
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Towards a Software Transactional Memory
for Graphics Processors

Daniel Cederman, Philippas Tsigas and Muhammad Tayyab Chaudhry

Department of Computer Science and Engineering
Chalmers University of Technology, Göteborg, Sweden

Abstract
The introduction of general purpose computing on many-core graphics processor systems, and the general shift
in the industry towards parallelism, has created a demand for ease of parallelization. Software transactional
memory (STM) simplifies development of concurrent code by allowing the programmer to mark sections of code to
be executed concurrently and atomically in an optimistic manner. In contrast to locks, STMs are easy to compose
and do not suffer from deadlocks. We have designed and implemented two STMs for graphics processors, one
blocking and one non-blocking. The design issues involved in the designing of these two STMs are described and
explained in the paper together with experimental results comparing the performance of the two STMs.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Software]: Programming Techniques—
Concurrent Programming

1. Introduction

Computer processor research has previously been focused
on increasing the clock speed, but as of late the trend has
shifted towards increasing the number of processors instead.
This has led to increased pressure for applications to become
multi-threaded to take full advantage of the new computing
power. But with increased parallelism comes the problem of
efficient synchronization. Threads that concurrently access
shared memory have to synchronize in order to maintain a
non-corrupted view of the data.

The traditional way of synchronizing memory accesses
has been to use mutual exclusion, using locks to only al-
low one process to access shared memory areas at any
given time. However, this kind of lock-based synchroniza-
tion makes it hard to compose function calls and leads to
problems such as deadlocks, where two processes are both
waiting for the other to give up a lock, and convoying, where
a process that holds a lock gets swapped out causing other
processes to wait unnecessarily long to acquire that lock.

Transactional memory (TM) provides an alternative con-
currency control that can eliminate these problems or at least
minimize them. A TM allows the programmer to mark a sec-
tion of the code that is to run atomically, i.e., it should ap-

pear to take place instantly. The TM logs all read and write
operations in the code block and only store the new data if
there was no conflict with another process. If a transaction
notices that another transaction has written to memory read
in the transaction, the transaction will be restarted. The lack
of commonly available hardware transactional memories has
led to most implementations of transactional memory being
completely software based, so-called Software Transactional
Memories (STM).

An STM tries to automatically offer some degree of par-
allelism to the application without having the programmers
concentrate on the mechanism of synchronization, as this is
taken care of by the STM itself. There is, however, a trade-
off when it comes to performance. Code written using STMs
often has difficulties competing in performance compared to
solutions that are highly optimized by hand. Caşcaval et al.
argue that the overhead introduced by STMs might be hard
to overcome [CBM∗08].

The high bandwidth and many-core design of current
graphics processors have caused a big interest in applying
them for general purpose computing. With APIs such as
CUDA and OpenCL it is only a matter of time before they
become standard auxiliary processing units that most pro-

c© The Eurographics Association 2010.

Cederman, Tsigas and Chaudhry / Towards a Software Transactional Memory for Graphics Processors

grammers would like to take advantage of in their applica-
tions.

In this paper we examine if an introduction of STMs to
graphics processors could help simplify the relatively com-
plex amount of synchronization needed when running pro-
grams on a many-core platform. More specifically, we eval-
uate two STM designs, with two different types of progress
guarantees, in an effort to better understand the specific chal-
lenges involved providing synchronization for many-core
graphics processor systems.

2. Related work

Transactional memory was originally intended for hardware
and was first introduced in a paper by Knight and a paper
by Herlihy and Moss [Kni86, HM93]. Shavit and Touitou
then later introduced the concept of a pure software transac-
tional memory [ST95]. Their STM required the programmer
to specify beforehand which memory locations to access and
could not adapt to values read in the transaction.

This was changed in Herlihy et al.‘s dynamic STM
(DSTM) where they also introduced the concept of a con-
tention manager that should decide which transaction to
abort [HLMS03]. Harris and Fraser have presented an STM
that works on the word level as opposed to the object level,
called WSTM [FH07].

