
The K computer and XcalableMP parallel
l j tlanguage project

--- Towards programming environment for peta-scale
computing ---

Mitsuhisa Satotsu sa Sato

Director of Center for Computational Science (CCS),
U i it f T k bUniversity of Tsukuba,

Team leader of programming environment research team,
Advanced Institute for Computational Science (AICS), RIKENAdvanced Institute for Computational Science (AICS), RIKEN

0

Outline

 The K computer : “Japanese next generation g
supercomputer “ project
 Objective and organization

d d f l Hardware and software, applications
 RIKEN Advanced Institute for Computational Science (AICS)

 Research on parallel programming languages
 A short history of programming language research in Japan A short history of programming language research in Japan
 Some thoughts about HPF
 XcalableMP PGAS parallel programming language, with the K p p g g g g ,

computer project

1

Objectives of the NGS (the K computer) project
D i b ild d t th l t ti Design, build, and set up the general-purpose next-generation
supercomputer to be one of most powerful supercomputers in the world. It
will have a performance of 10 petaflops in the LINPACK benchmark with a
system manufactured by Fujitsu.

 Develop and distribute large-scale software applications (“Grand
Ch ll ” ft) th t l it l f ti f th tChallenge” software) that exploit large fraction of the supercomputer

 Set up a research institute to run
the supercomputer to bethe supercomputer, to be
an COE institute in computer
science and computational
science (AICS)science (AICS)

2

Targeted as
Grand Challenges

Nicknamed the "K computer"Nicknamed the "K computer"

Kei (京) represents the numerical unit () p
of 10 Peta (1016) in the Japanese
language, representing the system’s

f l f 10 P flperformance goal of 10 Petaflops.
The Chinese character 京 can also be
used to mean “ a large gateway” so itused to mean a large gateway so it
could also be associated with the
concept of a new gateway to p g y
computational science.

一、 十、 百、 千、 万、 億、 兆、 京、 垓、 杼、 穰、 溝、 澗、 正、 載、 極、
100 101 102 103 104 108 1012 1016 1020 1024 1028 1032 1036 1040 1044 1048

恒河沙 阿僧祗 那由他 不可思議 無量大数恒河沙、阿僧祗、那由他、不可思議、 無量大数
1052 1056 1060 1064 1068

System Configuration
Users

Compute NodesN
etw Internet

Number of CPUs > 80K
Number of cores > 640K

Interconnect Network

w
orks for Co

Control
Servers
Control
Servers

System

Number of cores > 640K
Total memory capacity > 1PB

Interconnect Network
Multi-dimensional Mesh/Torus

ntrol and M

System
Configuration

Local File System

Global I/O Networks

anagem
ent FrontendFrontend

Management
Servers

Global File System

Global I/O NetworksGlobal I/O Networks ServersServers

Job & User
Management

4

Global File System

K computer: compute nodes and network

Compute nodes (CPUs): > 80,000
Number of cores: > 640,000

Logical 3-dimensional torus network
Peak bandwidth: 5GB/s x 2 for each
direction of logical 3 dimensional torusPeak performance: > 10PFLOPS

Memory: > 1PB (16GB/node)

direction of logical 3-dimensional torus
network
bi-section bandwidth: > 30TB/s
Re route mechanism for fault tolerance5 Re-route mechanism for fault-tolerance5G

B/s (peak) x 2

GB/s
(pe

ak)
x 2

Compute node

¥¥¥

SPARC64TM VIIIfx
ノード

CPU: 128GFLOPS
(8 Core)

Core
SIMD(4FMA)Core

S ()Core
Core

SIMD(4FMA)Core

5G
B/

5GB/s(peak) x 2 ()
16GFlopsSIMD(4FMA)

16GFlops

Core
SIMD(4FMA)

16GFlops

Core
SIMD(4FMA)

16GFlops

SIMD(4FMA)
16GFlops

Core
SIMD(4FMA)

16GFlops

Core
SIMD(4FMA)

16GFlops

L2$: 5MB

Core
SIMD(4FMA)
16GFLOPS

ak
) x

 2

5GB/s(peak) x 2

64GB/s

MEM: 16GB
z

5G
B/s

(pe
ak

)

