The K computer and XcalableMP parallel
language project

--- Towards programming environment for peta-scale
computing ---

Mitsuhisa Sato

Director of Center for Computational Science (CCS),
University of Tsukuba,
Team leader of programming environment research team,
Advanced Institute for Computational Science (AICS), RIKEN

Outline

= The K computer : “Japanese next generation
supercomputer " project
= Objective and organization
=« Hardware and software, applications
=« RIKEN Advanced Institute for Computational Science (AICS)

= Research on parallel programming languages

= A short history of programming language research in Japan
= Some thoughts about HPF

= XcalableMP PGAS parallel programming language, with the K
computer project

Objectives of the NGS (the K computer) project

= Design, build, and set up the general-purpose next-generation
supercomputer to be one of most powerful supercomputers in the world. It
will have a performance of 10 petaflops in the LINPACK benchmark with a
system manufactured by Fujitsu.

= Develop and distribute large-scale software applications (“Grand

Challenge” software) that exploit large fraction of the supercomputer
e &gﬂ*ﬁr‘?‘*

= Set up a research institute to run

the supercomputer, to be W cntacturing
an COE institute in computer ggSEaEr=on
science and computational Y ouss y,
science (AICS) gl %,
Aerospece \ . AR :dsc'fzzes P)‘ et

Aircraft development ““& 2 1 New technologies for medical Pred|ct|ng effects of
| treatment and diagnosis he El Nifio phenomenon
- - . J

plar:etsand e Grand Chal IengeS

- o é e Vg By
zing 4 } L
power plants De,fe Opmg f Research on the an;m U(\hE’, 1
nuclear fusion reactors .1 universe Studying the formaticn o Targeted aS
X \ f A]
V4

Nicknamed the ""K computer"’

Kei (3R) represents the numerical unit
of 10 Peta (10%) in the Japanese
language, representing the system’s
performance goal of 10 Petaflops.

The Chinese character I can also be
used to mean “ a large gateway” so it
could also be associated with the
concept of a new gateway to

K computer computational science.

_S +\ as :FS ES 1’%:5 JES :é:\ iﬁs ﬁ\ E\ %\ iﬂzﬂs ES ﬁs *E\
10° 10' 102 10® 104 10% 10%2 10%6 10?0 102 102% 1032 1036 10% 104 1048

1052 1056 1060 1064 1068

System Configuration

Users

-3
e

System
Configuration |

Juswabeuely pue [0U0D) J0) SHIOMISN

Job & User
Management

K computer: compute nodes and network

» Compute nodes (CPUs): > 80,000 » Logical 3-dimensional torus network
= Number of cores: > 640,000 » Peak bandwidth: 5GB/s x 2 for each

= Peak performance: > 10PFLOPS direction of logical 3-dimensional torus
network

= Memory: > 1PB (16GB/node) e bi-section bandwidth: > 30TB/s

3 _= Re-route mechanism for fault-tolerance
Compute node =
8 RN . A
. 5 '8(‘\ N f) L |
X \Qe N ¥, .
i c,>%\6 \\\ oy . !
| /—F K \ ' !
SPARC64™ VIlifx CPU: 128GFLOPS “al e .
G, e Ve (-
5GB/s(peak) x 2 . igh | QT ‘
Core T L
SIMD(4FMA) P SV
16GFLOPS . ar
oo 1 | AN
N L2$: 5MB i ¥
,8{*\+ =] Al r‘) -
\(9@6 I 64G B/ S & i': L '-.. f
P | MEM: 16GB | ~ | =
VA a1 = "A- /
§ I. | Elh
> Logical 3-dimensional torus \'y
N . J
X network for programming Courtesy of FUJITSU Ltd.

