
Programming Support for Cell/BE
Multiprocessor

Enes Bajrović and Eduard Mehofer

Department of Scientific Computing, University of Vienna, Austria,
{bajrovic,mehofer}@par.univie.ac.at

WWW home page: http://www.par.univie.ac.at

Abstract. An emerging class of architectures are accelerator-based het-
erogeneous multiprocessors with software-managed memory hierarchies
like Cell/BE. A major difficulty in programming such kind of machines
are the explicit data transfers between the different memories raising
new programming challenges. In this paper we discuss a programming
approach which supports application programmers in writing efficient
code for non-cache-based architectures. A crucial role plays the interplay
between the three parties programmer, parallelization framework, and
native compiler. Based on our experiences with past programming ap-
proaches, we propose language extensions to orchestrate parallel execu-
tion of threads and to control data transfers. Experiments are performed
to analyze the roles of programmer and compiler in more detail.

1 Introduction

Accelerator-based heterogeneous multiprocessors with software-managed mem-
ory hierarchies are getting more and more wide-spread for high performance
systems. Usually these hybrid systems consist of standard cores enhanced by
dedicated non-general-purpose accelerators with explicitly managed memory hi-
erarchies. Such hybrid architectures raise new programming challenges. Besides
distributing the tasks onto the standard CPU and the accelerators (if beneficial),
the explicit data transfers between main memory and local memories have to
be realized. But even if all the data are in the local memory, efficiency is still
a challenging problem, since programming of accelerators is not as simple as
programming standard CPUs.

Currently, major research efforts are undertaken by academia and industry
to find answers how to deal with these new programming challenges and to
leverage the computing power of those multiprocessors. Different approaches are
discussed controversially without a consensus within the community.

Even after decades of research, there is still often a large performance gap be-
tween automatic parallelization and explicit parallel expert code. In this paper we
discuss the interplay between programmer, parallelization framework, and native
compiler. We present our system VieCell which assists programming heteroge-
neous multiprocessors with explicitly managed memory hierarchies, namely the
Cell/BE multiprocessor. Our approach reflects the principle that parallelization



must be under programmer control—efficient parallel algorithms can be devel-
oped by programmers only and cannot be generated automatically from sequen-
tial code. A small number of directives controls parallel execution. In fact, we
only add a coordination model to the sequential programming language C. Our
application domain are scientific applications which are usually characterized by
floating point operations on large data arrays.

The paper is organized as follows. Section 2 discusses the interplay between
programmer, parallelization framework, and native compiler which is the key for
supporting heterogeneous multiprocessors successfully. The programming ap-
proach is illustrated in Section 3 together with an example. Runtime measure-
ments and optimizations for Cell/BE are presented in Section 4. The paper
concludes with related work in Section 5, and a summary in Section 6.

2 Efficient and Portable Programming of Architectures
with Software-Managed Memory Hierarchies

While chip multiprocessors (CMPs) alleviate problems known as power wall or
instruction-level parallelism (ILP) wall, they increase the programmability wall.
On the one hand, program development for multi-core processors, especially
for heterogeneous multi-core processors, is significantly more complex than for
single-core processors. On the other hand, programmers have been traditionally
trained for the development of sequential programs, and only a small percentage
of them have experience with parallel programming. In the past, programmers
could trust that compilers succeeded to pass the increased computing power of
next processor generations to applications without high porting effort. This was
due to relatively homogeneous processor designs even from different hardware
vendors with instruction-level parallelism supported at hardware level. The ar-
chitectural change to CMPs, however, affects the programmer in several ways.
On the one hand, thread level parallelism (TLP) must be exploited effectively
and efficiently. In general, this cannot be done automatically by a compilation
system, but requires assistance by the programmer. On the other hand, multi-
core architectures differ significantly requiring that applications must be adapted
to the various platforms. This porting problem is worsened by the fact that the
average lifetime of hardware is about 5 years, whereas the average lifetime of
applications is about 20-30 years.

A crucial role in addressing the programmability wall plays the relationship
between the three involved parties programmer, parallelization framework, and
native compiler. Experiences in the past have shown the limits of parallelizing
compilers. Above all, parallelizing compilers will fail for programs which do not
exhibit parallelism, since sequential algorithms have been used. Consequently,
parallelization must be under programmer control—efficient parallel algorithms
can be developed by programmers only and parallelism shall not be hidden.
Directives must be provided for the programmer to control the parallel activ-
ities and to manage the explicit data transfers at a high level in a machine-
independent way.



