
1

Towards Automatic Parallelization
of Object-Oriented Programs
Welf Löwe Jonas Lundberg Erik Österlund

2

Motivation

• Computational power is nowadays increased by increasing the number
of cores per processor.
– Sequential programs cannot ride the wave of increased clock rates.
– Parallel programs needed to use multi-core processors effectively.

• Parallel programming is not economic in all software applications:
– Legacy programs
– Software technologies developed for sequential computing:

• object-, aspect- and component-oriented programming
• predefined reusable frameworks, platforms, libraries.

• Parallelizing sequential programs to exploit parallel hardware.

3

Automatic Parallelization

Our approach suggests three steps:

1. Analysis of independent parts in sequential programs applying
static and dynamic dependence analysis.

2. Aggressive parallelization transformation of these independent parts.
Add automatically parallelized components to the original sequential
component variants.

3. Context-aware composition composes sequential and parallel
components dynamically, depending on the execution context.

4

Basic idea similar to autotuning

• Generate parallel variants that might be efficient in certain contexts
(problem size, number of processors available)

• Assess properties of an execution context (problem size, # of actually
available processors) dynamically and select dynamically the champion
variant for that context

• Use machine learning to find the champion for each context
– Offline in a training phase or
– Online by not always selecting the assumed champion and possibly

find a better variant
• Parallelization only needs to generate correct parallel program

components. Context-aware composition puts them together to an
efficient program.

5

Outline

1. Analysis of independent parts
2. Aggressive parallelization transformations
3. Context-aware composition
4. Experimental results
5. Related Work
6. Conclusions and Future Work

6

Outline

1. Analysis of independent parts
2. Aggressive parallelization transformations
3. Context-aware composition
4. Experimental results
5. Related Work
6. Conclusions and Future Work

7

1. Analysis of independent parts

Static analysis

• Program representation: Memory Static Single Assignment form
– Non-essential dependencies over local variables are removed
– Explicit memory dependencies (read-write, write-read, write-write)

over heap operations

• Well-established analyses
– Points-to analysis approximates addresses of heap objects
– Side-effect and heap analyses for task-level parallelism
– Loop-index analysis identifies loops
– Loop-dependence analysis for loop parallelism

8

Op2 d2
u2

Op1 d1
u1 Op1 Op2

Sync

u2 ∩ d1 = ∅
d1 ∩ d2 = ∅
u1 ∩ d2 = ∅

a

b

c

a

cb

Elimination of non-essential dependencies

Heap dependency analysis:
• Op1, Op2 memory operations (store, call)
• u1, u2, d1, d2 designate may use/define sets
• They are computed in Points-to Analysis

9

Example Mergesort

E [] a = new E [length];
a.init();
sort(a, 0, length);

public boolean sort(E[] a, int l, int u) {
// base case
if (l == u) return true;
// split
int q = (l + u) / 2;
// recursive calls
sort(a, l, q);
sort(a, q, u);
// merge
…

}

Begin sort

this a l u

==

+ 2

/

mem

Call sort

Call sortNon-essential
dependency

10

Analysis of independent parts (cont’d)

Dynamic analysis:

• Piggybacking on a (concurrent, replicating) garbage collector
• Find “pure” objects, i.e., objects that do not change state

– Methods of “pure” objects are pure functions
– Can be executed in parallel with other code if there are not input nor

output dependencies
• Optimistic purity analysis guesses temporarily “pure” objects, i.e.,

objects that did not change since last collection cycle and do not
(transitively) point to such objects
– Adapted Tarjan’s SCC algorithm (just one round, no stack)
– Roll-back is cheap:

• trap methods falsely guessed pure before they change state
• then sequentially restart subsequently called methods

11

Purity analysis is for free

0

2000

4000

6000

8000

10000

12000

14000

Boehm's stop-and-go
GC

Boehm's incremental
GC

Programmed GC Our GC with purity
analysis

Execution time (in msec.)

12

Outline

1. Analysis of independent parts
2. Aggressive parallelization transformations
3. Context-aware composition
4. Experimental results
5. Related Work
6. Conclusions and Future Work

13

2. Parallelization

Well-established parallelization transformation, e.g.:

• Code motion/placement moves independent statements to same block
– Result: Basic blocks are malleable task-graphs (executable on more

than one processor)
– Nodes are simple tasks or calls to methods (malleable tasks)
– Edges are essential dependencies

• Loop parallelization transformations
• ...

