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Abstract

We address programming of accelerator-based heterogeneous multiprocessors in the context
of computational science. Specifically, we consider stream architectures with explicitly man-
aged memory hierarchies. In this paper we present a programming approach which supports
program development for such multiprocessors. The programming approach is based on a
coordination model which allows a programmer explicitly to control parallel activities and
to manage memory hierarchies. Accelerators are only beneficial, if one succeeds to map
the computational kernel efficiently onto the non-general-purpose hardware. Since the tar-
get architecture of our programming system are stream multiprocessors, namely Cell/BE,
streaming abstractions are provided to improve programmability of stream kernels and to
enable profitable compiler optimizations. Parallelization techniques for code generation are
presented. First experiences back up the approach.

1 Motivation

Whereas at the beginning of the multi-core era mainly homogeneous multiprocessors have
been built, the trend goes now towards heterogeneous multi-core designs. Usually these hybrid
systems consist of standard cores enhanced by dedicated non-general-purpose accelerators with
explicitly managed memory hierarchies. Such hybrid architectures raise new programming
challenges. First, it must be determined which tasks shall be done by the standard CPU and
for which tasks is it beneficial to map them onto the accelerators. Second, the tasks must
be parallelized for the accelerators. Usually, accelerators are non-general-purpose processors
which operate on their local memories only. A major difficulty are the explicit data movements
between main memory and local memories. But even if all the data are in the local memory,
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efficiency is still a challenging problem, since programming of accelerators is not as simple as
programming standard CPUs.

Currently, major research efforts are undertaken by academic and industrial institutions to find
answers how to deal with these new programming challenges and to leverage the computing
power of those multiprocessors. Different approaches are discussed controversially without a
consensus within the community.

Even after decades of research, there is still often a large performance gap between automatic
parallelization and explicit parallel expert code. One strategy to overcome this problem is to
define domain-specific language features for dedicated application classes instead of pursuing
general-purpose programming. Such a strategy is obvious for multiprocessors like Cell/BE
which are not general-purpose processors either. Our approach reflects three main design
goals with respect to processors, applications, and program development.

1. Processors. We target stream architectures like Cell/BE with accelerators and explic-
itly managed hierarchical memories.

2. Applications. We target stream-like applications in the field of computational science,
i.e. applications with large data arrays (“streams”) as input, local calculations on that
data, and, optionally, large data arrays written as output. Since usually accelerators have
small local memories, data have to be divided into blocks and streamed into / out of the
accelerators. Another characteristic is that the calculations can be done independently
and are self-contained without accessing main memory randomly. Language extensions
for streaming abstractions results in better programmability and enables the compiler
to perform more profitable optimizations.

3. Program development. Ignoring the parallel control directives shall result in a seman-
tically equivalent sequential version of the program which can be compiled and executed.
Hence, all sequential tools like debuggers can be used to analyze the program and to
eliminate bugs before the parallel version is executed. This is important particularly for
languages like C where it is even for sequential programs challenging to correct pointer
errors.

In this paper we present our system VieCell which assists programming hybrid multi-cores,
namely Cell/BE multiprocessor. Our approach reflects the principle that parallelization must
be under programmer control—efficient parallel algorithms can be developed by programmers
only and cannot be generated automatically from sequential algorithms. A small number of
directives controls parallel execution. In fact, we only add a coordination model to the sequen-
tial programming language C. Basically a parallel program can be separated into computation
and coordination [11]. The computation model allows a programmer to write a single-threaded
computational activity, whereas the coordination model supports thread creation, data move-
ment, and synchronization. Instead of integrating both models into one single language with
the effect that coordination takes place implicitly, we argue for separating both models and
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making coordination explicit. This facilitates also to meet our third design point concerning
the semantical equivalence between the sequential program and the parallel program.

