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Preface

Welcome to the International Workshop on GPUs and Scientific Applications (GPUScA 2010) in Vienna!
The workshop takes place in conjunction with PACT 2010 - the annual International Conference on Parallel
Architectures and Compilation Techniques. The purpose of the workshop is to bring together GPU experts
with computational science experts.

GPUs are cost-effective platforms for computational intensive applications providing tremendous peak
performance. However, it is a major challenge to deliver the intrinsic performance of such architectures to end
applications. The workshop addresses programming approaches and key techniques to leverage the computing
power of GPUs.

Based on 3 reviews per submission, 8 high-quality papers were selected for presentation and are included in
the workshop proceedings. The accepted papers reflect the multidisciplinary character and the broad spectrum
of the field. The technical program consists of parallel programming technology papers and application papers
covering algorithmics, image processing, physical phenomena, and computational biology. The presentation of
the papers is arranged in three sessions.

The session devoted to application papers with strong algorithmic aspects consists of the paper ’Improving
the GPU-based collision check procedure for distributed crowd simulations’ presenting an algorithm for
GPU-based crowd simulations; the paper ’Fast GPU perspective grid construction and triangle tracing for
exhaustive ray tracing of highly coherent rays’ proposing an algorithm for tracing nuclear radiation; the paper
’Solving planted motif problem on GPU’ addressing a problem from computational biology that was ported
to GPUs.

The session devoted to application papers with strong domain aspects consists of the paper ’Scalability of
color-based segmentation of football players over GPUs’ studying the scalability of a real-time image processing
application; the paper ’Fluid simulation with CUDA using the Lattice Boltzmann Method’ describing the
realization of a physical problem on GPUs; the paper ’A framework for GPU accelerated deformable object
modeling’ presenting a framework for simulating the deformation of objects.

The session devoted to papers targeting parallel programming technology consists of the paper ’ViennaCL
- a high level linear algebra library for GPUs and multi-core CPUs’ presenting a library which supports
linear algebra routines for GPUs; the paper ’Dynamic work scheduling for GPU systems’ addressing efficient
scheduling techniques for GPUs.

The preliminary workshop proceedings are published as technical report TR-10-3 of the Department of
Scientific Computing, University of Vienna (URL http://www.par.univie.ac.at/publications/download/TR-
10-3). Extended versions of the best papers will be published after the event in the International Journal
of High Performance Computing and Networks (ĲHPCN) and International Journal of High Performance
Computing Applications (ĲHPCA) depending on the topic of the respective paper.

It is our pleasure to announce Vivek Sarkar for the keynote address, whose talk is entitled ’Towards a
Portable Execution Model for Extreme Scale Multicore Systems’. An abstract of the keynote address opens
the proceedings.

We would like to thank the program committee members and the reviewers for their hard work and the
excellent cooperation. Also special thanks to all authors of submitted papers for their interest and their
contributions to the success of the workshop. Finally, we are grateful to the PACT chairs for their support of
the workshop.

Vienna, September 2010

Eduard Mehofer, Markus Schordan, Dan Quinlan, Beniamino Di Martino
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Towards a Portable Execution Model for Extreme Scale Multicore
Systems

Vivek Sarkar, E.D. Butcher Professor in Engineering, Rice University

Abstract. Computer systems anticipated in the 2015 – 2020 timeframe are referred to as Extreme Scale
because they will be built using homogeneous and heterogeneous many-core processors with 100’s of cores
per chip. These systems pose new critical challenges for software in the areas of concurrency, energy efficiency
and resiliency. Unlike previous generations of hardware evolution, this shift towards many-core computing
will have a profound impact on software. These software challenges are further compounded by the need to
enable parallelism in workloads and application domains that have traditionally not had to worry about
multiprocessor parallelism in the past. A recent trend towards Extreme Scale systems is the use of graphics
processor units (GPUs) to obtain order-of-magnitude performance improvements relative to general-purpose
CPU’s. Unfortunately, hybrid programming models that support multithreaded execution on CPU’s in parallel
with CUDA execution on GPU’s prove to be too complex for use by mainstream programmers and domain
experts in a portable fashion, especially when targeting platforms with multiple CPU cores and multiple
GPU devices.