5G
B/s (p

5
Courtesy of FUJITSU Ltd.x

y
peak) x 2 Logical 3-dimensional torus

network for programming

CPU Features (Fujitsu SPARC64TM VIIIfx)

 8 cores
 2 SIMD operation circuit

2 Multiply & add floating point operations (SP or DP) are executed in one 2 Multiply & add floating-point operations (SP or DP) are executed in one
SIMD instruction

 256 FP registers (double precision) to extract more parallelism
Sha ed 5MB L2 Ca he (10 a) 16GF/core(2*4*2G) Shared 5MB L2 Cache (10way)
 Hardware barrier

 Parallelization of inner loop by vectorization

P efetch inst ction Prefetch instruction
 Software controllable cache

- Sectored cache
S t 0 N l h (d f lt)

45nm CMOS process 2GHz

 Sector 0 : Normal cache access (default)
 Sector 1 : Operand access explicitly
specified by instructions

P f

Reference: SPARC64TM VIIIfx Extensions

45nm CMOS process, 2GHz
22.7mm x 22.6mm
760 M transisters
58W（at 30℃ by water cooling)

 Performance
 16GFLOPS/core, 128GFLOPS/CPU

6

Reference: SPARC64TM VIIIfx Extensions
http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf

Implementation: Board and Rack

 Water-cooled CPU &ICC and Memory air-cooled
 Several system boards are compiled and set into aSeveral system boards are compiled and set into a

cabinets.

システムボードSystem
BoardCPU Board

ICC

LSI for
i t t

7

Courtesy of FUJITSU Ltd.

interconnect

Highlights: the Massive Parallel System to Meet Various
Application Environments

 Sustained Peta-Flops System in Real Applications
 High-Performance/Low Power CPU with 8 cores : 128GFlops@2GHz, 58W
 High Throughput/Low Latency Torus Network (Tofu), 1μsec latency in MPI
 Optimized Compilers and Libraries : Fortran, C/C++,MPI,BLAS andLAPACK

 Highly Reliable System
 Low Operating Temperature in CPU/ICC : 30℃ by Water Cooling

Auto Recovery Functions with Strict Error Detections Auto-Recovery Functions with Strict Error Detections
 Reliable Torus Network with Auto-Rerouting
 Back-up Servers and Dual Data Paths in I/O

 Highly Efficient and Usable System for Diverse Work Loads
 Distributed Parallel File Systembu d a a y
 Hierarchical I/O System with Staging Functions
 Efficient Job Scheduler to Support 3-D Torus Network
 Unified Portal System to Support Application Development File Handling Unified Portal System to Support Application Development, File Handling,
 Job & Resource Monitoring, etc

8

Programming models for the K computer
 A hybrid programming model with multi-threads and MPI is strongly recommended.

 Too many MPI processes may cause the overhead (and trouble).
 A flat programming model by MPI only is also supported (not recommend)
 Automatic parallelizing compiler for inside-node is supported.
 XFP (Fujitsu dialects) (and XcalableMP proposed) XFP (Fujitsu dialects) (and XcalableMP, proposed)

Optimizations and multi-threads by OpenMP Parallelization by MPI libraries orOptimizations and
SIMD operation
generations by
compilers in a core

multi threads by OpenMP
directives and/or automatic
parallelization by compiler
on a CPU

Parallelization by MPI libraries or
programmming with a high-level
Fortran language XPFortran
among CPUs

CPU
core core core core

core core core core

CPU CPU CPU

・・・

9
メモリ メモリ メモリ メモリMemor

y
Memor

y
Memor

y
Memor

y

System Software Stack

CompilersCompilersCompilersCompilers

User/ISV ApplicationsUser/ISV Applications

HighHigh--performance file systemperformance file system

HPC Portal / System Management PortalHPC Portal / System Management Portal

System operations managementSystem operations management pp

MPI LibraryMPI Library

 Hybrid parallel programming
 Sector cache support
 SIMD / Register file extensions

pp

MPI LibraryMPI Library

 Hybrid parallel programming
 Sector cache support
 SIMD / Register file extensions

HighHigh performance file systemperformance file system
 Lustre-based distributed file

system
 High scalability
 IO bandwidth guarantee
 High reliability & availability

System operations managementSystem operations management
 System configuration management
 System control
 System monitoring
 System installation & operation

Support ToolsSupport Tools

 Scalability of High-Func.
 Barrier Comm.