The basic computational unit for parallel execution are functions which are spawned on the
accelerators along with an execution context created by parameter transfers at invocation and
return. Hence, data transfers are aggregated to larger pieces which reflects the shopping-list
parallelization strategy as proposed by Cell/BE chief scientists [14] for such kind of architec-
tures. Moreover, we aggregate multiple calls of a function to one call and pass parameter lists
with work-arrays to reduce the overhead of loading and executing a function on an accelerator
and to enable overlapping of parameter transfers with computation. Streaming programming
features assist developers writing efficient code. The compilation system realizes low-level tasks
like thread management, data transfers, or machine specific optimizations—tasks which can
be handled by compilers successfully and which should not be dealt with by the programmer
for portability reasons. The strategies applied for realizing these tasks are presented in the
paper. Our application domain are scientific applications which are usually characterized by
floating point operations on large data arrays.

The paper is organized as follows. Section 2 presents system VieCell, starting with the
target hardware architecture in Section 2.1 and the model of computation in Section 2.2.
The programming approach is illustrated in Section 2.3 with a running example, for which
the generated code is shown in Section 2.4. Additional language features are presented in
Section 2.5. Runtime measurements and optimizations are discussed in Section 3. The paper
concludes with related work in Section 4 and a summary and future work in Section 5.

2 Programming System VieCell

2.1 Target Hardware Architecture

We consider heterogeneous multiprocessors with a main CPU and a number of accelerators
or co-processors with local memories as shown in Fig. 1. Whereas the main processor can
operate on the main memory, the accelerators can address directly only the local stores. Data
transfer between local stores and main memory are managed explicitly and not implicitly with
e.g. load/store instructions. Typically, the main processor and the accelerators have different
instruction sets. It is the task of the main processor to load the binaries onto the local stores
of the accelerators and to initiate execution. In this way, the main processor orchestrates the
components of the chip.

The block diagram of Fig. 1 fits exactly to Cell/BE multiprocessor—our first target archi-
tecture. Cell/BE is a heterogeneous multiprocessor with an IBM Power processor core, called
PPU (Power Processor Unit), and 8 specialized accelerators or co-processors with local stores,
called SPU (Synergistic Processor Unit). The PPU and SPU have different instruction sets and
the SPU contains a SIMD execution unit. The small local store of 256 KB holds instructions
and data and is the only memory directly addressable by the SPU. Therefore it is important
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Figure 1: Cell/BE like target architecture with accelerators and explicitly managed memory
hierarchies.

that the programming framework provides means to deal with the small local stores instead
of delegating it to the programmer.

2.2 Model of Computation

Parallelization is fully controlled by the programmer, since development of parallel algorithms
is an inherent task of programmers which cannot be hidden. The parallel code is specified
together with the required data transfers. Since the computation model is covered by program-
ming language C, the coordination model has to be addressed only. The required extensions
for the coordination model have been realized with directives embedded in the sequential lan-
guage. Ignoring the directives results in a semantically equivalent sequential version of the
program.

The basic computational unit which can be executed in parallel is an SPU function extended
by a parameter in/out-description. The data transfers take place at function invocation and
return, and constitute the execution context of the SPU function. The parallel execution of
an SPU function on an SPU is initiated with a parallel-loop: the loop index space is divided
by the number of SPUs and each SPU is assigned an index range.

For Cell-like architectures it is an obvious approach that at program start-up a single master
thread is created on the PPU which exists for the duration of the whole program and which
starts executing the program sequentially. When the master thread encounters a parallel
loop, slave threads are created for each SPU to control parallel execution. The task of each
slave thread is to load the executable of an SPU function onto the SPU, transfer at the
beginning the data to the local memory, and write the result back to main memory. After
termination of all slave threads, the master thread in the PPU continues execution. Thus the
PPU acts as orchestrator responsible for realizing work distribution and coordinating parallel
execution.

Parallel execution is controlled by following directives:

• pragma parallel. When the master thread reaches a parallel loop, the PPU loads
the binary of the SPU function onto the SPUs and distributes the work between the
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SPUs. The body of a parallel loop contains exactly one SPU function call and the
programmer asserts that it is legal to execute the function in parallel. SPUs are not
allowed to execute a parallel loop which is guaranteed by the compiler.