An execution model serves a valuable role in providing a shared conceptual view for all stakeholders in
a computing platform ecosystem. Successful execution models from the past (e.g., Von Neumann, vector
parallelism, SMP parallelism, Bulk-Synchronous parallelism) were built on primitives that were well matched
with past device, architecture, and software technology trends, but are mismatched to future multicore
systems where performance has to be driven by parallelism and constrained by energy. In this talk, we identify
key primitives that we believe will be necessary for a successful execution model for future extreme scale
systems with heterogeneous accelerators such as GPUs. We will discuss the portability of these execution
model primitives based on their ability to support multiple programming models and their amenability to be
mapped to a wide range of extreme scale hardware.

We present early experiences with these execution model primitives in the Habanero Multicore Software
Research project at Rice University which targets mainstream homogeneous and heterogeneous multicore
systems, and discuss future directions in the context of the NSF Expeditions project on the Center for
Domain-Specific Computing (http://www.cdsc.ucla.edu/) which targets embedded systems with an initial
focus on the medical imaging domain. Both projects takes a two-level approach to programming models, with
a higher-level macro-dataflow model based on Intel Concurrent Collections (CnC) for parallelism-oblivious
domain experts, and a lower-level task-parallel model based on the Habanero-Java and Habanero-C languages
for parallelism-aware developers. We discuss language, compiler and runtime implementation challenges that
must be overcome to efficiently support these primitives on future mainstream and embedded multicore
systems. To address the hybrid programming challenge for domain experts, we extend CnC with CUDA steps
to obtain a model called CnC-CUDA. The CnC-CUDA extensions discussed in this talk include multithreaded
steps for execution on GPUs, and automatic generation of data and control flow between CPU steps and
GPU steps.
Links
[1] Habanero Multicore Software Research project (http://habanero.rice.edu)
[2] Habanero Concurrent Collections download (http://habanero.rice.edu/cnc)
[3] Habanero Java download (http://habanero.rice.edu/hj)
[4] Overview article on "Software Challenges at Extreme Scale" (http://www.scidacreview.org/1001/
html/software.html)

1
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Guillermo Vigueras, Juan M. Orduña,
Miguel Lozano
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Universidad de Valencia

Spain
juan.orduna@uv.es

José M. Cecilia, José M. García
Dpto. Ingenería y Tecnología de Computadores

Universidad de Murcia
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ABSTRACT
The computing capabilites of current Graphics Processor
Units (GPUs) have been used by many distributed appli-
cations for performing general purpose computations. In
particular, the capabilites of many-core GPUs have been
used in crowd simulations not only for enhancing the crowd
rendering, but also for performing collision check and even
for simulating the whole crowd. Nevertheless, these applica-
tions can still significantly increase their throughput if the
GPU capabilities are fully exploited.

In this paper, we propose a new algorithm for GPU-based
collision check in distributed crowd simulations. Unlike other
collision check algorithms in the literature, the absence of
both sorting procedures and atomic operations in the pro-
posed method significantly reduces the computing workload
of the collision check procedure, while keeping the crowd
simulation consistent. The performance evaluation results
show that the execution time required for the proposed method
is significantly lower than previous methods based on sort-
ing, increasing the crowd simulation throughput accordingly.