9

CPU Features (Fujitsu SPARC64™ VIIIfx)

s 8 cores

= 2 SIMD operation circuit

= 2 Multiply & add floating-point operations (SP or DP) are executed in one
SIMD instruction

= 256 FP registers (double precision) to extract more parallelism

= Shared 5MB L2 Cache (10way) 16GF/core(2*4*2G)
= Hardware barrier DDR3 |

= Parallelization of inner loop by vectorization 25 "J: 64GBIs
= Prefetch instruction
= Software controllable cache corez
- Sectored cache corelz
= Sector 0 : Normal cache access (default) ﬂl‘:m
= Sector 1 : Operand access explicitly core

specified by instructions
45nm CMQOS process, 2GHz
= Performance 22.7mm X 22.6mm

= 16GFLOPS/core, 128GFLOPS/CPU 760 M transisters

_ 58W (at 30°C by water cooling)
Reference: SPARC64™VI1I1Ifx Extensions

http://img.jp.fujitsu.com/downloads/jp/jhpc/sparc64viiifx-extensions.pdf

Implementation: Board and Rack

= Water-cooled CPU &ICC and Memory air-cooled

= Several system boards are compiled and set into a
cabinets.

interconnect

Courtesy of FUJITSU Ltd.

7

Highlights: the Massive Parallel System to Meet Various
Application Environments

= Sustained Peta-Flops System in Real Applications
= High-Performance/Low Power CPU with 8 cores : 128GFlops@2GHz, 58W
= High Throughput/Low Latency Torus Network (Tofu), 1psec latency in MPI
= Optimized Compilers and Libraries : Fortran, C/C++,MPI,BLAS andLAPACK

= Highly Reliable System
= Low Operating Temperature in CPU/ICC : 30°C by Water Cooling
= Auto-Recovery Functions with Strict Error Detections
= Reliable Torus Network with Auto-Rerouting
= Back-up Servers and Dual Data Paths in I/O

= Highly Efficient and Usable System for Diverse Work Loads
= Distributed Parallel File System
« Hierarchical I/O System with Staging Functions
= Efficient Job Scheduler to Support 3-D Torus Network
= Unified Portal System to Support Application Development, File Handling,
= Job & Resource Monitoring, etc

Programming models for the K computer

= A hybrid programming model with multi-threads and MPI is strongly recommended.
= Too many MPI processes may cause the overhead (and trouble).

= A flat programming model by MPI only is also supported (not recommend)
= Automatic parallelizing compiler for inside-node is supported.
= XFP (Fujitsu dialects) (and XcalableMP, proposed)

Optimizations and multi-threads by OpenMP Parallelization by MPI libraries or
SIMD operation directives and/or automatic programmming with a high-level
generations by parallelization by compiler Fortran language XPFortran
compilers in a core on a CPU among CPUs

cPU —~

1

System Software Stack sy

User/ISV Applications
HPC Portal / System Management P
) .

i g e

System operations management || High-performance file system | Compilers
. Lustre-based distributed file Hybrid parallel programming

- ystem Sector cache support
. High scalability SIMD / Register file extensions

System configuration management
System control

System monitoring %@‘?ﬁ 10 b :
. ; , andwidth guarantee :
System installation & operation % High reliability & availability i MPI Librar

| S]

. ¢ Scalable Hardware-offloaded
Job operations management ¢ VISIMPACT™ Barrier Communication

Job manager | Shared L2 cache on a chip S Tool
Job scheduler | Hardware intra-processor e support Tools
Resource management ?\ synchronization

; : i Profiler & Tuning tools
Parallel execution environment ; Interactive debugger

Application development environment

Syst noise reduction

Error detection / Low power

K computer Delivery Began in Late September 2010

= The first eight racks of the K computer were delivered to Kobe from Fujitsu
on September 28, 2010. More than 800 racks are required for a 10 Peta
Flops Performance.

= A computer rack weighs about 1,300 kg in average. The rack contains 96
water-cooled Fujitsu SPARC64 VIIIfx CPU chips, each of which performs 128
GFlops, interconnected with the 3D Torus network that Fujitsu named Tofu.

K computer, a Fujitsu System at the
RIKEN Advanced Institute for Computational Science (AICS), Kobe, Japan

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
...........

 Meuer Erich Strahmaler fach Deogama. Homs Simon
Unoveriy of Manstalm NERSC) Barkbey Lab Unbseity ol Tenniises MERSE [Berinley Lay

Schedule of development

We are here.

FY2006 FY2007 FY2008 FY2009 FY2010 FY201] FY2012
Conceptual . . Prototype, Production, installatidgn, Tuning and
System design / Detailed design evaluation and adjustment 1 improvim'ent

Applications

Next-Generation
Integrated
Nanoscience
Simulation

K computer is on

Development, production, and evaluation

Verificatidn

line.