• pragma public. An SPU compilation unit consists of declarations and function def-
initions whereby one function defintion has the public-attribute. Functions with the
public-attribute are called SPU functions and are invokable from the PPU, the remain-
ing functions have internal file scope only. The name of the SPU function must be
identical to the source file (cf. Java).

The parameter clause specifies for each parameter whether it is an in, out, or inout
parameter together with the number of data elements to be transferred. The semantics
of the parameter transfer is call-by-value-result, i.e. the arrays are copied between main
memory and local memory forward and backward. The blockable clause indicates that
it is valid to divide parameter transfers in smaller units in order to prevent memory
overflow of the small local memories and to support stream-like processing behavior.

• pragma comm. The communication-attribute indicates that data structures allocated
by the PPU (PPU compilation unit) will be transferred between PPU and SPU. This
attribute is used to take care of alignment.

2.3 Programming Approach with Running Example

To illustrate the programming approach with system VieCell, we present and discuss a
running example: matrix-matrix addition Cm,n = Am,n + Bm,n. We do not start with a
sequential version of matrix-matrix addition, but immediately with a parallel version which
is based on the fact that the matrix operation can be split up in m independent additions of
vectors of length n. The user code is shown in Fig. 2.

The for-loop iterates over all rows and adds row-by-row by calling SPU function SPU vec add
at line 5 along with pointers to the rows. Since the additions of the vectors are independent,
VieCell is told to perform the SPU function in parallel on the SPUs with the pragma directive
#pragma vie parallel at line 3. The master thread creates for each SPU a slave thread which
controls execution of the corresponding SPU. The PPU divides the loop index space by the
number of SPUs and assigns the work to the SPUs. The pragma directive #pragma vie comm
at line 1 indicates that the subsequent declared variables will be passed to an SPU function.

The SPU function is shown in Fig. 2. The function gets as input parameter the pointers to
the vectors which shall be added and the pointer to the result vector with the sum. Since the
SPUs can operate on their local memories only, data transfers between main memory and local
stores are required which are controlled by the pragma directive just before the SPU function at
line 1. The parameter clauses for vec1 and vec2 mark them as input-parameters and results
in N elements of type float to be transferred from main memory to local memory starting
from addresses vec1 and vec2 just after function activation. Parameter vec3 is annotated
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01 #pragma vie comm

02 float C[M][N], A[M][N], B[M][N];

... sequential execution

03 #pragma vie parallel

04 for (int i=0; i<M; i++)

05 SPU vec add(&A[i][0],&B[i][0],&C[i][0]);

... sequential execution

01 #pragma vie public vec1(in,N), vec2(in,N),

vec3(out,N)

02 void SPU vec add(float vec1[],

03 float vec2[],

04 float vec3[])

05 {
06 for (int j=0; j<N; j++) {
07 vec3[j]=vec1[j]+vec2[j];

08 }
09 }

(a) PPU user code. (b) SPU user code.

Figure 2: Running example.

as output-parameter and causes N data items to be written from the local memory to main
memory address vec3 just before function return.

Thus parallel execution is completely controlled by the programmer which is essential for the
development of efficient parallel algorithms. However, the programmer shall not deal with low
level programming details of the accelerators. The accelerators are usually non general-purpose
processors with sometimes idiosyncratic instruction set architectures; e.g. in most cases the
programmer code of Fig. 2 will not perform well, unless optimizations like vectorization or
loop unrolling have been applied—optimizations manageable by compilers successfully.

2.4 Unoptimized Code for Running Example

The generated PPU code is shown in Fig. 3. First, the PPU determines the number of available
SPUs and creates for each SPU a thread at line 4. For each SPU an execution context ctx
is created at line 7 to which specifications like the SPU function handle is added next line.
Functions with prefix “spe ” are part of Cell/BE SDK (see below).