14

Clustering and Scheduling

Clustering and scheduling for malleable task-graphs:

• Cluster simple tasks with malleable tasks (calls to methods) to avoid too
lightweight processes

• Schedule the clusters with any (malleable task-graph) scheduling
strategy

• Result are sequential and parallel components containing
– Original sequential code
– Several automatically generated parallel variants thereof

15

Example Mergesort

E [] a = new E [length];
a.init();
sort(a, 0, length);

public boolean sort(E[] a, int l, int u) {
// base case
if (l == u-1) return true;
// split
int q = (l + u) / 2;
// parallel recursive calls
sort(a, l, q) || sort(a, q, u);
// merge
…

}

Begin sort

this a l u

==

+ 2

/

mem

Call sort

Call sort

-

1

sync

16

Outline

1. Analysis of independent parts
2. Aggressive parallelization transformations
3. Context-aware composition
4. Experimental results
5. Related Work
6. Conclusions and Future Work

17

3. Context-aware composition

Select sequential or any parallel variant depending on context:
• Problem size
• Number of processors available for a sub-problem
Observation:
• Context, hence, optimum variant may change dynamically
• Requires runtime decision
Add infrastructure for dynamic variant selection
• Assesses context properties (e.g., problem size and number of

processors) before each selection
• Dynamically selects the champion variant for each context
• Machine learning to update the champion for each context

– learn a generic classifier for champion selection
– based on monitoring data from executions (offline or online)

18

Example Mergesort
public boolean sort(E[] a, int l, int u) {

…
if (selectSequentialSchedule(a, l, q, u, numberOfProcessors)) {

tic = getTime();
Sort.sort(a, l, q); Sort.sort(a, q, u); //sequential schedule
toc = getTime();
updateSelection(toc-tic, a, l, q, u, numberOfProcessors)

}
else {

tic = getTime();
dec(numberOfProcessors);
Sort.sort(a, l, q) || Sort.sort(a, q, u); //parallel schedule
inc(numberOfProcessors);
toc = getTime();
updateSelection(toc-tic, a, l, q, u, numberOfProcessors);

}
…

}

19

Outline

1. Analysis of independent parts
2. Aggressive parallelization transformations
3. Context-aware composition
4. Experimental results
5. Related Work
6. Conclusions and Future Work

20

4. Offline learning (time in msec.)

0

100

200

300

400

500

600

700

10
00
0

60
00
0

1E
+0
5

2E
+0
5

2E
+0
5

3E
+0
5

3E
+0
5

4E
+0
5

4E
+0
5

5E
+0
5

5E
+0
5

6E
+0
5

6E
+0
5

7E
+0
5

7E
+0
5

8E
+0
5

8E
+0
5

9E
+0
5

9E
+0
5

1E
+0
6

Mergesort sequential

CAC parallel, offl ine

21

First results on Online learning (time in msec.)

0

5

10

15

20

25

30

35

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Mergesort sequential

CAC parallel, offl ine

CAC parallel, online

22

Outline

1. Analysis of independent parts
2. Aggressive parallelization transformations
3. Context-aware composition
4. Experimental results
5. Related Work
6. Conclusions and Future Work

23

5. Related Work

• Automatic program parallelization has a long history back to the 1970s.
– Overwhelming majority focuses on static parallelization of programs dealing

with numerical computations.
• Little work on automatic parallelization of object oriented programs

– many from Java Grande focusing again on numerical computations
– few on general applications responding to the multi-core development

• require manual source code annotations
• Duarte et al. use algebraic laws to define static source code patterns

possible to parallelize; no analysis detecting these patterns
automatically.

• Bradel et al. identify and parallelized computational intensive and
parallelizable loops using dynamic analysis.

• JIT and speculative approaches aggressively parallelize statements regardless
of their independency. In practice, some programs benefit but other significantly
decrease performance.

24

Outline

1. Analysis of independent parts
2. Aggressive parallelization transformations
3. Context-aware composition
4. Experimental results
5. Related Work
6. Conclusions and Future Work

25

6. Conclusion

• Idea: separately analyze
– The inherent parallelism (static and dynamic analyses)
– Efficiency of sequential vs. parallelized variants (context-aware

composition: offline or online learning, dynamic composition)

• Experimentally showed some speed up based on the tools available:
– For the analysis part:

• Java frontend generating Memory SSA code
• efficient inter-procedural and context-sensitive Points-to and Side-effect

analyses
• Purity analysis based on GC

– For the transformation part:
• Malleable task graph scheduling
• AOP infrastructure for context-aware composition

– For the context-aware composition part:
• Fully implemented and tested using both offline and online learning

26

6. Future Work

• More experiments needed parallelizing real world software instead of
lab examples.

• Therefore, tool chain needs to be completed.
– For the analysis part, we lack

• index and loop-dependency analyses
• integration static and dynamic analysis

– For the transformation part, we lack code motion and loop
parallelization.

– For the context-aware composition part, we lack interleaving of
monitoring / learning and scheduling.

• Finally, we need to put together the loose strings to a fully automatically
parallelizing compiler and runtime system.

• Partially funded by the Swedish Research Council

