object ∗v0) {
if (done) return;
spawn f(v0->left) [inout region L];
spawn f(v0->right) [inout region R];
spawn h(v0->left) [inout v0->left];
spawn h(v0->right) [inout v0->right];
}

region G

region L region R

v0

v1 v2

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 10 / 25

Example
Tasks and Regions

f(Object ∗v0) {
if (done) return;
spawn f(v0->left) [inout region L];
spawn f(v0->right) [inout region R];
spawn h(v0->left) [inout v0->left];
spawn h(v0->right) [inout v0->right];
}

region G

f[G]

region L region R

v0

v1 v2

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 10 / 25

Example
Tasks and Regions

f(Object ∗v0) {
if (done) return;
spawn f(v0->left) [inout region L];
spawn f(v0->right) [inout region R];
spawn h(v0->left) [inout v0->left];
spawn h(v0->right) [inout v0->right];
}

region G

f[G]

region L

f[L]

region R

v0

v1 v2

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 10 / 25

Example
Tasks and Regions

f(Object ∗v0) {
if (done) return;
spawn f(v0->left) [inout region L];
spawn f(v0->right) [inout region R];
spawn h(v0->left) [inout v0->left];
spawn h(v0->right) [inout v0->right];
}

region G

f[G]

region L

f[L]

region R

f[R]

v0

v1 v2

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 10 / 25

Example
Tasks and Regions

f(Object ∗v0) {
if (done) return;
spawn f(v0->left) [inout region L];
spawn f(v0->right) [inout region R];
spawn h(v0->left) [inout v0->left];
spawn h(v0->right) [inout v0->right];
}

region G

f[G]

region L

f[L]

region R

f[R]

v0

v1

h[v1]

v2

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 10 / 25

Example
Tasks and Regions

f(Object ∗v0) {
if (done) return;
spawn f(v0->left) [inout region L];
spawn f(v0->right) [inout region R];
spawn h(v0->left) [inout v0->left];
spawn h(v0->right) [inout v0->right];
}

region G

f[G]

region L

f[L]

region R

f[R]

v0

v1

h[v1]

v2

h[v2]

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 10 / 25

Deterministic Scheduler Operational Semantics

Define small-step operational semantics
I 〈T ,D,S ,R〉 →p 〈T ′,D ′,S ′,R ′〉

Memory model:
I Global address space: the store S includes all memory addresses
I Distributed memory implementation: each task only accesses memory

locations declared in its footprint

Scheduling algorithm:
I Dependency metadata D maintain a task queue per memory location
I Always possible to spawn a task
I But, it can only run when at the head of queue for all locations in the

footprint

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 11 / 25

Deterministic Proof Technique
(Pratikakis et. al, MSPC’11)

Define sequential operational semantics
I 〈S , e〉 →s 〈S ′, e′〉

Prove sequential equivalence on execution traces
I Intuitively: Every parallel execution will produce the same value and

memory state as the sequential execution
I More precisely: Given a program e and a finite (terminating) parallel

execution trace for e that produces a value v and a memory state S ,
we can always construct a sequential execution trace for e that also
returns v and produces S

Proof by induction on the parallel trace
I We can always reorder steps in the parallel trace to bring the next

“sequential” step to the front of the trace
I Proof does not require scoped parallelism (sync)
I Similar to a confluence proof

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 12 / 25

Outline

1 Introduction
Contribution

2 Memory Management with Nested Regions

3 Task and Region Semantics
By example
Formal Definition

4 Distributed Memory Regions

5 Early Experimental Results

6 Conclusions

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 13 / 25

Distributed Memory Management API

• Object allocation:

void *sys_alloc(size_t size, rid_t region);

void sys_balloc(size_t size, rid_t region,

int num_objects, void **objects);

void sys_free(void *ptr);

void *sys_realloc(void *ptr, size_t size, rid_t rgn);

• Region allocation:

rid_t sys_ralloc(rid_t parent, char level_hint);

void sys_rfree(rid_t region);

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 14 / 25

Distributed Memory Implementation by Example
A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

A: 0

alloc() hash dep waiting ready queue

B: 1

C: 0

D: 2

core0

A, C

core1

B

core2

D

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Distributed Memory Implementation by Example
A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

task in A, out B
task1(A, B);

A: 0 0

alloc() hash dep waiting ready queue

B: 1

C: 0

D: 2

0(10), 1(20)

core0

A, C

core1

B

core2

D

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Distributed Memory Implementation by Example
A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

task in A, out B
task1(A, B);

A: 1 0

alloc() hash dep waiting ready queue

B: 1

C: 0

D: 2

core0

C

core1

A, B

core2

D

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Distributed Memory Implementation by Example
A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

task in A, out B
task1(A, B);

task in C, out D
task2(C, D);

A: 1 0

0

alloc() hash dep waiting ready queue

B: 1

C: 2

D: 2

0(5), 2(80)

core0

C

core1

A, B

core2

C, D

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Distributed Memory Implementation by Example
A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

task in A, out B
task1(A, B);

task in C, out D
task2(C, D);

task in B, inout D
task3(B, D);

A: 1 0

0

2

alloc() hash dep waiting ready queue

B: 1

C: 2

D: 2

core0 core1

A, B

core2

C, D

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Distributed Memory Implementation by Example