The previously mentioned STMs perform their operations
on local copies of the objects or words which are then ei-
ther discarded or written back, but it is also possible to take
a more optimistic approach and write directly to the objects
or words [ATLM∗06, HPST06, SATH∗06]. This, however,
requires the STM to store the original values so that the
changes can be undone if there is a conflict and also intro-
duces the problem of visibility – should other transactions
be able see the values written?

There has also been work on creating hybrid transactional
memories that use both hardware and software [DFL∗06,
KCJ∗06]. If the hardware has support for transactional mem-
ory, the transaction is started in hardware and handled there
until it gets too large for the hardware to support. In those
cases the transaction is taken over by the STM.

Ennals argues that STMs should be blocking as the advan-
tages of doing a non-blocking implementation are small and
prevents several optimizations that can be done in a blocking
system [Enn06].

There is a large amount of literature on designing STMs
[DSS06, HF03, Moi97] and for a good overview we rec-
ommend the Transactional Memory paper by Larus and
Kozyrakis [LK08].

3. System Model

CUDA was introduced by NVIDIA as a general purpose par-
allel computing architecture, making it possible to execute

atomic {
l t a i l = r e a d (t a i l) ;
w r i t e (queue [l t a i l] , v a l u e) ;
l t a i l ++;

}

Figure 1: Example use of a software transactional memory.

computationally complex problems on NVIDIA’s graphics
processors. The software part of CUDA provides a compiler
for a language based on C, but with extensions that allow
functions to be executed on the graphics processor instead
of on the CPU.

A CUDA compatible graphics processor consists of sev-
eral so called multiprocessors, each of which can execute
SIMD instructions on eight memory locations at a time.
Threads are scheduled on the multiprocessors in groups
called thread blocks. All threads in a thread block remain
at the same multiprocessor until they have finished execut-
ing and can use the processor’s extremely fast local mem-
ory, called the shared memory, to communicate with each
other. It is up to the programmer to decide how many threads
should be in each block and how many blocks to start in to-
tal. Depending on how many threads there are in a block,
one or more blocks could run on the same multiprocessor.

Threads of the same as well as different blocks can per-
form read and write operations on the main graphics mem-
ory known as the global memory. There is no cache support
when using the global memory, but if threads with consecu-
tive thread id’s are accessing consecutive memory locations,
the memory accesses could be coalesced by the hardware to
dramatically speed up the reading and writing speed to the
memory. There are also texture and constant memory that
have cache support, but they are read-only.

Newer versions of CUDA-compatible graphics processors
also support atomic primitives, such as Compare-And-Swap,
which can be used, for example, to implement locks or more
advanced lock-free data-structures [Her88, PDC09]. Ceder-
man and Tsigas took advantage of this to compare block-
ing and non-blocking dynamic load balancing schemes on
graphics processors [CT08].

4. STM Design

On the user level, a basic software transactional memory
needs to support, either directly or indirectly, four opera-
tions. A begin operation that marks the start of a transac-
tion, a read operation that provides a snapshot of a memory
location, a write operation that logs the updates to the mem-
ory that should be performed if the transaction is successful,
and finally a commit operation that performs the writes if no
other processes have touched the memory read by the trans-
action and restarts the transaction otherwise. The begin and

c© The Eurographics Association 2010.

Cederman, Tsigas and Chaudhry / Towards a Software Transactional Memory for Graphics Processors

commit operations are often performed indirectly, as in Fig-
ure 1, where they are part of the atomic keyword.

However, when deciding how to implement the function-
ality behind these operations, there are several important
design decisions that have to be made. There is a vast de-
sign space for STMs and as of yet there is no definitive
way to design an STM. One major divisional line is that
which progress guarantees to provide. More basic guaran-
tees can achieve better performance under low contention,
while more advanced guarantees can give more indepen-
dence from the scheduler at a cost in complexity. We argue
that this design choice is one of the most important, as most
graphics processors perform their scheduling in hardware in
non-standard ways. For this reason we have implemented
two different STMs that differ mainly in the type of progress
guarantees that they provide. The first STM is designed to be
as simple as possible to lower resource requirements and im-
prove performance. This will be known for the remainder of
this paper as the blocking STM. The second is based on the
STM by Harris and Fraser, which is more complex and de-
signed for general multiprocessors, but offers better progress
guarantees [HF03].