 IDE
Support ToolsSupport Tools

 Scalable Hardware-offloaded
Barrier Communication

 IDE

g y y

Job operations managementJob operations management
 Job manager
 Job scheduler
 Resource management

VISIMPACTVISIMPACTTM

 Shared L2 cache on a chip
 Hardware intra-processor

synchronization

Application development environment

 Profiler & Tuning tools
 Interactive debugger
 Profiler & Tuning tools
 Interactive debugger

File system, operations management

 Resource management
 Parallel execution environment

synchronization

 Enhanced hardware support
LinuxLinux--based enhanced Operating Systembased enhanced Operating System

 Enhanced hardware support
 System noise reduction
 Error detection / Low power

INTERNAL USE ONLYINTERNAL USE ONLYFUJITSU CONFIDENTIAL

K computer Delivery Began in Late SeptembeK computer Delivery Began in Late September 2010

 The first eight racks of the K computer were delivered to Kobe from Fujitsu
on September 28, 2010. More than 800 racks are required for a 10 Petaon September 28, 2010. More than 800 racks are required for a 10 Peta
Flops Performance.

 A computer rack weighs about 1,300 kg in average. The rack contains 96
ate cooled F jits SPARC64 VIIIf CPU chips each of hich pe fo ms 128water-cooled Fujitsu SPARC64 VIIIfx CPU chips, each of which performs 128

GFlops, interconnected with the 3D Torus network that Fujitsu named Tofu.

Photo of First delivery, Sep 28, 2010

Schedule of developmentSchedule of development

FY2008 FY2009 FY2010 FY2011FY2007FY2006 FY2012

We are here.

FY2008 FY2009 FY2010 FY2011FY2007FY2006 FY2012

Tuning and Tuning and
i tSystem Prototype, Prototype,

Detailed designDetailed design
Conceptual

d i
Conceptual

d i
Production, installation, Production, installation,

G i

improvementimprovementSystem
evaluationevaluationDetailed designDetailed designdesigndesign and adjustmentand adjustment

K computer is on
line.

Next-Generation
Integrated
Nanoscience
Simulation

Development, production, and evaluationDevelopment, production, and evaluation

pl
ic

at
io

ns VerificationVerification

Next-Generation
Integrated
Life Simulation VerificationVerificationDevelopment, production, and evaluationDevelopment, production, and evaluation

A
p

Computer
building

Research
b ildi

ConstructionConstructionDesignDesign

ConstructionConstructionDesignDesignB
ui

ld
in

gs

AICS was founded in July 2010.
building ConstructionConstructionDesignDesignB

The computer building and research building are
completed in May 2010

Programming Language projects for HPCProgramming Language projects for HPC
in Japan

13

Why do we need parallel programming
language researches?

 In 90's, many programming
languages were proposed.

Current solution for programming
clusters?!int array[YMAX][XMAX];

main(int argc, char**argv){
int i,j,res,temp_res, dx,llimit,ulimit,size,rank;

Only way to program is MPI,
but MPI programming seems

 but, none of them has prevailed.

MPI is dominant p og amming in a

MPI_Init(argc, argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
dx = YMAX/size;
llimit = rank * dx;
if(rank != (size - 1)) ulimit = llimit + dx;
else ulimit = YMAX;

temp_res = 0;
for(i = llimit; i < ulimit; i++)

difficult, … we have to
rewrite almost entire
program and it is time-
consuming and hard to
debug… mmm

 MPI is dominant programming in a
distributed memory system
 low productivity and high cost

for(i llimit; i < ulimit; i++)
for(j = 0; j < 10; j++){

array[i][j] = func(i, j);
temp_res += array[i][j];

}

MPI_Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
MPI_Finalize();

}p y g

 No standard parallel programming
language for HPC

We need better solutions!!
#pragma xmp template T[10] We want better solutions language for HPC

 only MPI
 PGAS is now emerging, …

p g p p []
#pragma xmp distributed T[block]

int array[10][10];
#pragma xmp aligned array[i][*] to T[i]

main(){
int i, j, res;

0

add to the serial code :
incremental parallelization

data distribution

We want better solutions
… to enable step-by-step
parallel programming from
the existing codes, …
easy-to-use and easy-to-
tune-performance PGAS is now emerging, … res = 0;

#pragma xmp loop on T[i] reduction(+:res)
for(i = 0; i < 10; i++)
for(j = 0; j < 10; j++){

array[i][j] = func(i, j);
res += array[i][j];

}
}

work sharing and data
synchronization

tune performance …
portable … good for
beginners.