A: 1 0

1

2

alloc() hash dep waiting ready queue

B: 1

C: 2

D: 2

core0 core1

A, B

core2

C, D

A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

task in A, out B
task1(A, B);

task in C, out D
task2(C, D);

task in B, inout D
task3(B, D);

task2 (C, D) {
 ...
 # task inout D
 task4 (D);
 # wait on D
}

2(80)

0

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Distributed Memory Implementation by Example

A: 1

1

1

alloc() hash dep waiting ready queue

B: 1

C: 2

D: 2

core0 core1

A, B

core2

C, D

A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

task in A, out B
task1(A, B);

task in C, out D
task2(C, D);

task in B, inout D
task3(B, D);

task2 (C, D) {
 ...
 # task inout D
 task4 (D);
 # wait on D
}

0

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Distributed Memory Implementation by Example

A: 1

0

1

alloc() hash dep waiting ready queue

B: 1

C: 2

D: 2

core0 core1

A, B

core2

C, D

A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

task in A, out B
task1(A, B);

task in C, out D
task2(C, D);

task in B, inout D
task3(B, D);

task2 (C, D) {
 ...
 # task inout D
 task4 (D);
 # wait on D
}

2(5), 2(80)

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Distributed Memory Implementation by Example

A: 1

0

alloc() hash dep waiting ready queue

B: 1

C: 2

D: 2

core0 core1

A, B

core2

B, C, D

A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

task in A, out B
task1(A, B);

task in C, out D
task2(C, D);

task in B, inout D
task3(B, D);

task2 (C, D) {
 ...
 # task inout D
 task4 (D);
 # wait on D
}

1(20), 2(80)

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Distributed Memory Implementation by Example

A: 1 0

1

2

alloc() hash dep waiting ready queue

B: 1

C: 2

D: 2

A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

task in A, out B
task1(A, B);

task in C, out D
task2(C, D);

task in B, inout D
task3(B, D);

task2 (C, D) {
 ...
 # task inout D
 task4 (D);
 # wait on D
}

2(80)

0

Decode: Enqueue task args into alloc() hash from
left/right side; Count non-ownership
args in dep waiting

Issue: If dep waiting reaches 0, put task in
ready queue along with affinity stats

Prepare: Decide where to run, fetch non-local data

Run: Execute code when fetch is finished

Collect: Update alloc() hash ownership; Update dep
waiting for these objects; Maybe goto Issue

1(10), 1(20)

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 15 / 25

Outline

1 Introduction
Contribution

2 Memory Management with Nested Regions

3 Task and Region Semantics
By example
Formal Definition

4 Distributed Memory Regions

5 Early Experimental Results

6 Conclusions

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 16 / 25

Hierarchical schedulers topology

Level 2

Level 1

Level 0

(Level 3: Workers)

20

13121110

00

21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 17 / 25

Splitting region trees for hierarchical scheduling

root

R1 Ra

R

Mb

Ra1

L

L2L1 Ma

Mb1 Mb2

M

Ma1

1

root region

region

object

L0 scheduler

L1 scheduler

L1 schedulerL2 scheduler

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 18 / 25

Barnes-Hut, 1.1M bodies, Single scheduler

 0

 100

 200

 300

 400

 500

 600

Serial 1 2 4 8 16 32 64 128 256 512

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of workers

Computation
Worker comm
Sched comm

Barrier wait
Simulate

Load balancing
New local tree

Fetch remote tree

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 19 / 25

Barnes-Hut, 1.1M bodies, Two-level scheduler hierarchy

 0

 100

 200

 300

 400

 500

 600

Serial 1(1) 2(1) 4(1) 8(1) 16(2) 32(4) 64(8) 128(16) 256(32) 512(64)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of workers (number of L1 schedulers)

Computation
Worker comm
Sched comm

Barrier wait
Simulate

Load balancing
New local tree

Fetch remote tree

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 20 / 25

UPC comparison, 16 worker cores

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

15,000 30,000 60,000 120,000 240,000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of objects

UPC, 248-B objects
UPC, 504-B objects

UPC, 1016-B objects
UPC, 2040-B objects

Myrmics, 248-B objects
Myrmics, 504-B objects

Myrmics, 1016-B objects
Myrmics, 2040-B objects

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 21 / 25

UPC comparison, 15,000 504-B objects

 2

 4

 8

 16

 32

 64

 128

 256

 16 32 64 128

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Number of workers

UPC
Myrmics, single scheduler

Myrmics, hierarchical schedulers

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 22 / 25

Outline

1 Introduction
Contribution

2 Memory Management with Nested Regions

3 Task and Region Semantics
By example
Formal Definition

4 Distributed Memory Regions

5 Early Experimental Results

6 Conclusions

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 23 / 25

Conclusions

Regions language construct:
I arbitrary task memory footprints, better productivity
I shared memory programming abstractions
I distributed memory execution semantics
I scalability

Work in progress:
I Distributed memory task-based runtime (Myrmics)
I Compiler support for regions (SCOOP)
I Implementation and testing on FPGA prototype (Formic)

Acknowledgments:

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 24 / 25

CARV (FORTH-ICS) Formic 512-core FPGA Prototype

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 25 / 25

	Introduction
	Contribution

	Memory Management with Nested Regions
	Task and Region Semantics
	By example
	Formal Definition

	Distributed Memory Regions
	Early Experimental Results
	Conclusions