In the following subsections we will go through some of
the different design parameters and elaborate on our design
decisions.

4.1. Progress Guarantees

Progress guarantees are often divided into one of four cate-
gories. The strongest is wait-freedom, which guarantees that,
in the context of STMs, a transaction always succeeds in a
bounded number of its own steps. This guarantee is typi-
cally only provided in real-time systems, where predictabil-
ity is critical, as it often hampers performance. A weaker
and more practical guarantee is lock-freedom, which guar-
antees that at least one transaction will be successful in a
bounded number of its own steps. A transaction in a lock-
free STM is always able to make progress, even in the case
of all other threads controlling transactions being suspended.
Despite the name, lock-freedom does not preclude locks,
as long as these can be revoked. An even weaker guaran-
tee is obstruction-freedom. It guarantees that a transaction
will always succeed if it is executed without conflicts with
other transactions. A contention manager is often used to
achieve this, by arranging for one of the conflicting trans-
actions to back off. The final category includes the block-
ing algorithms, which uses irrevocable locks and provides
no guarantees at all.

Despite the lack of progress guarantees, we decided to
make the first STM we designed blocking. This allowed for a
simpler design and, according to Ennals, a potentially more
efficient implementation [Enn06]. The disadvantage of us-
ing a blocking implementation is that it makes the STM
much more dependant on the scheduler. We had concerns

of whether the hardware scheduler on the graphics proces-
sor would be able to handle locks or not, as if the scheduler
is not fair, it could swap out the lock holder and repeatedly
just schedule the processes waiting for the lock. However,
we experienced no such problems during our experimenta-
tion.

The second STM that we designed is based on the STM
by Harris and Fraser and is an obstruction-free one [HF03].
When a transaction is to be committed, it tries to acquire all
the locks it requires to get exclusive access to its write loca-
tions. But, at the same time, it publicly announces the actual
values that it is going to write. This gives conflicting transac-
tions two options. If the transaction has managed to acquire
all locks, but not yet written the new values, the conflicting
transaction can steal locks from it, using the new value that
is to be written. If the transaction has not yet acquired all
its locks, the conflicting transaction may abort the original
transaction before attempting to acquire its own locks. As a
transaction never has to wait for another transaction to finish,
the STM is non-blocking.

4.2. Conflict Detection Granularity

STMs are often designed with different levels of granular-
ity for conflict detection depending on the language they are
written for. For object oriented languages, such as Java, it
is often more convenient to use objects as the basic unit.
Two transactions accessing the same object will then con-
flict, even if they are accessing different fields in the object.
This is known as a false conflict. For languages such as C,
with no standard object type, it is more common to use indi-
vidual words as the basic unit. Often, to lower the overhead
of having a lock for each individual word, the memory is
divided into several stripes, where every n:th word shares
a lock. As multiple words might share the same lock there
is a potential for false conflict, but this can be mitigated by
increasing the number of strips.

For both the blocking and non-blocking STM we decided
to put the granularity at the object level. The reason for this
is that we wanted to take advantage of the graphics proces-
sor’s ability to coalesce memory reads and writes into larger
memory operations. For the blocking we shared locks be-
tween objects, whereas for the non-blocking we had one lock
per object.

4.3. Log or Undo-Log

As there is normally no way of knowing if a transaction
will succeed before it has tried to commit, there must be a
way to undo transactions. The most common way is to keep
a thread-local log where the changes to be performed are
stored. The first time a word or object is read, a copy of it is
stored in the log. All subsequent writes are then performed
on the local copy. When all locks have been acquired at the
end of the transaction, the items in the log are written to

c© The Eurographics Association 2010.