Basically a parallel program can be separated into computation and coordina-
tion [8]. The computation model allows a programmer to write a single-threaded
computational activity, whereas the coordination model supports thread cre-
ation, data transfer, and synchronization. A discussion of integration vs. separa-
tion can be found in Gelernter and Carriero [8]. It is highly interesting that most
of the arguments apply in these days too. In the year 1992 parallel programming
was dominated by message-passing and the need for better programming sup-
port. In response to the emerging architectures of that time it is said “diversity
with respect to language, hardware platform, physical location ... will be normal
in the new era”—a sentence which still applies nowadays.1

In the following we summarize the distribution of duties between program-
mer, parallelization framework, and native compiler.

Programmer. The programmer controls parallelization explicitly. For portabil-
ity reasons, it is the goal that the code is written in a machine-independent
way.

Parallelization framework. The parallelization framework supports the co-
ordination model. The framework realizes tasks like thread management,
data transfers, or machine specific optimizations during the parallelization
process—tasks which can be handled by an environment successfully and
which should not be dealt with by the programmer for portability reasons.
Examples of machine specific optimizations are (1) splitting of big data
chunks to fit in the small local memories, (2) aggregation of small data
transfers to larger pieces, (3) hiding transfers with computation (e.g. double
buffering), (4) streaming optimizations, or (5) eliminating synchronization
points.

Native compiler. The native compiler optimizes the code assigned to the com-
puting device. In addition to optimizations common for object code compil-
ers, optimizations like vectorization (if a vector unit exists), loop unrolling,
or software pipelining shall be supported.

3 Overview of Programming System VieCell

Our system VieCell targets heterogeneous multiprocessors, namely Cell/BE,
with a main CPU and a number of accelerators or co-processors with local mem-
ories. In case of Cell/BE, the main CPU is the PPU (Power Processor Unit) and
the accelerators are called SPUs (Synergistic Processor Units). Data transfers
between main memory and local stores are managed explicitly and not implicitly
with e.g. load/store instructions. Typically, the main processor and the acceler-
ators have different instruction sets.

Parallelization is fully controlled by the programmer. Since the computation
model is covered by programming language C, the coordination model has to be
addressed only. The extensions for the coordination model have been realized
1 By the way, message passing is still the dominating programming paradigm for

scientific applications.



with directives embedded in the sequential language. Ignoring the directives
results in a semantically equivalent sequential version of the program.

The basic computational unit which can be executed in parallel is an SPU
function extended by a parameter in/out-description which are spawned on the
SPUs. The data transfers take place at function invocation and return, and con-
stitute the execution context of the SPU function. Hence, data transfers are
aggregated to larger pieces which reflects the shopping-list parallelization strat-
egy as proposed by Cell/BE chief scientists [10] for such kind of architectures.

For Cell-like architectures it is an obvious approach that at program start-up
a single master thread is created on the PPU which exists for the duration of the
whole program and which starts executing the program sequentially. When the
master thread encounters a parallel loop, slave threads are created for each
SPU to control parallel execution. The task of each slave thread is to load the
executable of an SPU function onto the SPU, transfer at the beginning the data
to the local memory, and write the result back to main memory. After termi-
nation of all slave threads, the master thread in the PPU continues execution.
Thus the PPU acts as orchestrator responsible for realizing work distribution
and coordinating parallel execution.
Parallel execution is controlled by a small number of directives:

– pragma parallel. When the master thread reaches a parallel loop, the
PPU loads the binary of the SPU function onto the SPUs and distributes
the work between the SPUs. The body of a parallel loop contains exactly
one SPU function call and the programmer asserts that it is legal to execute
the function in parallel.

– pragma public. An SPU compilation unit contains exactly one function
with the public-attribute, called SPU function, which is invokable from the
PPU.
The parameter clause specifies for each parameter whether it is an in, out, or
inout parameter together with the number of data elements to be transferred.
The semantics of the parameter transfer is call-by-value-result, i.e. the arrays
are copied between main memory and local memory forward and backward.

– pragma comm. The communication-attribute indicates that data struc-
tures allocated by the PPU (PPU compilation unit) will be transferred be-
tween PPU and SPU. This attribute is used to take care of alignment.

Since we are targeting stream-like applications in the field of computational
science, we provide additional notations to steer optimizations for such kind of
applications. As an example a parallel matrix-vector multiplication is shown in
Fig. 1.

4 Experiments on Cell/BE

In this section we discuss experimental results performed on single SPU of a
Cell/BE using native IBM XL C/C++ XLC compiler version 10.1 and GNU



01 #pragma vie comm

02 float A[M][N], X[N], Y[M];

... sequential execution

03 #pragma vie parallel

04 for (int i=0; i<M; i++)

05 SPU dot pr(&A[i][0],X,&Y[i]);

... sequential execution

01 #pragma vie public vec1(in,N), \
02 vec2(in,N), \
03 vec3(out,1)

04 void SPU dot pr(float vec1[],

05 float vec2[],

06 float vec3[])

07 {
08 float sum=0;

09 for (int j=0; j<N; j++) {
10 sum+=vec1[j]*vec2[j];

11 }
12 vec3[0]=sum;

13 }

(a) PPU user code. (b) SPU user code.