1414

}

is our solution!

What’s XcalableMP?
X l bl MP (XMP f h t) i XcalableMP (XMP for short) is:
 A programming model and language for distributed memory , proposed by XMP WG
 http://www.xcalablemp.org

 XcalableMP Specification Working Group (XMP WG)
 XMP WG is a special interest group, which organized to make a draft on “petascale” parallel

llanguage.
 Started from December 2007, the meeting is held about once in every month.

 Mainly active in Japan, but open for everybody.

 XMP WG Members (the list of initial members)
 Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and

programming U Tokyo) Nanri (system Kyusyu U) Okabe (HPF Kyoto U)programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)
 Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo

(app., JAXA), Uehara (app., JAMSTEC/ES)
 Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC),Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC),

Anzaki and Negishi (Hitachi), (many HPF developers!)

 A prototype XMP compiler is being developed by U. of Tsukuba.

15

 XMP is proposed for a programming language for the K computer, supported by the
programming environment research team.

The history of HPC language projects in Japan

 VPPFortran for NWT (VPP500)
 NWT(Numerical Wind Tunnel), a parallel Vector machine for

CFD, 1st machine in Top500 (1993/Nov to 1995/Nov), p (/ /)
 Fortran extensions for NWT, specifying global and local

memory dedicated to VPP, proposed by Fujitsu
 Renamed to XPFortran as a Fujistu product

Dr Miyoshi

 HPF for Earth Simulator (SX-6)
 ES 1st machine in Top500 (2002-2004/June)

Dr. Miyoshi

 ES, 1 machine in Top500 (2002 2004/June)
 NEC has been supporting HPF for Earth Simulator System.
 Japan HPF promotion consortium was organized by NEC,

Hitatchi, Fujitsu …Hitatchi, Fujitsu …
 Activities and many workshops: HPF Users Group Meeting

(HUG from 1996-2000), HFP intl. workshop (in Japan, 2002
and 2005)

16

VPP500

HPF2.0 and HPF Activity in Japan

 Japanese supercomputer venders were interested in HPF and developed
HPF compiler on their systems.

 HPF 2.0 (approved extension)
 Independent & on clause
 Shadow
 GenBlock

 HPF/JA proposal by Japan
HPF promotion consortium

• Mapped Pointer
M d D i d T C t

Approved Extensions

Features of HPF/SX V2HPF promotion consortium
 Reduction kind
 Reflect

L l

• INDIRECT

• Mapped Derived Type Component

• HALO
• Vectorization Directives
• Automatic Parallelization

Features of HPF/SX V2

 Local
 Full shadow

 HPF/ES extension by NEC
• LOCAL & REFLECT
• Reduction Kind

• ON
• GEN_BLOCK
• SHADOW
• Remapping

HPF2.0
(core)

for Earth Simulator System.
 helo
 Paralle I/O

• Task Parallelism
• RANGE
• etc.

• Comm. Schedule Reuse
• Asynchronous Comm.
• etc.

HPF/JA

17

 Paralle I/O

HPF experience with IMPACT-3D

 IMPACT-3D: an implosion analysis code using TVD
scheme
 three-dimensional compressible and inviscid Eulerian fluid

computation with the explicit 5-point stencil scheme for spatial
differentiationdifferentiation

 fractional time step for time integration.