Cederman, Tsigas and Chaudhry / Towards a Software Transactional Memory for Graphics Processors

Features Blocking STM Non-Blocking STM
Progress Guarantee Blocking Obstruction-free
Conflict Detection Time Commit-time Commit-time
Locks Shared Unique
Conflict Handling Aborts the transaction Steals locks or aborts other transaction
Conflict Detection Granularity Object based Object based
Visibility Local updates Local updates
Log or Undo-Log Log Log

the shared memory. An alternative, and more optimistic ap-
proach, is to acquire the write locks immediately at the first
write and then store the data written inside the transaction
directly to the shared memory. This is faster in cases where
there are no conflicts, but to be able to abort, there needs
to be an undo log that holds the old values of the words or
objects written to.

Both STMs use the log method as we expect much con-
tention and we want to avoid the problem with visibility,
which occurs when other transactions read data that is yet
to be committed. In a non-managed environment, this might
lead to infinite loops or crashes.

4.4. Conflict Detection Time

Most STMs use some incarnation of a lock to provide mu-
tual exclusion when writing the result from the transaction.
These locks can either be acquired early, the first time that
the word or object they protect is accessed, or as late as at
commit time. Acquiring locks immediately have the advan-
tage that conflicts will be detected early, but this might also,
unfortunately, lead to more false conflicts. To assure that the
transaction is not working on inconsistent data, it is possible
to do the read validation whenever data is read or written.

The design decision here was that the blocking STM
should use the same method as the non-blocking and lock
at commit time.

4.5. Backoff

A backoff function is used whenever there is a conflict and
a transaction needs to abort. It forces the process to wait
before it tries to perform the transaction again. This low-
ers contention and increases the probability that at least one
transaction is successful.

Backoff is often an important part of the contention man-
agement in STMs, together with the policy choice of which
transaction to abort in case of a conflict. There are several
ways of backing off, including linear, where the time to
back off is increased linearly for every abort, and exponen-
tial, where the time to wait is, for example, doubled each
time [GHP05, SS05]. We designed the STMs to be able to
use both linear and exponential backoff.

5. Implementation

As mentioned in the STM Design section, an STM needs
to support four basic operations. The following subsections
will detail the implementation specifics for the blocking
STM. For the non-blocking STM we refer to the paper by
Harris and Fraser [HF03].

5.1. Begin

Each thread block is assigned a transaction descriptor to
keep track of objects that have been read and objects that
should be written back at commit time. Figure 2 shows an
entry in the transaction descriptor. When a new transaction
is initiated the transaction descriptor is cleared. The member
variables in the descriptor will be motivated in the following
subsections.

s t r u c t TransDesc I t em {
i n t v e r s i o n ;
void ∗ g l o b a l ;
void ∗ l o c a l ;
i n t s i z e ;
bool r e a d o n l y ;

}

Figure 2: Transaction descriptor item.

s t r u c t Vers ionLock {
i n t v e r s i o n (31 bit) ;
bool l o c k (1 bit) ;

}

Figure 3: Combined version number and lock.

5.2. Read

The read operation transfers an object from the publicly
available global memory into a private part that only the
reading thread block has access to. A check is made to see
if the lock that covers the object is taken. This is to make
sure that no other thread block is currently writing to the ob-
ject and to wait if anyone is. The lock consists of a version

c© The Eurographics Association 2010.

Cederman, Tsigas and Chaudhry / Towards a Software Transactional Memory for Graphics Processors

number with a lock-bit, as can be seen in Figure 3. As the
lock-bit is the least significant bit, one can interpret odd val-
ues of the lock as the lock being taken and even values as the
lock being available.

A copy of the version number of the object is stored in
the transaction descriptor and the object is copied to the lo-
cal part of the memory. The version number is read again
and compared to the one in the transaction descriptor. If they
match, then the local copy of the object represents a con-
sistent snapshot of the object. If they do not match, another
thread block must have written to it and we have to read it
again until the version numbers matches.