The PPU determines the work distribution by dividing the loop index space by the number
of available SPUs and assigns each SPU the corresponding index range with a work-array
which is constructed by the PPU and attached to the SPU execution context at line 10.
Since the data transfers are initiated by the SPUs, the work-array contains the addresses
of all parameters, i.e. for each loop iteration assigned to an SPU a tuple of three vector
pointers is added to the work-array as shown at line 9 based on set notation. The work
distribution is a simple block-distribution with the block-size calculated at line 3. Besides
the specification of the work distribution, the work-array has a second important task: the
work-array reduces the interactions between PPU and SPU and realizes the already mentioned
shopping-list parallelization strategy. The SPU function is loaded and called exactly once for
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01 aligned float C[M][N], A[M][N], B[M][N];

... sequential execution

02 num threads=get num SPUs();

03 blksz=M/num threads; // for simplicity no remainder

assumed

04 pthread create threadt (1 ≤ t ≤ num threads) {
05 spe context ptr ctx;

07 ctxt = spe context create(...);
08 spe program load(ctx, SPU vec add); // add SPU

function to context

09 work arrayt=
⋃blksz∗t−1

i=blksz∗(t−1)
(&C[i,0],&A[i,0],&B[i,0]);

10 spe context run(ctxt, work arrayt); // code loaded

and executed by SPU

11 spe context destroy(ctxt);

12 } // join of pthreads

... sequential execution

Figure 3: Generated PPU pseudo code for running example.

each SPU, instead of M calls. Moreover, the work-array makes it easy to apply optimizations
like double buffering (see below) to overlap parameter transfers with computation.

After all SPUs have terminated, the context is destroyed at line 11 and after all threads have
finished (implicit barrier), the master thread continues sequential execution.

The generated SPU code is shown in Fig. 4. In order to execute an SPU function, a main
routine is required which is invoked by the PPU. The context of the SPU function is passed
by the parameters of the main routine, e.g. the work-array is assigned at line 12. Basically,
the generated SPU code iterates over the work-array and performs for each parameter tuple
the following three steps: (1) copy the values of the input parameters to the local memory, (2)
perform the original SPU kernel function, and (3) copy the values of the output parameters
to main memory. Step 1 goes from line 17 to line 19, step 2 takes place at line 20, and step 3
goes from line 21 to line 22. Functions with prefix “vie ” are wrapper functions of our runtime
system which call the corresponding Cell/BE SDK functions with prefix “mfc ” (for memory
flow controller).

Since the work-array can be huge and only 16KB can be transferred by a DMA transfer, we
apply loop tiling (lines 14 and 15) to split the work-array into appropriate tiles. Similar, our
runtime functions vie mfc get/put at lines 17 or 21 split the data transfers into smaller pieces,
if they exceed 16KB.

Compilation system and file organization. System VieCell is a source-to-source trans-
lator. VieCell translates files with extensions .ppc (PPU file) and .spc (SPU file) to C-files
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01 aligned float vec1[N], vec2[N], vec3[N]; // function

parameters

02

03 void SPU vec add()

04 {
05 for (int j=0; j<N; j++) {
06 vec3[j]=vec1[j]+vec2[j];

07 }
08 }
09

10 int main(...argp,...)
11 {
12 work array=argp;

13 while work array not empty {
14 vie mfc get(work tile, work array.next tile,

TILESZ); // get tile-by-tile

15 for (int i=0; i<TILESZ; i++) {
16 (C ptr,A ptr,B ptr)=work tile[i]; // get next

main memory address tuple

17 vie mfc get(vec1,A ptr,N*sizeof(float));

18 vie mfc get(vec2,B ptr,N*sizeof(float));

19 vie mfc wait(); // wait on copy completion

20 SPU vec add();

21 vie mfc put(vec3,C ptr,N*sizeof(float));

22 vie mfc wait(); // wait on copy completion

23 }
24 }
25 }

Figure 4: Generated SPU pseudo code for running example.