 Gordon Bell winners of SC 2002
 For achieving 14.9 TFLOPS on
the Earth Simluator System with
the IMPACT-3D code,
written in High Performance Fortran (HPF)written in High Performance Fortran (HPF)

Parallelization of IMPACT-3D using HPF

 Parallelization only by DISTRIBUTE and SHADOW
 Block distribution on the last (third) dimension of each arrays
 Add shadow on the third dimension

 All loops are parallelized by the HPF/ES compiler
 12.5TFLOPS (efficiency 38％) by 512 node(4096CPU) with

mesh-size 2048x2048x4096

!HPF$ distribute (*,*,block) ::
!HPF$& sr,se,sm,sp,sn,sl,
!HPF$& lf 1 lf 2 lf 3 lf 4 lf 5!HPF$& walfa1,walfa2,walfa3,walfa4,walfa5,
!HPF$& wnue1,wnue2,wnue3,wnue4,wnue5,
...

!HPF$ shadow (0,0,0:1) ::
!HPF$& l!HPF$& sr,se,sm,sp,sn,sl,
!HPF$& wg1,wg2,wg3,wg4,wg5,
!HPF$& wtmp1,wtmp2,wtmp3

192

Optimization by HPF/JA extensions

 Optimize communication by REFLECT and LOCAL
 REFLECT explicitly updates SHADOW, with re-use of communication

h d lschedule
 The LOCAL directive guarantees the accesses to arrays in a list do not

require inter-processor communications. q p
 The user can eliminate redundant communications for the shadow area

by the combined use of the REFLECT and LOCAL directives.

(ff) b d () h 14.9TFLOPS (efficiency 45％) by 512 node(4096CPU) with
mesh-size 2048x2048x4096

!HPFJ reflect sr, sm, sp, se, sn, sl

do iz = 1, lz-1
!HPF$ on home(sm(:,:,iz)), local beging

do iy = 1, ly
do ix = 1, lx

wu0 = sm(ix,iy,iz) / sr(ix,iy,iz)
wu1 = sm(ix,iy,iz+1) / sr(ix,iy,iz+1)

※ MPI15.3TFLOPS

20

wv0 = sn(ix,iy,iz) / sr(ix,iy,iz)
...

Scalability of IMPACT-3D in ES
M h Si

MPI

8

Mesh Size
1024x1024x2048 HPF

opt
HPF(分散のみ)

HPF(通信制御)

MPI
改良版

通常版

p

HPF
4

flo
ps

HPF

2

T
flo

1

32 64 128 256
Number of PNs

21

Lessons learned from HPF
 “Ideal” design policy of HPF

 A user gives a small information such as data distribution and parallelism.
 The compiler is expected to generate “good” communication and work-sharing The compiler is expected to generate good communication and work sharing

automatically.
 No explicit mean for performance tuning .

 Everything depends on compiler optimization Everything depends on compiler optimization.
 Users can specify more detail directives, but no information how much

performance improvement will be obtained by additional informations
 INDEPENDENT for parallel loopp p
 SHADOW & RELECT, ON HOME, LOCAL, …

 The performance is too much dependent on the compiler quality, resulting in
“incompatibility” due to compilers.

 Lesson :“Specification must be clear. Programmers want to know what
happens by giving directives”

 The way for tuning performance should be provided.The way for tuning performance should be provided.

Performance-awareness: This is one of the most
important lessons for the design of XcalableMP

22

important lessons for the design of XcalableMP

“The Rise and Fall of High Performance Fortran … ”
b K d K lb l d Zi [HOPL 2007]by Kennedy, Koelbel and Zima [HOPL 2007]

A very highly suggestive literature for language projects A very highly suggestive literature for language projects

We would focus on this point: We would focus on this point:
The difficulty was that there were only limited ways for a user to
exercise fine-grained control over the code generated once the source ofexercise fine grained control over the code generated once the source of
performance bottlenecks was identified, … The HPF/JA extensions
ameliorated this a bit by providing more control over locality. However,
it is clear that additional features are needed in the language design toit is clear that additional features are needed in the language design to
override the compiler actions where that is necessary. Otherwise, the
user is relegated to solving a complicated inverse problem in which he

h k ll h t th di t ib ti d l t t ior she makes small changes to the distribution and loop structure in
hopes of tricking the compiler into doing what is needed.

23

What is different from at the time of HPF?
 Explicit message-passing using MPI still remains the dominant

programming system for scalable applications (more than at the time of
HPF?)HPF?)
 Many software stacks on top of MPI (Apps framework libraries, …)

 Fortran 90 is mature enough now. C (and C++) is used for HPC apps.
 OpenMP supports both.