A pointer to the local copy and a pointer to the public
object is stored in the transaction descriptor once the ob-
ject have been successfully read, together with a marker that
indicates whether the local copy has been updated or not.
The pointers are needed so that the commit operation knows
where to write back the local copy.

The read operation then returns a pointer to the local copy
of the object. If there already exists a local copy of the ob-
ject, due to it being read earlier in the transaction, it is just a
matter of returning the pointer to that local copy.

5.3. Write

When a local copy of an object has been updated, it needs to
be marked as such so that it is updated at commit time. This
is done by going through the transaction descriptor looking
for the pointer to the object and then marking it when found.
Since all writes are being performed locally, there is no need
for any locks in this phase.

5.4. Commit

At commit time the STM needs to make sure that no other
thread block has changed any of the objects read or writ-
ten to inside the transaction before it can write back the up-
dated objects. The objects that are to be updated are there-
fore checked to see if their current version number matches
the ones in the transaction descriptor. If they do, the version
number is incremented by one atomically using Compare-
And-Swap to lock the objects. Using Compare-and-Swap,
this will only succeed as long as the version number has not
changed in the mean time. The thread that locked the ob-
ject now has exclusive access to it. Any failure in acquiring
write locks, or version numbers that do not match, causes
the transaction to abort. The updated objects are then written
back to public memory once all locks have been acquired.
The locks are released by increasing their version number
by one and the transaction is successful. By combining the
version number and the lock we make sure that any con-
current read invocation does not see any intermediate state
during the writing back of the updated object to the global
memory.

6. Experimental Evaluation

For evaluation we used four concurrent data-structures. All
of them used software transactional memory in their design.
We measured their respective performance when faced with
different contention levels and using different backoff strate-
gies. In addition to measuring the number of operations per
second, we also measured the number of aborted transac-
tions in order to better understand their respective behavior
and how it affects the given performance.

6.1. Hardware

The experiments were performed on the high-end graphics
processor GTX280 with 30 multiprocessors. Each multipro-
cessor has 8 cores, giving us a total of 240 cores. The pro-
cessor clock rate is close to 1.3 GHz and the optimal memory
bandwidth is 141 GB per second.

6.2. Test-Bed Applications

Binary Tree Each thread block inserts a fixed quantity of
randomly picked values, uniformly distributed, into a bi-
nary tree. As the tree grows wider there should be fewer
conflicts.

Queue Each thread block performs an even amount of en-
queue and dequeue operations on a single queue. This
benchmark should provide the highest level of contention
as only one enqueue or dequeue operation can take place
at any given time.

Hash-map Each thread block inserts a fixed amount of ran-
domly picked values, uniformly distributed, into a hash-
map with 128 buckets, each bucket being an individual
list. This benchmark is similar to the queue benchmark,
but lowers contention by dividing access to it over sev-
eral buckets. The transactions are longer since they need
to find the end of the list before they can insert their ele-
ment.

Skip-list Each thread block performs an even amount of in-
sert, find, and delete operations on a skip-list with a max-
imum of 7 levels. This is a more complex benchmark that
is expected to scale similarly to the tree. To compare the
performance of the respective STMs with a highly par-
allel design of an advanced data-structure, we also com-
pared the respective STM skip-list implementations with
the lock-free skip-list by Sundell and Tsigas [ST04].

6.3. Experiment Settings

To see how the STMs react to different contention levels
we have tested them with two scenarios. One where the test
application performs some local work before accessing the
data-structure, a low contention scenario, and one high con-
tention scenario where there is no pause between transac-
tions. The time for the local work is picked randomly after

c© The Eurographics Association 2010.

Cederman, Tsigas and Chaudhry / Towards a Software Transactional Memory for Graphics Processors

1

10

100

1000

10000

None Linear Exponential None Linear Exponential None Linear Exponential None Linear Exponential

Queue Binary Tree Hash-Map Skip-List

Blocking Non-Blocking

Figure 4: Average number of aborts per transaction with low level of contention using 60 thread blocks (logarithmic scale).