8



SPE_vec_add.spc

PPUmain.ppc

SPE_vec_add.c

PPUmain.c

SPE_vec_add.o SPE_vec_add SPE_vec_add
_embed.o

main.out

PPUmain.o

spulib.o

Acronym spuxlc ‐c spuxlc ppu_embedspu

Acronym ppuxlc ‐c
ppulib.o

ppuxlc

 

Figure 5: Compilation steps.

with DaCS (Data Communication and Synchronization library) calls from Cell/BE SDK. The
Cell/BE SDK for Multicore Acceleration architecture is shown in Fig. 6. DaCS and ALF
(Accelerator Library Framework) are IBM libraries with DaCS supporting basic features like
process management or data movement primitives and with ALF providing support for par-
allelizing codes with features like data partitioning (see related work section). The box called
“Others” is reserved for third-party developments like VieCell. The compilation steps are
shown in Fig. 5. First, VieCell translates PPU files and SPU files into C files, then IBM
ppuxlc and spuxlc generate object files for PPU and SPU, respectively. The SPU object file is
compiled with IBM ppu embedspu into an object file which can be embedded in a PPU pro-
gram. Finally, with ppuxlc all object files are linked together and one Cell/BE executable is
generated. The object libraries ppulib.o and spulib.o are part of the VieCell runtime system.

An SPU file may contain several function definitions, but only one of them can be declared
public and the public function must have the same name as the source file (cf. Java). The
public SPU function is the SPU entry function which is invokable from the PPU and which
can call local functions.

2.5 More Language Features

Blockable clause. Since scientific applications typically operate on large arrays, techniques
are required to partition data such that they fit into the small 256KB local memory. VieCell
provides a blockable clause as shown in Fig. 7 to indicate that it is semantically valid to split
an array in subarrays and apply the kernel to the subarrays.

The N(blockable) clause at line 1 indicates that it is semantically valid to partition N into
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Figure 6: Cell/BE SDK for Multicore Acceleration v3.0 (Source: IBM Corporation).

01 #pragma vie vec(in,N), N(blockable)

02 void SPU vec add(float vec[]) { . . . }

Figure 7: SPU user code with blockable input streams.

17 for 1 to k number of blocks {
18 vie mfc get(vec1,A ptr.next block,N/k*sizeof(float));
19 vie mfc get(vec2,B ptr.next block,N/k*sizeof(float));
20 vie mfc wait(); // wait on copy completion

21 SPU vec add();

22 vie mfc put(vec3,C ptr.next block,N/k*sizeof(float));
23 vie mfc wait(); // wait on copy completion

24 }

Figure 8: Generated SPU pseudo code for blockable input streams.
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01 #pragma vie comm

02 float A[L][M][N];

03 float *red, redsum;

04 . . .
05 #pragma vie comm

06 red=(float*)calloc(NUM THREADS,sizeof(float));

07 #pragma vie parallel

08 for (int i=0; i<L; i++)

09 SPU red(&A[i][0][0],&red[ thread nr]);

10

11 for (int i=0; i<NUM THREADS; i++)

12 redsum += red[i];

13 . . .

01 #pragma vie vec(in,M*N)

02 #pragma vie red(inout,1)

03 void SPU red(float vec[M][N],

04 float red[1])

05 {
06 . . .
07 }

(a) PPU user code. (b) SPU user code.

Figure 9: Example with reduction and multi-dimensional arrays.

smaller pieces, i.e. conceptually the compiler can transform one call to SPU vec add with
parameter vec of length N into two calls with length N/2, or three calls with length N/3,
and so on. VieCell realizes the blockable clause however in a stream-like manner: the SPU
function SPU vec add is called exactly once and inside the function subvectors of size N/k are
transferred by a loop resulting in a stream of subvectors and the possibility to perform further
optimizations like double buffering. Lines 17-22 of Fig. 4 are changed for k number of blocks
as shown in Fig. 8. The loop bounds within SPU vec add are adjusted accordingly.

Reductions. Reductions are not explictly supported, but can be realized as shown in Fig. 9.
The VieCell variable thread nr denotes the actual thread number and can be used to
specify a memory region which is exclusive for an SPU. The length of array red corresponds
to the number of SPUs and each SPU stores the result of function SPU red into location
red[ thread nr] as shown at line 9. After termination of all slave threads, the master
thread sums up the values of array red. Variable thread nr is useful for similar programming
techniques as well.