1. INTRODUCTION
The computing capabilites of current Graphics Processor
Units (GPUs) have been used by many distributed applica-
tions for performing general purpose computations [11]. In
particular, these capabilites have been used in crowd sim-
ulations, a special case of Virtual Environments where the
avatars are autonomous agents instead of user-driven enti-
ties. Each of these agent-based entities can have its own
goals, knowledge and behavior [14]. The computational cost
of multiagent crowd simulations exponentially increases with

∗This work has been jointly supported by the Spanish
MICINN and the European Commission FEDER funds
under grants Consolider-Ingenio 2010 CSD2006-00046 and
TIN2009-14475-C04.

the number of agents in the system, requiring a scalable de-
sign that can support huge amounts of agents (of different
orders of magnitude) by simply adding more hardware. A
distributed system architecture has been proposed to tackle
these requirements [7, 17, 16]. That architecture consists
of a distributed system where some of the computing nodes
contain a distributed Action Server controlling the simula-
tion. The rest of the computers host a set of agents imple-
mented as threads of a single process. That architecture was
shown efficient enough to support simulations up to tens of
thousands of complex agents with plausible graphic quality.
However, this distributed scheme can be still improved by
fully exploiting the potential of new many-core architectures
like GPUs.

Since the processing of the collision checks submitted by
agents represents the most time consuming task in the dis-
tributed action server [17], in a previous work we imple-
mented a basic distributed server for crowd simulations us-
ing an on-board GPU [18]. That GPU-based basic imple-
mentation used the particle algorithm [10] for performing
parallel collision checks. Nevertheless, crowd simulations
can still significantly increase their throughput if the GPU
capabilities are fully exploited. In this paper, we propose
a new GPU-based algorithm to perform the collision check
procedure in distributed crowd simulations. Unlike other
collision check procedures in the literature, the absence of
both sorting procedures and atomic operations in the pro-
posed method significantly reduces the computing workload
of the collision check procedure, while keeping the consis-
tency of the crowd simulation. The performance evaluation
results show that the execution time required for the pro-
posed method is significantly lower than previous methods
based on sorting, increasing the system throughput accord-
ingly.

The rest of the paper is organized as follows: Section 2 de-
scribes the distributed system for crowd simulation where
the proposed GPU-based algorithm would be integrated.
Section 3 briefly describes the related work about parallel ar-
chitectures for crowd simulation. Section 4 gives an overview
of the CUDA programming model. Next, Section 5 shows
the proposed algorithm, as well as other improvements of ex-
isting methods for comparison purposes. Section 6 shows the
performance evaluation results for the different approaches
considered. Finally, section 7 shows some conclusion re-
marks.
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2. A DISTRIBUTED SYSTEM FOR CROWD
SIMULATION

In previous works, we proposed an architecture that can
simulate large crowds of autonomous agents at interactive
rates [7, 17, 16]. In that architecture, the crowd system is
composed of many Client Computers, that host agents im-
plemented as threads of a Client Process, and one Action
Server (AS). The AS is executed in one computer and is re-
sponsible for checking the actions (eg. collision detection)
sent by agents [7]. In order to avoid server bottleneck, the
simulation world was partitioned into subregions and each
one assigned to one parallel AS [17]. A scheme of this archi-
tecture is shown in Figure 1. This figure shows how the 2D
virtual world occupied by agents (black dots) is partitioned
into three subregions, and each one managed by one parallel
AS (labeled in the figure as ASx). Each AS is hosted by a
different computer. Agents are execution threads of a Client
Process (labeled in the figure as Clientx) that is hosted on
one Client Computer. The computers hosting client and
server processes are interconnected. Each AS process hosts
a copy of the Semantic Database (SDB) that contains infor-
mation about the simulated world. However, each AS ex-
clusively manages the part of the database representing its
region. In order to guarantee the consistency of the actions
near the border of the different regions (see agentk in figure
1), the ASs can collect information about the surrounding
regions by querying the servers managing the adjacent re-
gions. Additionally, the associated Clients are notified about
the changes produced by the agents located near the adja-
cent regions by the ASs managing those regions.