Next-Generation
Integrated
Life Simulation

Development, production, and evaluation

VErification

Buildings

Computer
building

Design

Construction

1

Research
building

Design

Construction

AICS was founded in Jul

The computer building and research building are

completed in May 2010

Programming Language projects for HPC
In Japan

13

Why do we need parallel programming X=MP
language researches?

=N 9()'5, many prog ramming Current solution for programming

int array[YMAX][XMAX];

4 s MPL.)
main(int argc, char**argv, OnIY way 1.0 Pf'ogr‘am Is MPI’
Ia ng uages Were pro posed u inti,(j,res,tgempﬁres,dS,II)\{mit,uIimil, bu.l. MPI pl”ogl"amming seems
1 mg: I(:otrg1mg rangM)PI COMM_WOH difficu'*' - we have 1.0
= but, none of them has prevailed. | =&mminsind] ewrite amost entire
::(i(r:lairl];ra?k*dx:)) it i program and it is time-
else ulimit = YMAX; \Consuming and hal"d to
: : I e <y JEBUG- MMM
= MPI is dominant programming ina | % *\Q'S
temp_res += array[i][j];

MPI_Finalize();

diStri bUted memory SyStem !\jPI Allreduce(&temp_res, &res, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); g
= low productivity and high cost !

We need better solutions!!

= No standard parallel programming ~ —
#pragma xmp template T[10] \AZm sasmind bI

Ianguage for HPC fpragma xmp distrbuted Tiblock| YV € Want better solutions
@ . to enable step- by st p
it e L) pamllel programming from
u Only MPI Fpragmamp aligned ar\y the existing codes, ..
. . main(){ E easy-to-use and easy-to-
= PGAS is now emerging, ... medo " tune-performance ..
#pragma xmp loop on T[i] reducti por'l'qble good for \

for(i = 0; i <10; i++)
fo(r(J 0; j <10; j++){ be inners. ‘
array[i][j] = func(i, j) synchronlzatlon
res += array[i][jl;
} &
}

IS our solution! 14,

What’s XcalableMP? X===MP

= XcalableMP (XMP for short) is:
= A programming model and language for distributed memory , proposed by XMP WG
= http://www.xcalablemp.org

= XcalableMP Specification Working Group (XMP WG)

= XMP WG is a special interest group, which organized to make a draft on “petascale” parallel
language.
= Started from December 2007, the meeting is held about once in every month.
= Mainly active in Japan, but open for everybody.

= XMP WG Members (the list of initial members)
= Academia: M. Sato, T. Boku (compiler and system, U. Tsukuba), K. Nakajima (app. and
programming, U. Tokyo), Nanri (system, Kyusyu U.), Okabe (HPF, Kyoto U.)
= Research Lab.: Watanabe and Yokokawa (RIKEN), Sakagami (app. and HPF, NIFS), Matsuo
(app., JAXA), Uehara (app., JAMSTEC/ES)

= Industries: Iwashita and Hotta (HPF and XPFortran, Fujitsu), Murai and Seo (HPF, NEC),
Anzaki and Negishi (Hitachi), (many HPF developers!)

= A prototype XMP compiler is being developed by U. of Tsukuba.

= XMP is proposed for a programming language for the K computer, supported by the
programming environment research team.
15

The history of HPC language projects in Japan

= VPPFortran for NWT (VPP500)

NWT(Numerical Wind Tunnel), a parallel Vector machine for
CFD, 1st machine in Top500 (1993/Nov to 1995/Nov)

Fortran extensions for NWT, specifying global and local
memory dedicated to VPP, proposed by Fujitsu

Renamed to XPFortran as a Fujistu product

= HPF for Earth Simulator (5X-6)

ES, 1t machine in Top500 (2002-2004/June)
NEC has been supporting HPF for Earth Simulator System.

Japan HPF promotion consortium was organized by NEC,
Hitatchi, Fujitsu ...