Multi-dimensional arrays. Moreover, the code example of Fig. 9 shows the passing of
multi-dimensional arrays. At line 9 of the PPU code the first element of a two-dimensional
array is passed to function SPU red which is declared as an array at line 3 of the SPU code
along with the number of elements to be transferred at line 1. Currently, only contiguous
data transfers are supported. Note that passing of one data item is dealt with as an array of
length 1, i.e. conceptually we always work on data buffers. Finally, the code example shows
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the allocation of a dynamic array at lines 5-6 of the PPU code which is passed to the SPU
function later.

3 Runtime Measurements and Optimizations

01 #pragma vie comm

02 float A[M][N], X[N], Y[M];

... sequential execution

03 #pragma vie parallel

04 for (int i=0; i<M; i++)

05 SPU dot pr(&A[i][0],X,&Y[i]);

... sequential execution

01 #pragma vie public vec1(in,N), vec2(in,N), \
02 vec3(out,1)

03 void SPU dot pr(float vec1[],

04 float vec2[],

05 float vec3[])

06 {
07 float sum=0;

08 for (int j=0; j<N; j++) {
09 sum+=vec1[j]*vec2[j];

10 }
11 vec3[0]=sum;

12 }

(a) PPU user code. (b) SPU user code.

Figure 10: Matrix-vector multiplication.

In this section we report experimental results with our system. First we start with matrix-
vector multiplication Am,n × Xn = Ym. The PPU and SPU user code of the matrix-vector
multiplication kernel is shown in Fig. 10.

The most striking difference between our running example matrix-matrix addition and matrix-
vector multiplication is the return of a single scalar value of the dot product. Note that the
parameter passing mechanism is based on buffers described by arrays. Thus the result of the
dot product is transferred in terms of an array of size 1 (cf. lines 2 and 11). Working with
data buffers has the advantage that optimizations like splitting large parameter transfers or,
the other way round, aggregating small parameter transfers can be done more easily.

The latter optimization—aggregation of data transfers—is an issue for the dot product. Instead
of writing single scalars back to main memory, an optimization based on loop unrolling is
applied such that the scalars are aggregated and written in one DMA call together back to
main memory.

The experiments have been conducted on an IBM BladeCenter QS22 with two IBM PowerXCell
8i processors (3.2GHz/ 1MB L2) mounted in an IBM BladeCenter H chassis. IBM PowerXCell
8i processor is the follow-up model of the Cell processor with much better double-precision
floating-point performance. For our experiments we used Cell SDK and IBM xlc compiler.
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Figure 11: Matrix-vector multiplication with 8 SPUs.
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Figure 12: Matrix-vector multiplication: single buffering.
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Figure 13: Matrix-vector multiplication: double buffering.
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Figure 14: Matrix-vector multiplication: single vs. double buffering.

0

0.4

0.8

1.2

1.6

G
Fl

o
p

s

Problem size

Figure 15: Matrix-matrix addition with 8 SPUs.
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Figure 16: Matrix-matrix addition: single buffering.
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Figure 17: Matrix-matrix addition: double buffering.

On the SPU it is essential to use the vector unit in order to get performance. Note that the
SPU code shown in Fig. 10 is not written as vector code, i.e. data type “float” is used instead
of “vector float”. Our experiences have shown that IBM xlc compiler succeeds in managing
vectorization for such codes making hand optimizations unnecessary. However, this is not the
case for GNU gcc. Vectorization or loop unrolling has to be done in advance before calling
GNU gcc.

Fig. 11 reports the performance in terms of GFlop/s for different problem sizes MxN on
a single PowerXCell with 8 SPUs. The GFlop/s for larger problem sizes are competitive
with measurements reported in other publications. The coordination overhead and the DMA
transfers are responsible for the rather low GFlop/s for small problem sizes.

Next we analyze the performance of 1 SPU up to 8 SPUs. Fig. 12 shows the graphs for four
different problem sizes. Whereas the GFlop/s can be increased from 1 SPU to 2 SPUs by factor
of 1.78− 1.94 and from 1 to 4 SPUs by a factor of 2.8− 3.3, there is only a small improvement
from 4 to 8 SPUs. The bandwidth problem seems to be caused amongst others by the NOC
architecture of PowerXCell which is based on a ring topology with four data rings. The max.
bandwidth for this computational kernel of about 18 GB/s is already reached with 4 SPUs.