 Large-scale systems are more popular (BlueGene, the K-computer, …)
 Multicore and GPGPU/manycore make parallel programming more Multicore and GPGPU/manycore make parallel programming more

complicated.

 PGAS is emerging and geting attentions from the community
 Model for scalable communication (than MPI?)

24

http://www.xcalablemp.org

XcalableMP : directive-based language eXtension
for Scalable and performance-aware Parallel Programming

 A PGAS language. Directive-based language extensions
for Fortran and C for the XMP PGAS model

Duplicated execution

node0 node1 node2

 To reduce the cost of code-rewriting and education

 Global view programming with global-view distributed
data structures for data parallelism

directives
Comm, sync and work-sharing

p

 A set of threads are started as a logical task. Work mapping
constructs are used to map works and iteration with affinity
to data explicitly.
Ri h i ti d di ti h “ ” Rich communication and sync directives such as “gmove”
and “shadow”.

 Many concepts are inherited from HPF

int array[N];
#pragma xmp nodes p(4)
#pragma xmp template t(N)
#pragma xmp distribute t(block) on p
#pragma xmp align array[i][with t(i)

 Co-array feature of CAF is adopted as a part of the
language spec for local view programming (also
defined in C)

#pragma xmp align array[i][with t(i)

#pragma xmp loop on t(i) reduction(+:res)
for(i = 0; i < 10; i++)

array[i] = func(i,);
res += ;

25

defined in C). res += …;
} }

Code Examplep

int array[YMAX][XMAX];

#pragma xmp nodes p(4)
#pragma xmp template t(YMAX)
#pragma xmp distribute t(block) on p

data distribution
p g p () p

#pragma xmp align array[i][*] with t(i)

main(){ add to the serial code : incremental parallelization(){
int i, j, res;
res = 0;

add to the serial code : incremental parallelization

#pragma xmp loop on t(i) reduction(+:res)
for(i = 0; i < 10; i++)
for(j = 0; j < 10; j++){

work mapping and data synchronizationarray[i][j] = func(i, j);
res += array[i][j];

}
}

work mapping and data synchronization

26XMP project

}

Overview of XcalableMP
XMP t t i l d t ll li ti ith th d i ti f d t XMP supports typical data parallelization with the description of data
distribution and work mapping under "global view“
 Some sequential code can be parallelized with directives, like OpenMP.q p p

 XMP also includes Co-array notation of PGAS (Partitioned Global Address
Space) feature as "local view" programming.

User applications

Global view Directives

Array section
in C/C++

•Support common pattern
(communication and work-
sharing) for data parallel

Local view
Directives

(Coarray/PGAS)

in C/C++

XMP
runtime

g) p
programming
•Reduction and scatter/gather
•Communication of sleeve area
•Like OpenMPD, HPF/JA, XFP

One-sided comm

(Coarray/PGAS)
MPI

Interface

libraries

XMP parallel execution model

27XMP project

Two-sided comm. (MPI) One-sided comm.
(remote memory access)

Parallel platform (hardware+OS)

Nodes, templates and data/loop
distributionsdistributions

 Idea inherited from HPF (and Fortran-D)
 Node is an abstraction of processor and memory in distributed memory p y y

environment, declared by node directive.

 Template is used as a dummy array distributed on nodes

#pragma xmp nodes p(32)
#pragma xmp nodes p(*)

 Template is used as a dummy array distributed on nodes

i bl

variable
V2

loop
L1 loop

L2

#pragma xmp template t(100)
#pragma distribute t(block) onto p

 A global data is
aligned to the template

variable
V1

Align
directive

Loop
di ti

variable
V3

loop
L3

Align
directive Loop

directive

 Loop iteration must also be template
T1

directive directive

template
T2

Align
directive

Loop
directive

directive
#pragma xmp align array[i][*] with t(i)

aligned to the template
by on-clause. Distribute directive

T2

Distribute directive
#pragma xmp loop on t(i)

28XMP project

nodes
P

Array data distribution
Th f ll i di ti if d t di t ib ti d The following directives specify a data distribution among nodes
 #pragma xmp nodes p(*)
 #pragma xmp template T(0:15)
 #pragma xmp distribute T(block) on p #pragma xmp distribute T(block) on p
 #pragma xmp align array[i] with T(i)

node0

array[]

node1

node2

node3

Reference to assigned to other
nodes may causes error!!