1

10

100

1000

10000

100000

None Linear Exponential None Linear Exponential None Linear Exponential None Linear Exponential

Queue Binary Tree Hash-Map Skip-List

Blocking Non-Blocking

Figure 5: Average number of aborts per transaction with full level of contention using 60 thread blocks (logarithmic scale).

each transaction from a uniform distribution and takes a to-
tal of ∼450 ms for one thread block to complete and around
∼500 ms for 60 thread blocks to complete in parallel.

Since the choice of backoff-function is important, we did
each experiment with two types of backoff, one linear and
one exponential. We also performed the experiments using
no backoff at all.

Each of the data-structures were evaluated with a vary-
ing number of thread blocks. We did not vary the number
of threads in each thread block, as we are only synchroniz-
ing the accesses by the thread blocks and not the individual
threads within a block. The measurements were repeated 50
times.

7. Discussion

At a low level of contention, the blocking and the non-
blocking skip-list and binary tree both scale well, see Figure
8. Looking at the number of aborts for the skip-list, Figure
4, one can see that the average number of aborts is about the
same, whereas for the binary tree there is a distinct differ-
ence. The blocking STM has an average of over one hundred
aborted transactions for each thread block, while the non-
blocking STM has none at all. With greater contention, Fig-
ure 5, the number of aborts remains the same for the block-
ing STM while it has increased to ten for the non-blocking

STM. Despire this, the performance in number of operations
per ms is much better for the non-blocking STM; see Figure
9.

In Figures 4 and 5 we see that the backoff has quite a large
effect on the average number of aborts for the queue and that
there does not seem to be any difference between the linear
and the exponential backoff. However, the backoff does only
slightly alter the number of operations per ms, which can be
seen in Figures 6 and 7. For the other benchmarks there is
hardly any difference between the results for the different
backoff schemes, both when it comes to operations per sec-
ond and when it comes to aborted transactions per number
of thread blocks.

The queue does not scale well for either the blocking or
non-blocking STM. This is not surprising since only one
enqueue or dequeue operation can take place at any given
time. The hash-map and binary tree both scale much better
with the non-blocking STM and it can be clearly seen that
the non-blocking has a lot fewer aborted transactions when
it comes to these benchmarks. This can be attributed to the
fact that the non-blocking version can steal locks to continue
working without aborting.

In Figure 10 the result from the comparison between the
respective STM skip-lists and the lock-free skip-list by Sun-
dell and Tsigas is presented [ST04]. By the figure it is clear
that the respective STM skip-lists are significantly slower

c© The Eurographics Association 2010.

Cederman, Tsigas and Chaudhry / Towards a Software Transactional Memory for Graphics Processors

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s
 p

e
r

m
il
li
s
e
c
o

n
d

 (
o

p
/m

s
)

No backoff

Blocking Queue
Non-Blocking Queue
Blocking Hash-Map
Non-Blocking Hash-Map

 0 10 20 30 40 50 60

Threads

Linear Backoff

 0 10 20 30 40 50 60

Exponential Backoff

Figure 6: Experimental result for the queue and hash-map with low level of contention.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s
 p

e
r

m
il
li
s
e
c
o

n
d

 (
o

p
/m

s
)

No backoff

Blocking Queue
Non-Blocking Queue
Blocking Hash-Map
Non-Blocking Hash-Map

 0 10 20 30 40 50 60

Threads

Linear Backoff

 0 10 20 30 40 50 60

Exponential Backoff

Figure 7: Experimental result for the queue and hash-map with full level of contention.

than the non-STM skip-list. This is to be expected, as one
can gain a lot in performance by using more complex syn-
chronization techniques during the design phase of the data-
structure. However, there is a trade-off, as these techniques
require much more time and expertise to get the design right,
than to use an STM.