Fig. 1. Matrix-vector multiplication.

GCC open source compiler shipped with Cell SDK 3.1 (both with -O3 optimiza-
tion flag).

Cell/BE is a heterogeneous multiprocessor with an IBM Power processor
core, called PPU (Power Processor Unit), and 8 specialized accelerators or co-
processors with local stores, called SPU (Synergistic Processor Unit). The PPU
and SPU have different instruction sets and the SPU contains a SIMD execution
unit. The small local store of 256 KB holds instructions and data and is the only
memory directly addressable by the SPU.

The experiments have been conducted on an IBM BladeCenter QS22 with
two IBM PowerXCell 8i processors (3.2GHz/1MB L2) mounted in an IBM Blade-
Center H chassis. IBM PowerXCell 8i processor is the follow-up model of the Cell
processor with much better double-precision floating point performance.

As example we take vector-vector addition and start with a straight-forward
implementation (var. A) as shown in Fig. 2(a) and compile it with XLC and
GCC. With XLC we got about 3.72 GFlop/s, whereas for GCC we got only
0.13 GFlop/s. The results of XLC are significantly better than for GCC, but
the 3.72 GFlop/s obtained by XLC seem to be low either compared to the peak
performance of 25.6 GFlop/s.2

For vector-vector addition, however, FMA operations cannot be used result-
ing in 50% of peak performance. Further, since there are three load/store oper-
ations vs. one floating-point operation, only one third can be achieved resulting
in a maximum sustained performance of 4.27 GFlop/s.

2 For single precision floating point 2 operations (FMA) are performed on each of the
floats in the quad-word per cycle, leading to 3.2GHz * 8 = 25.6 GFlop/s.



01 float a[n];

02 float b[n];

03 float c[n];

04

05 for (i = 0; i < n; i++)

06 c[i] = a[i] + b[i];

(a) Scalar code (var. A).

01 vector float a[n];

02 vector float b[n];

03 vector float c[n];

04

05 for (i = 0; i < n/4; i++)

06 c[i] = spu add(a[i], b[i]);

(b) Vectorized code (var. B).

vector float x0,x1,x2,x3,x4,x5;

vector float y0,y1,y2,y3,y4,y5;

vector float z0,z1,z2,z3,z4,z5;

... pre-loop code

for (i = 0; i < n/4 - 2; i+=6) {
// Store [i] - [i+5]

c[i+0] = z0; c[i+1] = z1; c[i+2]=z2;

c[i+3] = z3; c[i+4] = z4; c[i+5]=z5;

// Compute [i+1] [i+6]

z0=spu add(x0, y0); z1=spu add(x1, y1); z2=spu add(x2, y2);

z3=spu add(x3, y3); z2=spu add(x2, y2); z3=spu add(x3, y3);

// Load next a: [i+12] to [i+17]

x0 = a[i+12]; x1 = a[i+13]; x2 = a[i+14];

x3 = a[i+15]; x4 = a[i+16]; x5 = a[i+17];

// Load next b: [i+12] to [i+17]

y0 = b[i+12]; y1 = b[i+13]; y2 = b[i+14];

y3 = b[i+15]; y4 = b[i+16]; y5 = b[i+17];

}
... post-loop code

(c) Software pipelining with unrolling (var. E).

Fig. 2. Vector-vector addition.



Now we try to hand-optimize the code to get with GCC similar performance
results like XLC. First we vectorized the code (var. B) as shown in Fig. 2(b).
For XLC nothing changed, while with GCC we got 0.78 which is a speedup by
a factor of 6, but still far away from XLC.

Explicit loads and stores to enable software pipelining (var. C) resulted in
doubling the performance of the code compiled with GCC, with 1.58 GFlop/s,
which is a speedup of 12.15 compared to the initial code variant A.

Next, we apply software pipelining and a technique similar to loop unrolling
by a factor 2 (var. D) and factor 6 (var. E) as shown in Fig. 2(c). The SPU has
two distinct instruction pipelines supporting dual-issue. Load/store instructions
move the data from local store to registers and back with the latency of 6 cycles.
On the other hand, floating-point operations take exactly the same amount of
cycles. If we consider two pipelines and only loads/stores and floating-add op-
erations, the instruction flow looks like in Fig. 3. With this optimization we got
for GCC 3.72 GFlop/s which is a speedup of 30, and for XLC approximately the
same result.

Fig. 3. Software pipelining with unrolling.