Control computation: Assign loop iteration
to nodes which compute own data

29XMP project

y

Explicit Communication between nodesThis is different from
HPF and UPC

Parallel Execution of “for” loop

f l
#pragma xmp nodes p(*)

 Execute for loop to compute on array

D t i t b t d
#pragma xmp loop on t(i)

#pragma xmp template T(0:15)
#pragma xmp distributed T(block) on
#pragma xmp align array[i] with T(i)

Data region to be computed
by for loop

for(i=2; i <=10; i++)

array[]

Execute “for” loop in parallel with affinity to array distribution by on-clause：

node0

#pragma xmp loop on t(i)

node1

node2

node3

30XMP project
distributed array

Similar to UPC forall

Shadow and reflect: Data synchronization of array

 Exchange data only on “shadow” (sleeve) region
 If neighbor data is required to communicate, then only sleeve

area can be consideredarea can be considered.
 example：b[i] = array[i-1] + array[i+1]

#pragma xmp align array[i] with t(i)

array[]

h d [1 1]

node0

#pragma xmp shadow array[1:1]

node1

node2

node3

31XMP project

Programmer specifies sleeve region explicitly
Directive：#pragma xmp reflect array

XcalableMP Global view directives

 Execution only master node
 #pragma xmp block on master

 Broadcast from master node
 #pragma xmp bcast (var) #pragma xmp bcast (var)

 Barrier/Reduction
 #pragma xmp reduction (op: var)
 #pragma xmp barrier

 Global data move directives for collective comm./get/put

 Task parallelism
 #pragma xmp task on node-set

32XMP project

gmove directive

 The "gmove" construct copies data of distributed arrays in
global-view.
 When no option is specified, the copy operation is performed collectively

by all nodes in the executing node set.
 If an "in" or "out" clause is specified the copy operation should be done If an in or out clause is specified, the copy operation should be done

by one-side communication ("get" and "put") for remote memory access.

!$xmp nodes p(*) A Bp p
!$xmp template t(N)
!$xmp distribute t(block) to p
real A(N,N),B(N,N),C(N,N)
!$xmp align A(i *) B(i *) C(* i) with t(i)

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e

n
o
d
e!$xmp align A(i,*), B(i,*),C(*,i) with t(i)

A(1) = B(20) // it may cause error
!$xmp gmove

e
1

e
2

e
3

e
4

e
1

e
2

e
3

e
4

C
A(1:N-2,:) = B(2:N-1,:) // shift operation

!$xmp gmove
C(:,:) = A(:,:) // all-to-all

!$xmp gmove out

node1

node2

C

33XMP project

!$xmp gmove out
X(1:10) = B(1:10,1) // done by put operation

node3

node4

Co-array: XcalableMP Local view programming

 XcalableMP also includes CAF-like PGAS (Partitioned Global Address Space)
feature as "local view" programming.
 The basic execution model of XcalableMP is SPMD The basic execution model of XcalableMP is SPMD

 Each node executes the program independently on local data if no directive

 We adopt Co-Array as our PGAS feature.
 In C language, we propose array section construct (the same as Intel’s)
 Can be useful to optimize communications

 Support alias Global view to Local view

int A[10], B[10];
#pragma xmp coarray [*]: A, B

int A[10]:
int B[5];

Array section in C Co-array in C

#pragma xmp coarray []: A, B
…
A[:] = B[:]:[10]; // broadcast

int B[5];

A[5:5] = B[0:5];

34XMP project

Status of XcalableMP

Status of XcalableMP WG NPB IS f
• Coarray is used

 Status of XcalableMP WG
 Discussion in monthly Meetings and ML
 XMP Spec Version 1.0 was published (at

SC11)
PC ClusterT2K Tsukuba System

NPB IS performance
y

• Performance
comparable to ＭＰＩ

SC11).
 It includes XMP-IO and multicore

extension as a proposal in ver 1.0.
400

600

800

o
p

/s

XMP(without histgram)
XMP(with histgram)
MPI

120

180

o
p

/s

 Compiler & tools
 XMP prototype compiler (xmpcc version

0.5) for C is available from U. of
0

200

1 2 4 8 16

M
o

0

60

1 2 4 8 16

M
o

)
Tsukuba.