8. Conclusion

Software Transactional Memory has attracted the interest of
many researchers over recent years. We have designed and
implemented two STMs for graphics processors, one block-
ing and one non-blocking. The design issues involved in the
designing of these two STMs are described and explained

in the paper together with experimental results comparing
the performance of the two STMs. We found that while a
blocking STM is simpler to implement, providing additional
progress guarantees, such as obstruction-freeness, improves
performance and lowers the number of aborted transactions.

Acknowledgements

This work was partially supported by the EU as part
of FP7 Project PEPPHER (www.peppher.eu) under grant
248481 and the Swedish Research Council under grant num-
ber 37252706. Daniel Cederman was supported by Mi-
crosoft Research through its European PhD Scholarship Pro-
gramme.

c© The Eurographics Association 2010.

Cederman, Tsigas and Chaudhry / Towards a Software Transactional Memory for Graphics Processors

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s
 p

e
r

m
il
li
s
e
c
o

n
d

 (
o

p
/m

s
)

No backoff

Blocking Skip-List
Non-Blocking Skip-List
Blocking Binary Tree
Non-Blocking Binary Tree

 0 10 20 30 40 50 60

Threads

Linear Backoff

 0 10 20 30 40 50 60

Exponential Backoff

Figure 8: Experimental result for the binary tree and skip-list with low level of contention.

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s
 p

e
r

m
il
li
s
e
c
o

n
d

 (
o

p
/m

s
)

No backoff

Blocking Skip-list
Non-Blocking Skip-list
Blocking Binary Tree
Non-Blocking Binary Tree

 0 10 20 30 40 50 60

Threads

Linear Backoff

 0 10 20 30 40 50 60

Exponential Backoff

Figure 9: Experimental result for the binary tree and the skip-list with full level of contention.

References

[ATLM∗06] ADL-TABATABAI A.-R., LEWIS B. T., MENON V.,
MURPHY B. R., SAHA B., SHPEISMAN T.: Compiler and run-
time support for efficient software transactional memory. In
PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation (New
York, NY, USA, 2006), ACM, pp. 26–37.

[CBM∗08] CAŞCAVAL C., BLUNDELL C., MICHAEL M., CAIN
H. W., WU P., CHIRAS S., CHATTERJEE S.: Software Trans-
actional Memory: Why Is It Only a Research Toy? Queue 6, 5
(2008), 46–58.

[CT08] CEDERMAN D., TSIGAS P.: On Dynamic Load Bal-
ancing on Graphics Processors. In GH ’08: Proceedings of the
23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graph-
ics hardware (Aire-la-Ville, Switzerland, Switzerland, 2008), Eu-

rographics Association, pp. 57–64.

[DFL∗06] DAMRON P., FEDOROVA A., LEV Y., LUCHANGCO
V., MOIR M., NUSSBAUM D.: Hybrid Transactional Memory.
In Proceedings of the 12th International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS) (2006), pp. 336–346.

[DSS06] DICE D., SHALEV O., SHAVIT N.: Transactional Lock-
ing II. In Proc. of the 20th International Symposium on Dis-
tributed Computing (DISC 2006) (2006), pp. 194–208.

[Enn06] ENNALS R.: Software Transactional Memory Should Not
Be Obstruction-Free. Tech. Rep. IRC-TR-06-052, Intel Research
Cambridge Tech Report, Jan 2006.

[FH07] FRASER K., HARRIS T.: Concurrent programming with-

c© The Eurographics Association 2010.

Cederman, Tsigas and Chaudhry / Towards a Software Transactional Memory for Graphics Processors

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

O
p

e
ra

ti
o

n
s

 p
e

r
m

il
li

s
e

c
o

n
d

 (
o

p
/m

s
)

Threads

No backoff

Blocking Skip-List
Non-Blocking Skip-List
Lock-Free Skip-List

Figure 10: Experimental result for the STM skip-lists compared with the skip-list by Sundell and Tsigas with full level of
contention [ST04].

out locks. ACM Transactions on Computer Systems 25, 2 (2007),
5.