An usually beneficial optimization for streaming applications is a technique referred to as
double buffering. The input/output buffers are duplicated and while the current buffer is used
in computation, the data transfer for the next buffer has already been initiated to overlap
data transfers with computation. The numbers for double buffering are shown in Fig. 13.
The increase of GFlop/s for double buffering is similar to single buffering for 1 to 2 SPUs
and 1 to 4 SPUs, 1.70 − 1.95 and 2.5 − 3, respectively. From 4 to 8 SPUs, however, we even
encounter a light slowdown. In Fig. 14 single and double buffering for one typical problem
size is compared. On the average we get for 1 and 2 SPUs a GFlop/s increase of about 30%,
for 4 SPUs about 15%, and for 8 SPUs almost no improvement. Thus, for this computational
kernel double buffering is not as benefical as expected.

Next we show the performance numbers of our running example, matrix-matrix addition.
Fig. 15 reports the performance in terms of GFlop/s for different problem sizes MxN on a
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single PowerXCell with 8 SPUs. Striking are the rather low GFlop/s compared to matrix-
vector multiplication. The reason is that the amount of transferred data is higher and the
amount of computation lower: an add is executed instead of a fused multiply-add operation.
Thus the performance of this kernel is bandwidth bound. For higher GFlop/s numbers more
compute intensive kernels are required compared to matrix/matrix addition or also matrix-
vector multiplication.

Next we analyze the performance of 1 SPU up to 8 SPUs. Fig. 16 and Fig. 17 show the
graphs for four different problem sizes with a similar shape as for matrix-vector multiplication.
Again there is a knee from 4 SPUs to 8 SPUs. The numbers are similar to matrix-vector
multiplication: the GFlop/s can be increased from 1 SPU to 2 SPUs by factor of 1.84− 1.95
and from 1 to 4 SPUs by a factor of 2.4− 3.3.

The double buffering optimization, however, is more beneficial than it was for matrix-vector
multiplication. On the average we get for 1 SPU a GFlop/s increase of about 74%, for 2 SPUs
about 65%, for 4 SPUs about 35%, and for 8 SPUs about 10%.

4 Related Work

Currently, many research groups from the parallel computing community as well as graphics
community work on programming of accelerator-based heterogeneous multiprocessors. Our
approach has been inspired by a discussion of integrating or separating coordination and com-
putation model published by Gelernter and Carriero [11], an early effort with a coordination
model called SCHEDULE by Dongarra et al. [9] with computational units scheduled for execu-
tion based on execution dependencies with some similarities with dataflow programming in the
context of numerical libraries, and new research efforts in this direction [20]. Interestingly, the
parallel computing scene at that time resembles in many aspects the situation today and many
arguments apply in these days as well. Instead of evolving distributed-memory machines and
wide-spread use of low-level MPI, now multi-cores and accelerators are emerging and low-level
APIs are available—but neither at that time nor today there is a consensus in the community
about the programming approach.

New programming frameworks have been proposed to facilitate use of GPUs as accelerators
for general purpose programming. Usually they evolved out of the graphics community with
special support for stream processing. OpenCL (Open Computing Language) [12] is an open
standard for general-purpose parallel programming of multi-core CPUs, Cell/BE type archi-
tectures, or GPUs, and is conducted by the Khronos Group (cf. OpenGL–Open Graphics
Library). The design of OpenCL has been primarily driven by the data parallel programming
model, however, task parallelism is supported as well. A function call interface is provided for
submitting kernels for execution, for defining the execution context, and for performing the
data transfers. OpenCL provides a low-level hardware abstraction with many details of the
underlying hardware being exposed.

CUDA from Nvidia [17], an extension of ANSI C with stream functions, provides a higher
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level programming interface than OpenCL, but still many low level tasks like creating kernels
and performing data transfers must be done with a function call interface. Brook+ from AMD
is an extension of Brook for GPUs from Stanford University [4]. Brook+ specifically targets
stream programming for GPUs.