 Fortran will be coming soon!
 Open-source, C to C source compiler with

Number of Node Number of Node

NPB CG performace

• Two-dimensional
Parallelization

• Performance
the runtime using MPI

 Codes and Benchmarks
4000 2500

PC ClusterT2K Tsukuba System
comparable to ＭＰＩ

 NPB/XMP, HPCC benchmarks, Jacobi ..

 Platforms supported
1000

2000

3000

M
o

p
/s

XMP(1d)
XMP(2d)
MPI

1000

1500

2000

M
o

p
/s

 Linux Cluster, Cray XT5 …
 Any systems running MPI. The current

runtime system designed on top of MPI
0

1000

1 2 4 8 16
Number of Node

0

500

1 2 4 8 16
Number of Node

Research Agenda of XcalableMP
for the K computer

 Exploiting network topology
 It is found that the layout of nodes is very important to optimize

communications in Tofu network (3D-torus)communications in Tofu network (3D torus)
 Use node directive to describe the network topology.

 Optimization for one-sided communication Optimization for one-sided communication
 Design of one-sided communication layer using “Tofu” native library

l l d k f l h / l d Exploiting Multi-node task group for multi-physics/multi-domain
problems
 XMP can define “nodes groups”g

 Extensions for multicore
 The K computer is a multi-core parallel system The K computer is a multi core parallel system.

 Flat-MPI can not be used any more …
 Automatic parallelizing compiler is available, but …

 Mixed with OpenMPed t Ope
 Autoscoping

36XMP project

Research Agenda of XcalableMP

 Interface to existing (MPI) libraries
 Rewriting every problem in XMP is not realistic.

Use of existing high performance parallel libraries written in MPI is crucial Use of existing high performance parallel libraries written in MPI is crucial.
 We are working on the design of interfaces for Scalapack, MUMPS, … etc.

XMP IO XMP IO
 IO for distributed array
 Interface to MPI-IO, netCDF, HDF5, …

For post-petascle …p p
 Extension for acceleration devices such as GPU, MIC, …

 XMP-dev (XcalableMP acceleration device extension)
 User defined distribution helo sparse matrix support User-defined distribution, helo, sparse matrix support, …
 Dynamic re-distribution directives, …
 Support of Fault-tolerance and Fault-resilience

37XMP project

XMP-dev: XcalableMP acceleration
device extension [U of Tsukuba]de ce e te s o [U o su uba]

 Offloading a set of distributed array and operation to a
cluster of GPU

double a[100][100];
#pragma xmp align a[i][j] with t(j, i)

#pragma xmp device (i, j) loop on t(j, i)
for (i =0; i < 100; i++)

DEVICE (GPU)

#pragma xmp align a[i][j] with t(j, i)
#pragma xmp device allocate a

for (i 0; i 100; i++)
for (j =0; j < 100; j++) a[i][j] = ...;

HOST (CPU) #pragma xmp gmove
b[:][:] = a[:][:];

double b[100][100];
#pragma xmp align b[i][j] with t(j, i)

#pragma xmp (i, j) loop on t(j, i)
for (i =0; i < 100; i++)

for (j =0; j < 100; j++) ... = b[i][j];

Template

#pragma xmp template t(0:99, 0:99)
#pragma xmp distribute t(BLOCK, BLOCK) onto p

Template

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

CPU

GPU

GPU GPU GPU GPU

38XMP project

CPU CPU CPU CPU

CPU CPU CPU CPU

#pragma xmp nodes p(4, 4)

Node

Concluding Remarks

 K-computer project
The installation of the K computer are still going on The installation of the K computer are still going on.

 … and some projects are getting started for post-petascale and
exascale.

 Programming environment researches for the K computer
 XcalableMP PGAS parallel programming language for better XcalableMP PGAS parallel programming language for better

“productive” parallel programming than “MPI”.
 “downgraded HPF” as a reflection of HPF experience in Japan
 We expect that the PGAS runtime will improve the performance of

larger-scale parallel programs in the K computer.

 Collaboration and feedback with application researchers
are key to success
 For improvement and dissemination of our software!

39