Activities and many workshops: HPF Users Group Meeting
(HUG from 1996-2000), HFP intl. workshop (in Japan, 2002
and 2005)

4
£
e

£

Dr. Miyoshi

HPF2.0 and HPF Activity in Japan

Japanese supercomputer venders were interested in HPF and developed
HPF compiler on their systems.

HPF 2.0 (approved extension)

= Independent & on clause

= Full shadow
HPF/ES extension by NEC
for Earth Simulator System. [A

¢ Comm. Schedule Reuse
 RANGE o
= helo G Asynchronous Comm.
K * etc. . etc. _/

= Paralle I/O HPF/JA

* Reduction Kind

= Shadow
= GenBlock
HPF/JA proposal by Japan ﬂ Approved Extensions ’—\
HPF promotion consortium [Manpedberved Type Component | Fealures of HPFISX V2.
= Reduction kind / "HALO
I « INDIRECT * Vectorization Directives
= Reflect : « Automatic Parallelization
' ' I
= Local I /
I
I
|

* ON
* GEN_BLOCK « LOCAL & REFLECT
[HPF2.0 } « SHADOW

* Remapping

17

HPF experience with IMPACT-3D

= IMPACT-3D: an implosion analysis code using TVD
scheme

= three-dimensional compressible and inviscid Eulerian fluid
computation with the explicit 5-point stencil scheme for spatial
differentiation

= fractional time step for time integration.

= Gordon Bell winners of SC 2002
= For achieving 14.9 TFLOPS on
the Earth Simluator System with
the IMPACT-3D code,
written in High Performance Fortran (HPF)

Parallelization of IMPACT-3D using HPF

= Parallelization only by DISTRIBUTE and SHADOW
= Block distribution on the last (third) dimension of each arrays
= Add shadow on the third dimension

= All loops are parallelized by the HPF/ES compiler

= 12.5TFLOPS (efficiency 38%) by 512 node(4096CPU) with
mesh-size 2048x2048x4096

IHPF$ distribute (*,*,block) ::

THPF$& sr,se,sm,sp,sn,sl,
IHPF$& walfal,walfa2,walfa3,walfa4,walfab,
THPF$& wnuel,wnue2,wnue3,wnue4 ,wnueb,

IHPF$ shadow (0,0,0:1) ::

THPF$& sr,se,sm,sp,sn,sl,
THPF$& wgl,wg2,wg3,wg4,wg5,
THPF$& wtmpl,wtmp2,wtmp3

Optimization by HPF/JA extensions

= Optimize communication by REFLECT and LOCAL
= REFLECT explicitly updates SHADOW, with re-use of communication
schedule

= The LOCAL directive guarantees the accesses to arrays in a list do not
require inter-processor communications.

= The user can eliminate redundant communications for the shadow area
by the combined use of the REFLECT and LOCAL directives.

= 14.9TFLOPS (efficiency 45%) by 512 node(4096CPU) with
mesh-size 2048x2048x4096

'HPFJ reflect sr, sm, sp, se, sn, sl

do 1z =1, 1z-1
THPF$ on home(sm(:,:,1z)), local begin
% MPI15.3TFLOPS do iy = 1, ly
do 1x =1, Ix
wuO = sm(ix,1y, iz) / sr(ix,iy,iz)
wul = sm(ix,1y,iz+1) / sr(ix,iy,iz+1)
wvO = sn(ix,1y,iz) / sr(ix,iy,iz)

Scalability of IMPACT-3D in ES

Mesh Size
1024x1024x2048

HPF@&hR) —X—
HPFERMR) —O—

28

6i4 1
Number of PNs

21

Lessons learned from HPF

= “Ideal” design policy of HPF
= A user gives a small information such as data distribution and parallelism.
= The compiler is expected to generate “good” communication and work-sharing
automatically.
= No explicit mean for performance tuning .
= Everything depends on compiler optimization.

Users can specify more detail directives, but no information how much
performance improvement will be obtained by additional informations
= INDEPENDENT for parallel loop
= SHADOW & RELECT, ON HOME, LOCAL, ...

= The performance is too much dependent on the compiler quality, resulting in
“incompatibility” due to compilers.

s Lesson :“Specification must be clear. Programmers want to know what
happens by qiving directives”’

= The way for tuning performance should be provided.