OpenCL or CUDA form a basic layer close to the hardware which are interesting for highler
level approaches like ours for target code generation. For non GPU programmers, it takes
some time to get used to OpenCL or CUDA coding practices.

One of the first programming environments is the RapidMind platform from the very same
company [15] which targets Cell/BE, NVIDIA GPUs, and multi-core CPUs based on the
SPMD stream programming model. Another toolkit is HMPP from CAPS entreprise [8]
which addresses specifically legacy code issues by allowing the use of target specific software
development toolkits and providing interoperability.

Closest related to our programming strategy is the approach taken by Sequoia [10]. Sequoia is
also based on explicit communication by argument passing. But whereas Sequoia concentrates
on handling memory hierarchies across several levels, our emphasis is placed on supporting
scientific programming kernels for stream architectures.

A representative for another class of approaches which is based on OpenMP and which proposes
new directives to address architectures like Cell/BE is Cellgen [19]. Differently to our approach,
in Cellgen communication is not explicit, but determined by reference analysis based on work
distribution with all the difficulties experienced in the past. IBM supports Cell/BE with a
dedicated OpenMP version as well [18]. Specifically for scientific applications IBM provides
ALF (Accelerator Library Framework) which is part of Cell/BE SDK. ALF provides a set
of functions for creating tasks and defining work blocks with the data which are queued for
execution. Contrary to our approach, in ALF still many low-level details have to be dealt
with.

CellSs (Cell Superscalar framework) [2] is a quite different approach which is based on the
automatic exploitation of functional parallelism especially for the Cell processor. A task
dependency graph is built at runtime for exploiting parallelism. With this graph, the runtime
is able to schedule independent nodes to different SPEs to execute at the same time. Thus,
task parallelism can be exploited easily with CellSs.

Cilk [3] developed by MIT and licensed to Cilk Arts, a venture-funded start-up, is a language
for multithreaded parallel programming based on ANSI C which addresses homogeneous multi-
core processors.

Other well-known parallel programming languages include the PGAS (partitioned global ad-
dress space) languages UPC (Unified Parallel C) [7], CAF (Co-array Fortran) [16], and Tita-
nium (Java-based) [13]. Higher level of abstractions provide the languages of the HPCS (High
Productivity Computing Systems) program of DARPA: X10 (IBM) [6], Chapel (Cray) [5], and
Fortress (Sun) [1]. These parallel programming languages address general parallel applications
as well as general hardware architectures and do not specifically target stream processing or
heterogeneous multi-cores.
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5 Conclusion and Future Work

We presented a programming approach for accelerator-based heterogeneous multiprocessors
and parallelization techniques to realize the approach. Of key importance is the interplay
between the three parties programmer–parallelization framework–native compiler. In our ap-
proach the programmer is responsible for developing parallel algorithms and writing explicitly
parallel code in a hardware independent way.

The parallelization framework VieCell generates parallel code based on the programming
directives and native libraries and hides all high-level machine characteristics. For example
partitioning of large data arrays into smaller pieces to fit into the local stores shall be done
by the parallelization framework and not by the programmer, since it is hardware dependent
and would prevent portability.

The task of the native compiler is to cover all low-level machine characteristics and perform
optimizations like vectorization or loop unrolling. Again, manual vectorization might hamper
portability and compilers already succeeded in managing such kind of optimizations.

The examples show that computations fitting the stream hardware architectures can be trans-
lated in a straight-forward way onto the processors based on the directives without complex
analysis, but instead with techniques like the work-arrays to support efficient streaming. Per-
formance measurements have shown that efficient programs can be obtained in this way.

Basically, VieCell acts as a research platform to analyze the interplay programmer–parallelization
framework–native compiler. In our future work, we plan to port codes onto Cell/BE which
cannot be parallelized efficiently in a straight-forward way, but require either by the program-
mer or by the parallelization framework some support, which is investigated with VieCell.
Finally, we plan to extend VieCell to support related heterogeneous processor designs like
GPUs.
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