

The OmpSs Programming Model

Jesus Labarta

Director Computer Sciences Research Dept.

BSC

2 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Challenges on the way to Exascale

• Efficiency (…, power, …)

• Variability

• Memory

• Faults

• Scale (…,concurrency, strong scaling,…)

• Complexity (…Hierarchy /Heterogeneity,…)

J. Labarta, et all, “BSC Vision towards Exascale”

IJHPCA vol 23, n. 4 Nov 2009

3 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Supercomputer Development

Application

Algorithm

Progr. Model

Run time

Architecture

Is any of them more

important than the

others?

Which?

The sword to cut the “multicore” Gordian Knot

4 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs: a pragmatic approach

• Rationale

• Runtime managed, asynchronous data-flow execution

models are key

• Need to provide a natural migration towards dataflow

• Need to tolerate “acceptable” relaxation of pure models

• Focus on algorithmic structure and not so much on

resources

• StarSs: a family of task based programming models

• Basic concept: write sequential on a flat single address

space + directionality annotations

• Order IS defined !!!

• Dependence and data access related information (NOT

specification) in a single mechanism

• Think global, specify local

• Power to the runtime !!!

5 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

void Cholesky(float *A) {

 int i, j, k;

 for (k=0; k<NT; k++) {

 spotrf (A[k*NT+k]) ;

 for (i=k+1; i<NT; i++)

 strsm (A[k*NT+k], A[k*NT+i]);

 // update trailing submatrix

 for (i=k+1; i<NT; i++) {

 for (j=k+1; j<i; j++)

 sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

 ssyrk (A[k*NT+i], A[i*NT+i]);

 }

}

StarSs: data-flow execution of sequential programs

#pragma omp task inout ([TS][TS]A)

void spotrf (float *A);

#pragma omp task input ([TS][TS]T) inout ([TS][TS]B)

void strsm (float *T, float *B);

#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C)

void sgemm (float *A, float *B, float *C);

#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)

void ssyrk (float *A, float *C);

Write Decouple

how we write

form

how it is executed

Execute
TS

TS

NB

NB

TS

TS

6 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

void Cholesky(float *A) {

 int i, j, k;

 for (k=0; k<NT; k++) {

 spotrf (A[k*NT+k]);

 #pragma omp parallel for

 for (i=k+1; i<NT; i++)

 strsm (A[k*NT+k], A[k*NT+i]);

 for (i=k+1; i<NT; i++) {

 for (j=k+1; j<i; j++) {

 #pragma omp task

 sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

 }

 #pragma omp task

 ssyrk (A[k*NT+i], A[i*NT+i]);

 #pragma omp taskwait

 }

 }

}

StarSs vs OpenMP

void Cholesky(float *A) {

 int i, j, k;

 for (k=0; k<NT; k++) {

 spotrf (A[k*NT+k]);

 #pragma omp parallel for

 for (i=k+1; i<NT; i++)

 strsm (A[k*NT+k], A[k*NT+i]);

 // update trailing submatrix

 for (i=k+1; i<NT; i++) {

 #pragma omp task

 {

 #pragma omp parallel for

 for (j=k+1; j<i; j++)

 sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

 }

 #pragma omp task

 ssyrk (A[k*NT+i], A[i*NT+i]);

 }

 #pragma omp taskwait

 }

}

void Cholesky(float *A) {

 int i, j, k;

 for (k=0; k<NT; k++) {

 spotrf (A[k*NT+k]);

 #pragma omp parallel for

 for (i=k+1; i<NT; i++)

 strsm (A[k*NT+k], A[k*NT+i]);

 for (i=k+1; i<NT; i++) {

 #pragma omp parallel for

 for (j=k+1; j<i; j++)

 sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

 ssyrk (A[k*NT+i], A[i*NT+i]);

 }

}

7 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs: the potential of data access information

• Flat global address space seen by

programmer

• Flexibility to dynamically traverse dataflow

graph “optimizing”

• Concurrency. Critical path

• Memory access: data transfers performed by

run time

• Opportunities for runtime to

• Prefetch

• Reuse

• Eliminate antidependences (rename)

• Replication management

• Coherency/consistency handled by the runtime

8 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Hybrid MPI/StarSs

• Overlap communication/computation

• Extend asynchronous data-flow

execution to outer level

• Linpack example: Automatic lookahead

…

for (k=0; k<N; k++) {

 if (mine) {

 Factor_panel(A[k]);

 send (A[k])

 } else {

 receive (A[k]);

 if (necessary) resend (A[k]);

 }

 for (j=k+1; j<N; j++)

 update (A[k], A[j]);

…

#pragma css task inout(A[SIZE])

void Factor_panel(float *A);

#pragma css task input(A[SIZE]) inout(B[SIZE])

void update(float *A, float *B);

#pragma css task input(A[SIZE])

void send(float *A);

#pragma css task output(A[SIZE])

void receive(float *A);

#pragma css task input(A[SIZE])

void resend(float *A);

P0 P1 P2

V. Marjanovic, et al, “Overlapping Communication and Computation by using a Hybrid MPI/SMPSs Approach” ICS 2010

9 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

All that easy/wonderful?