Performance-awareness: This is one of the most
Important lessons for the design of XcalableMP

22

“The Rise and Fall of High Performance Fortran ... *
by Kennedy, Koelbel and Zima [HOPL 2007]

= A very highly suggestive literature for language projects

= We would focus on this point:

The difficulty was that there were only limited ways for a user to
exercise fine-grained control over the code generated once the source of
performance bottlenecks was identified, ... The HPF/JA extensions
ameliorated this a bit by providing more control over locality. However,

it is clear that additional features are needed in the language design to
override the compiler actions where that is necessary. Otherwise, the
user is relegated to solving a complicated inverse problem in which he
or she makes small changes to the distribution and loop structure in

hopes of tricking the compiler into doing what is needed.

What is different from at the time of HPF?

= Explicit message-passing using MPI still remains the dominant
programming system for scalable applications (more than at the time of
HPF?)
= Many software stacks on top of MPI (Apps framework libraries, ...)
= Fortran 90 is mature enough now. C (and C++) is used for HPC apps.
= OpenMP supports both.
= Large-scale systems are more popular (BlueGene, the K-computer, ...)

= Multicore and GPGPU/manycore make parallel programming more
complicated.

= PGAS is emerging and geting attentions from the community
= Model for scalable communication (than MPI?)

24

X MP http://www.xcalablemp.org

XcalableMP : directive-based language eXtension
for Scalable and performance-aware Parallel Programming

node0 nodel node2

= A PGAS language. Directive-based language extensions
for Fortran and C for the XMP PGAS model

= To0 reduce the cost of code-rewriting and education

Duplicateo~@ execution|

= Global view programming with global-view distributed directives
data structures for data parallelism Comm, sync and work-sharing
= A set of threads are started as a logical task. Work mapping
constructs are used to map works and iteration with affinity |
to data explicitly.

= Rich communication and sync directives such as “gmove”

W " int array[N];
and “shadow”. #pragma xmp nodes p(4)
= Many concepts are inherited from HPF spragmaxmp tempiate (Y

#pragma xmp distribute t(block) on p
#pragma xmp align array[i][with t(i)

= Co-array feature of CAF is adopted as a part of the #pragma xmp loop on t(i) reduction(+:res)

language spec for local view programming (also fO;f‘r;S[?i]‘ zflfné?.?
defined in C) res += ...

}H}

25

Code Example

int array[YMAX][XMAX];
#pragma xmp nodes p(4)
#pragma xmp template t(YMAX) data distribution }
#pragma xmp distribute t(block) on p

#pragma xmp align array[i][*] with t(i)

AN

main (1 add to the serial code : incremental parallelization
inti, |, res;
res =0;

#pragma xmp loop on t(i) reduction(+:res)

for(i=0;i < 10; i++)
for(j =0;) <10; j++){ _ —
array[i][j] = func(i, j); work mapping and data synchronization }

res += array/[i][j];

}

}

XMP project 26

Overview of XcalableMP X MP

= XMP supports typical data parallelization with the description of data
distribution and work mapping under "global view*

= Some sequential code can be parallelized with directives, like OpenMP.

= XMP also includes Co-array notation of PGAS (Partitioned Global Address
Space) feature as "local view" programming.

Global view Directives
eSupport common pattern
(communication and work-
sharing) for data parallel
programming

User applications

Array section
in C/C++

eReduction and scatter/gather | ocal view
eCommunication of sleeve area])
I eLike OpenMPD, HPF/JA, XFP Directives
(Coarray/PGAS)
MPI
Interface

XMP parallel execution model

Two-sided comm. (MPI)

One-sided comm.
(remote memory access)

XMP pro,4 Parallel platform (hardware+0S)

Nodes, templates and data/loop X=7==-MP

r'||ci'r|h| |hnnc

1Ll TIVULIVI

= Idea inherited from HPF (and Fortran-D)
= Node is an abstraction of processor and memory in distributed memory
environment, declared by node directive. #pragma xmp nodes p(32)
#Hpragma xmp nodes p(*)
= Template is used as a dummy array distributed on nodes

#pragma xmp template t(100)
#pragma distribute t(block) onto p Va'{'/f;b'e
A global data is Vl Align .vanable @
- directive V3

aligned to the template Align Loop Loop

directive directive directive
#Hpragma xmp align array[i][*] with t(i) Align Loop
directive directive