Finally, we succeeded for GCC to obtain similar performance numbers like
for XLC, however, the hand-optimized code is much more complex compared to
the initial code version. A summary of the performance numbers can be found
in Fig. 4 and a graphical presentation is shown in Fig. 5.

The experiments have shown that XLC manages the complexity of the low-
level optimizations successfully resulting in good performance numbers. Obvi-
ously, optimizations performed by the programmer in order to compensate com-
piler deficiencies results in non-portable complex code. Further, programmer
productivity decreases as well.

5 Related Work

Many research groups from the parallel computing community as well as graphics
community work on programming of accelerator-based heterogeneous multipro-
cessors. Related approaches include CUDA from Nvidia [13], Brook for GPUs



Program variants GCC XLC
Speedup
GCC/XLC

Scalar (A) 0.13 3.72 1.00/1.00

Vectorized (B) 0.78 3.72 6.00/1.00

SW Pipelining (C) 1.58 3.72 12.15/1.00

SW pipelining with prefetch-
ing 2 elemets (D)

1.71 3.81 13.15/1.00

SW pipelining with prefetch-
ing 6 elemets (E)

3.72 3.84 30.00/1.03

Fig. 4. Performance results as table.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A B C D E

G
Fl

o
p

/s

Program variants

PEAK
XLC
GCC

Fig. 5. Performance results: graphical presentation.



from Stanford University [2], StreamIt from MIT [14], HMPP from CAPS en-
treprise [6], and RapidMind platform from the very same company [11]. Other
well-known parallel programming languages include UPC (Unified Parallel C)
[5], CAF (Co-array Fortran) [12], Titanium (Java-based) [9], and Sequoia [7].
Higher level of abstractions provide the languages of the HPCS (High Produc-
tivity Computing Systems) program of DARPA: X10 (IBM) [4], Chapel (Cray)
[3], and Fortress (Sun) [1].

6 Conclusion

We discussed the importance of the interplay between the three parties pro-
grammer, parallelization framework, and native compiler which is the key for
supporting heterogeneous multiprocessors successfully. The programming ap-
proach presented in this paper addresses Cell/BE like architectures and is based
on a coordination model added to C. The separation between coordination and
computation fits specifically to architectures like Cell/BE with PPU as main
unit orchestrating the parallel activities and SPUs as accelerators; or even in
bigger contexts like the Los Alamos Roadrunner architecture3 with Opterons as
main units and orchestrators and Cell/BE multiprocessors as accelerators.

References

1. Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen,
Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The Fortress Lan-
guage Specification. Sun Microsystems, Inc., 1.0 edition, March 2008.

2. Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for gpus: stream computing on graphics hard-
ware. ACM Trans. Graph., 23(3):777–786, 2004.

3. B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the
chapel language. Int. J. High Perform. Comput. Appl., 21(3):291–312, 2007.

4. Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In OOPSLA ’05: Proceedings
of the 20th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 519–538, New York, NY, USA, 2005.
ACM.

5. UPC Consortium. UPC Language Specifications, v1.2. Technical Report LBNL-
59208, Lawrence Berkeley National Lab, 2005.

6. Romain Dolbeau, Stéphane Bihan, and François Bodin. HMPP: A Hybrid Multi-
core Parallel Programming Environment. In Workshop on General Purpose Pro-
cessing on Graphics Processing Units, Boston, MA, October 2007.

7. Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez, Daniel Reiter
Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex Aiken, William J. Dally,
and Pat Hanrahan. Sequoia: Programming the memory hierarchy. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing, 2006.

3 Since Nov 2008 the fastest supercomputer in the TOP500 list and the first computer
breaking the petaflop/s performance barrier.



8. David Gelernter and Nicholas Carriero. Coordination languages and their signifi-
cance. Commun. ACM, 35(2):97–107, 1992.

9. Paul N. Hilfinger, Dan Oscar Bonachea, Kaushik Datta, David Gay, Susan L.
Graham, Benjamin Robert Liblit, Geoffrey Pike, Jimmy Zhigang Su, and Kather-
ine A. Yelick. Titanium language reference manual, version 2.19. Technical Report
UCB/EECS-2005-15, EECS Department, University of California, Berkeley, Nov
2005.

10. Peter Hofstee – An Interview. Custom Processing. ACM Queue, 5(1), 2007.
11. Michael D. McCool. Data-Parallel Programming on the Cell BE and the GPU

using the RapidMind Development Platform. In GSPx Multi-core Applications
Conference, Santa Clara, CA, October-November 2006.

12. Robert W. Numrich and John Reid. Co-array fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1–31, 1998.

13. NVIDIA CUDA. NVIDIA, http://developer.nvidia.com/ object/cuda.html.
14. William Thies. Language and Compiler Support for Stream Programs. Ph.d. thesis,

Massachusetts Institute of Technology, Cambridge, MA, Feb 2009.