• Difficulties for adoption

• Chicken and egg issue users ↔ manufacturers

• Availability.

• Runtime implementations chasing new platforms

• Development as we go

• Fairly stable, minimal application update cost.

• Happens to all models, by all developers (companies,

research,…)

• Lack of program development support

• Understand application dependences

• Understand potential and best direction

• Difficulties of the models themselves

• Simple concepts take time to be matured

• As clean/elegant as we claim?

• Legacy sequential code less structured than ideal

New tools

• Taskification

• Performance prediction

• Debugging

New Platforms

• ARM + GPUs

• MIC

• …

Examples

Training

Education

Early adopters and porting

Research support:

• Consolider (Spain)

• ENCORE, TEXT, Montblanc,

DEEP (EC)

Standardization:

• OpenMP, …

• Maturity

10 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

The TEXT project

• Towards EXaflop applicaTions (EC FP7 Grant 261580)

• Demonstrate that Hybrid MPI/SMPSs addresses the Exascale challenges in a

an productive and efficient way.

• Deploy at supercomputing centers: Julich, EPCC, HLRS, BSC

• Port Applications (HLA, SPECFEM3D, PEPC, PSC, BEST, CPMD, LS1 MarDyn)

and develop algorithms.

• Develop additional environment capabilities

• tools (debug, performance)

• improvements in runtime systems (load balance and GPUSs)

• Support other users

• Identify users of TEXT applications

• Identify and support interested application developers

• Contribute to Standards (OpenMP ARB, PERI-XML)

11 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Deployment

12 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Codes being ported

• Scalapack: Cholesky factorization (UJI)

• Example of the issues in porting legacy code

• Demonstration that it is feasible

• The importance of scheduling

• LBC Boltzmann Equation Solver Tool (HLRS)

• Solver for incompressible flows based on Lattice-Boltzmann methods (LBM)

• LBM well suited for highly complex geometries. Simplified implementation: lbc

• Stencil. Sub domains

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 8 16 32 64 128 256 512 1024 2048

n
o

rm
a
liz

e
d

 w
a

llt
im

e

cores

weak scaling experiment

ideal
StarSs/MPI

MPI
OpenMP/MPI

13 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs: history/strategy/versions

C, C++, Fortran

OpenMP compatibility (~)

Contiguous and strided args.

Separate dependences/transfers

Inlined/outlined pragmas

Nesting

Heterogeneity: SMP/GPU/Cluster

No renaming,

Several schedulers: “Simple” locality aware sched,…

OMPSs

C, No Fortran

must provide directionality argument

ovelaping &strided

Reshaping strided accesses

Priority and locality aware scheduling

SMPSs regions

must provide directionality argument

Contiguous, non partially overlapped

Renaming

Several schedulers (priority, locality,…)

No nesting

C/Fortran

MPI/SMPSs optims.

Basic SMPSs

Evolving research since 2005

14 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

OmpSs

• What; Our long term infrastructure

• “Acceptable” relaxation of basic StarSs concept

• Reasonable merge/evolution of OpenMP

• Basic features

• Inlined/outlined task specifications

• Support multiple implementations for outlined tasks

• Separation of information to compute dependences and data movement

• Not necessary to specify directionality for an argument

• Concurrent: Breaking inout chains (for reduction implementation)

• Nesting

• Heterogeneity: CUDA, OpenCL (in the pipe)

• Strided and partially aliased arguments

• C, C++ and Fortran

15 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

OmpSs: Directives

#pragma omp task [input (...)] [output (...)] [inout (...)] [concurrent (...)]

 { function or code block }

To compute dependences To allow concurrent execution of

commutative tasks

Master wait for sons or specific data

availability

Relax consistency to main program

#pragma omp taskwait [on (...)] [noflush]

Task implementation for a GPU device

The compiler parses CUDA kernel invocation syntax
Support for multiple implementations of a task

Ask the runtime to ensure consistent data is

accessible in the address space of the device

#pragma omp target device ({ smp | cuda }) \

 [implements (function_name)] \

 { copy_deps | [copy_in (array_spec ,...)] [copy_out (...)] [copy_inout (...)] }

16 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

#pragma omp target device(cuda)

__global__ void cuda_perlin (pixel output [], float time,

 int j, int rowstride)