= Loop iteration must also be
T2

aligned to the template
Distribute directive

by on-clause. Distribute directive
#Hpragma xmp loop on t(i)

nodes

XMP project 28

Array data distribution X MP

= The following directives specify a data distribution among nodes
#pragma xmp nodes p(*)

o #pragma xmp template T(0:15)

o #pragma xmp distribute T(block) on p

o #pragma xmp align array[i] with T(i)

m]

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

nodeO

node2

L

nodes may causes error!! to nodes which compute own data

L
Reference to assigned to other ‘ Control computation: Assign loop iteration

This is different from Explicit Communication between nodes

«mp project HPF @and UPC 29

Parallel Execution of “for” loop X MP

#Hpragma xmp nodes p(*)
= Execute for loop to compute on array #pragma xmp template T(0:15)
#pragma xmp distributed T(block) or

#pragma xmp loop on t(i) #pragma xmp align array[i] with T(i)
for(i=2; i <=10; i++) Data region to be computed
by for loop

o 1 2 3 4 5 6 7/8 9 10 11 12 13 14 15

array[]

Execute “for” loop in parallel with affinity to array distribution by on-clause:
#pragma xmp loop on t(i)

nodeO

nodel

node2 / -
node3 / e P

\%imilar to UPC forall

distributed array

XMP project 30

Shadow and reflect: Data synchronization of arrayx mMP

= Exchange data only on “shadow” (sleeve) region

o If neighbor data is required to communicate, then only sleeve
area can be considered.

o example:b[i] = array[i-1] + array[i+1]
#pragma xmp align array[i] with t(i)
o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15

array (1 [HEEN

#pragma xmp shadow array[1:1]

node2 . .

Programmer specifies sleeve region explicitly
Directive:#pragma xmp reflect array

XMP project 31

XcalableMP Global view directives X===-MP

Execution only master node
= #pragma xmp block on master

Broadcast from master node
= #pragma xmp bcast (var)

Barrier/Reduction
= #pragma xmp reduction (op. var)

= #pragma xmp barrier

Global data move directives for collective comm./get/put

Task parallelism
= #pragma xmp task on node-set

XMP project

32

gmove directive X MP

= The "gmove" construct copies data of distributed arrays in
global-view.

= When no option is specified, the copy operation is performed co/lectively
by all nodes in the executing node set.

= If an "in" or "out" clause is specified, the copy operation should be done
by one-side communication ("get" and "put") for remote memory access.

1$xmp nodes p(*) A B

1$xmp template t(N) nlnlnln nlnlnln
I1$xmp distribute t(block) to p olololo olololo
real A(N,N),B(N,N),C(N,N) d|d|d]|d d|d|d]|d
I$xmp align A(i,*), B(i,*),C(*,1) with t(i) elele|e elelele
1123 |4 11234
A(1) = B(20) // i1t may cause error
1$xmp gmove C
A(1:N-2,:) = B(2:N-1,:) // shift operation
1$xmp gmove nodel
C(:,:) = A(:,2) // all-to-all node2
1$xmp gmove out node3
X(1:10) = B(1:10,1) // done by put operation dea
node

XMP project 33

Co-array: XcalableMP Local view programming X mMP

= XcalableMP also includes CAF-like PGAS (Partitioned Global Address Space)
feature as "local view" programming.

= The basic execution model of XcalableMP is SPMD

= Each node executes the program independently on local data if no directive
= We adopt Co-Array as our PGAS feature.