[GHP05] GUERRAOUI R., HERLIHY M., POCHON B.: Poly-
morphic Contention Management. In Proceedings of the 19th
International Symposium on Distributed Computing (DISC’05)
(2005), vol. 3724 of Lecture Notes in Computer Science, pp. 303–
323.

[Her88] HERLIHY M. P.: Impossibility and universality results
for wait-free synchronization. In PODC ’88: Proceedings of
the seventh annual ACM Symposium on Principles of distributed
computing (New York, NY, USA, 1988), ACM, pp. 276–290.

[HF03] HARRIS T., FRASER K.: Language support for
lightweight transactions. In OOPSLA ’03: Proceedings of the
18th annual ACM SIGPLAN conference on Object-oriented pro-
graming, systems, languages, and applications (New York, NY,
USA, November 2003), vol. 38, ACM Press, pp. 388–402.

[HLMS03] HERLIHY M., LUCHANGCO V., MOIR M.,
SCHERER W.: Software Transactional Memory for Dynamic-
sized Data Structures. In Twenty-Second Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (July 2003).

[HM93] HERLIHY M., MOSS J. E. B.: Transactional Memory:
Architectural Support For Lock-Free Data Structures. In Pro-
ceedings of the Twentieth Annual International Symposium on
Computer Architecture (1993).

[HPST06] HARRIS T., PLESKO M., SHINNAR A., TARDITI D.:
Optimizing memory transactions. In PLDI ’06: Proceedings of
the 2006 ACM SIGPLAN conference on Programming language
design and implementation (New York, NY, USA, 2006), ACM
Press, pp. 14–25.

[KCJ∗06] KUMAR S., CHU M., J. HUGHES C., KUNDU P.,
NGUYEN A.: Hybrid Transactional Memory. In Proceedings of
Symposium on Principles and Practice of Parallel Programming
(Mar 2006).

[Kni86] KNIGHT T.: An architecture for mostly functional lan-
guages. In LFP ’86: Proceedings of the 1986 ACM conference on
LISP and functional programming (New York, NY, USA, 1986),
ACM Press, pp. 105–112.

[LK08] LARUS J., KOZYRAKIS C.: Transactional memory: Is
TM the answer for improving parallel programming? vol. 51,
ACM.

[Moi97] MOIR M.: Transparent Support for Wait-Free Transac-
tions. In Proceedings of the 11th International Workshop on Dis-
tributed Algorithms (1997), Springer-Verlag, pp. 305–319.

[PDC09] P. DUBLA K. DEBATTISTA L. S., CHALMERS A.:
Wait-Free Shared-Memory Irradiance Cache. In Eurograph-
ics Symposium on Parallel Graphics and Visualization (March
2009), Eurographics, pp. 57–64.

[SATH∗06] SAHA B., ADL-TABATABAI A.-R., HUDSON R. L.,
MINH C. C., HERTZBERG B.: McRT-STM: a high performance
software transactional memory system for a multi-core runtime.
In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN sym-
posium on Principles and practice of parallel programming (New
York, NY, USA, 2006), ACM, pp. 187–197.

[SS05] SCHERER III W. N., SCOTT M. L.: Advanced contention
management for dynamic software transactional memory. In
PODC ’05: Proceedings of the twenty-fourth annual ACM sym-
posium on Principles of distributed computing (New York, NY,
USA, 2005), ACM, pp. 240–248.

[ST95] SHAVIT N., TOUITOU D.: Software transactional mem-
ory. In PODC ’95: Proceedings of the fourteenth annual ACM
symposium on Principles of distributed computing (New York,
NY, USA, 1995), ACM, pp. 204–213.

[ST04] SUNDELL H., TSIGAS P.: Scalable and lock-free con-
current dictionaries. In SAC ’04: Proceedings of the 2004 ACM
symposium on Applied computing (New York, NY, USA, 2004),
ACM, pp. 1438–1445.

c© The Eurographics Association 2010.