{

 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

 unsigned int off = blockIdx.y * blockDim.y + threadIdx.y;
 float vdx = 0.03125f;

 float vdy = 0.0125f;

 float vs = 2.0f;

 float bias = 0.35f;

 float vx = 0.0f;

 float red, green, blue;

 float xx, yy;

 float vy, vt;

 vx = ((float) i) * vdx;

 vy = ((float) (j+off)) * vdy;

 vt = time * vs;

 xx = vx * vs;

 yy = vy * vs;

 red = noise3(xx, vt, yy);

 green = noise3(vt, yy, xx);

 blue = noise3(yy, xx, vt);

 red += bias;

 green += bias;

 blue += bias;

 // Clamp to within [0 .. 1]

 red = (red > 1.0f) ? 1.0f : red;

 green = (green > 1.0f) ? 1.0f : green;

 blue = (blue > 1.0f) ? 1.0f : blue;

 red = (red < 0.0f) ? 0.0f : red;

 green = (green < 0.0f) ? 0.0f : green;

 blue = (blue < 0.0f) ? 0.0f : blue;

 red *= 255.0f;

 green *= 255.0f;

 blue *= 255.0f;

 output[(off * rowstride) + i].r = (unsigned char) red;

 output[(off * rowstride) + i].g = (unsigned char) green;

 output[(off * rowstride) + i].b = (unsigned char) blue;

 output[(off * rowstride) + i].a = (unsigned char) 255;

}

CUDA support

for (j = 0; j < img_height; j+=BS) { // BS image rows per task

 pixel *out = &output[j*rowstride];

 #pragma omp target device(cuda) copy_deps

 #pragma omp task output([rowstride*BS]out)

 {

 dim3 dimBlock;

 dim3 dimGrid;

 dimBlock.x = (img_width < BSx) ? img_width : BSx;

 dimBlock.y = (BS < BSy) ? BS : BSy;

 dimBlock.z = 1;

 dimGrid.x = img_width/dimBlock.x;

 dimGrid.y = BS/dimBlock.y;

 dimGrid.z = 1;

 cuda_perlin <<<dimGrid, dimBlock>>> (out, time, j, rowstride);

 }

 }

#pragma omp taskwait noflush

17 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

One source many configurations of clusters with CUDA

1GPU 2 GPUs

4 Nodes

2 Nodes

1 Node

 J. Bueno et al, “Productive Programming of GPU Clusters with OmpSs”, IPDPS2012

18 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs NOT only «scientific computing»

• Plagiarism detection

• Histograms, sorting, …

• Trace browsing

• Paraver

• Clustering algorithms

• G-means

• Image processing

• Tracking

• Embedded and consumer

Colab. C. Grozea

FIRST

19 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Limitations?

• Discrete/atomic task

• Run to completion task. Start and end only interaction points. No dependencies

in/out to/from inside a task

• Interactions half way through a task?

• Late dependence binding

• Dependences are computed at task instantiation time.

• Do we need mechanisms for later dependence computation?

• OmpSs relaxation of functional model

• No need to specify directionality for all arguments, Commutative clause,…

• Flexibility – risk tradeoff?

20 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Limitations?

• Limitation in data access patterns

• Contiguous/Strided regions

• Need/can afford further structures? Irregularly scattered, pointer traversal, nested,

…

• Granularity: flexibility vs. cost

• Parallelism and lookahead more important than overhead

• When: determined at instantiation time: may be too early if too much lookahead

• How much of a limitation, alternatives, worthwhile? needed usage feedback

J.M. Perez et al, “Handling task dependencies under strided and aliased references” ICS 2010

21 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs: Enabler for exascale

 Can exploit very unstructured

parallelism

 Not just loop/data parallelism

 Easy to change structure

 Supports large amounts of

lookahead

 Not stalling for dependence satisfaction

 Allow for locality optimizations to

tolerate latency

 Overlap data transfers, prefetch

 Reuse

 Nicely hybridizes into MPI/StarSs

 Propagates to large scale the node level

dataflow characteristics

 Overlap communication and computation

 A chance against Amdahl’s law

 Homogenized view at heterogeneity

 Any # and combination of CPUs, GPUs

 Support autotuning

 Malleability: Decouple program from

resources

 Allowing dynamic resource allocation and

load balance

 Tolerate noise

21

Data-flow; Asynchrony

Potential is there;

Can blame runtime

Compatible with proprietary

low level technologies

22 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

A quiet revolution

• A change in mentality

• Deeply rooted (in or genes), but need to overcome our fears.

• May require some effort, but it is possible and there is a lot to gain.

• Understanding and confidence through tools will be key

• Need education from very early levels (shape instead of reshape minds)

• Adaptability/Flexibility is key to survive in rapidly changing environments

Top down, potentials and hints

rather than how-tos,

Asynchrony, data flow, automatic

locality management

 Bottom up and being in total control

Fork join, data parallel, explicit data

placement