= In Clanguage, we propose array section construct (the same as Intel’s)
= Can be useful to optimize communications

= Support alias Global view to Local view

Array section in C Co-array in C
int A[10]: int A[10], B[10];
int B[5];

#pragma xmp coarray [*]: A, B

A[5:5] = B[O0:5]; A[:] = B[:]1:[10]; // broadcast

XMP project 34

Status of XcalableMP X MP

 Coarray is used

Clatiin AF VAslallANMD \AINM N e -
SUAtusS O ACaiapieNir v NPB IS performance | . pgrformance
Discussion in monthly Meetings and ML comparable to MPI
XMP SpeC Version 1.0 was pUb“ShEd (at T2K Tsukuba System PC Cluster
SC11). 800 180
It includes XMP-I0 and multicore = XMP(without histgram)

) . 600 "= xMmp(with histgram) 120
extension as a proposal in ver 1.0. 0 u MPI "

§. 400 N

. S @]
Compiler & tools 20 | =00
XMP prototype compiler (xmpcc version 0 - 0 4
0.5) for C is available from U. of 1 2 4 8 16 1 2 4 8 16
Tsu kU ba. Number of Node Number of Node

Fortran will be coming soon! * Two-dimensional
Parallelization

Open-source, C to C source compiler with | NPB CG performace | . performance
the runtime using MPI comparable to MPI

T2K Tsukuba System PC Cluster
Codes and Benchmarks 2500

4000

NPB/XMP, HPCC benchmarks, Jacobi .. s000 || ®XMP(ld) 2000
% = XMP(2d) <1500
Platforms supported g 2000 R S1o00 -
Linux Cluster, Cray XT5 ... 1000 1 500
Any systems running MPI. The current 0 - 0 -
runtime system designed on top of MPI b R umber of Node b b of fode

Research Agenda of XcalableMP —
for the K computer X MP

= Exploiting network topology

« It is found that the layout of nodes is very important to optimize
communications in Tofu network (3D-torus)

= Use node directive to describe the network topology.

= Optimization for one-sided communication
= Design of one-sided communication layer using “Tofu” native library

= Exploiting Multi-node task group for multi-physics/multi-domain
problems
= XMP can define “nodes groups”

s Extensions for multicore

= The K computer is a multi-core parallel system.
= Flat-MPI can not be used any more ...
= Automatic parallelizing compiler is available, but ...

= Mixed with OpenMP
= Autoscoping

XMP project 36

Research Agenda of XcalableMP X MP

= Interface to existing (MPI) libraries
= Rewriting every problem in XMP is not realistic.
= Use of existing high performance parallel libraries written in MPI is crucial.
= We are working on the design of interfaces for Scalapack, MUMPS, ... etc.

= XMPIO
=« IO for distributed array
= Interface to MPI-IO, netCDF, HDFS5, ...

For post-petascle ...

= Extension for acceleration devices such as GPU, MIC, ...
= XMP-dev (XcalableMP acceleration device extension)

= User-defined distribution, helo, sparse matrix support, ...

= Dynamic re-distribution directives, ...

= Support of Fault-tolerance and Fault-resilience

XMP project 37

XMP-dev: XcalableMP acceleration X=mr=MP
device extension [U of Tsukuba]

= Offloading a set of distributed array and operation to a

cluster of GPU
DEVICE (GPU)

double a[100][100]; BVZ #pragma xmp device (i, j) loop on t(j, i)
#pragma xmp align a[i][j] with t(j, i) " for (i =0; i < 100; i++)
#pragma xmp device aIIocate a for (j =0;j <100; j++) a[il{j] =

#pragma xmp gmove

HOST (CPU) - i@ bl = eI
double b[100][100], ; #pragma xmp (i, j) loop on t(j, i)
#pragma xmp allgn b[|][]] with t(], D for (i =0; i < 100; i++)
T B for G =0;j < 100; j++) ... = b[illj1;
Template | ! ,/:?;EI;'Z?IZCZZZ]ZE;ZZZZI'P'
i /’:(i //, : //E : i,/_/_i___l_ //I7
#pragma xmp template £(0:99, 0:99) i 2t

#pragma xmp distribute t(BLOCK, BLOCK) ontop =~

XMP project #pragma xmp nodes p(4, 4) 38

Concluding Remarks

= K-computer project
= The installation of the K computer are still going on.

= ... and some projects are getting started for post-petascale and
exascale.

= Programming environment researches for the K computer

= XcalableMP PGAS parallel programming language for better
“productive” parallel programming than “MPI".

= ‘downgraded HPF" as a reflection of HPF experience in Japan

= We expect that the PGAS runtime will improve the performance of
larger-scale parallel programs in the K computer.

= Collaboration and feedback with application researchers
are key to success

= For improvement and dissemination of our software!

39