Each action requested by an agent requires a collision test
in the corresponding AS. This test is computed based on
the Area of Interest (AOI) of the agent. If the AOI of the
considered agent does not intersect with the region border
(eg. agent1 in Figure 1), the corresponding AS updates the
semantic database with the new location and notifies all the
local CPs about that change. If, on the contrary, the AOI of
the considered agent intersects with the region border (eg.
agentk in Figure 1), then the adjacent servers are queried.
Only if all the servers answer positively the requested ac-
tion is allowed, and the semantic database is updated. In
this case the queried adjacent servers are also notified about
the change, in order to guarantee the consistency among all
the SDB copies. The architecture shown in Figure 1 allows
to simulate large crowds of autonomous agents providing a
good scalability. However, this architecture can also benefit
from the GPU capabilities for simultaneously checking the
collision requests received from agents [18].

3. RELATED WORK
Some proposals have been made last year for exploiting
the capabilities of multi-core and many-core architectures
in crowd simulations. In this sense, a new approach has
been presented for the CellBe processor to distribute the
load among the processing elements [13]. Other work uses
graphics hardware to simulate crowds of thousands of indi-
viduals using models designed for gaseous phenomena [2].
Recently, some authors have started to use GPU in an ani-
mation context (particle engine) [5], and there are also some
proposals for running simple stochastic agent simulations
on GPUs [8, 12]. However, these proposals are not suitable

Figure 1: General scheme of the distributed archi-

tecture for crowd simulation

to simulate complex agents, including a cognitive model, at
interactive rates.

Other proposals show efficient GPU implementations of par-
ticle simulations [10] or parallel global pathfinding [1] using
the CUDA programming environment. These works propose
efficient models for a single GPU. On the contrary, this paper
proposes a distributed implementation that can use as many
GPUs as necessary, each one hosted by an Action Server, to
perform the collision check process. In order to solve the
GPU-based collision check problem, different implementa-
tions have been proposed [6, 20], based on hierarchical data
structures and sorting. However, the computational cost of
these proposals were shown efficient to solve problems like
ray tracing but not for agent based simulation. Finally, an-
other work proposes a GPU implementation for searching
the k nearest neighbors in order to solve the collision check
problem [4]. Nevertheless, this work does not assess the scal-
ability of the method with the number of entities considered
in the neighbors search.

4. CUDA PROGRAMMING MODEL
The Compute Unified Device Architecture (CUDA) pro-
gramming model for GPU architectures covers both hard-
ware and software features for performing computations on
the GPU as a data-parallel computing device without the
need of mapping them to a graphics API [9]. The hardware
interface of CUDA consists of a parallel SIMD architecture,
where thousands of threads run in parallel. These cores are
organized as a given number of multiprocessors (SMs), each
one having a set of 32-bit registers, constants and texture
caches, and 16 KB of on-chip shared memory as fast as local
registers (one cycle latency). At any given cycle, each core
executes the same instruction on different data (SIMD), and
communication among multiprocessors is performed through
global memory.

CUDA consists of a set of C language library functions that
the programmer can use to specify the structure of a CUDA
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program. A CUDA program consists of two subprograms:
The CPU (or host) subprogram and the GPU (or device)
subprogram. The former prepares the execution on the
GPU, moving data from main memory to the GPU memory,
setting up all the parameters involved in the execution, and
launching the code that is executed on the GPU by each
thread.

The GPU subprogram consists of a set of kernels. Ker-
nel execution is decomposed into blocks that run logically
in parallel (they are physically executed only if there are re-
sources available on the GPU). A block is a group of threads
assembled by the developer which is mapped to a single mul-
tiprocessor. This group of threads can share 16 KB of mem-
ory and they can synchronize among them through barrier
primitives. However, the communication among threads of
different blocks is only performed through global memory,
and the traditional way to synchronize them is terminating
a kernel launch. All the threads are internally grouped into
warps. A warp is a collection of threads that can run concur-
rently (with no time sharing) on all of the multiprocessors.
The developer can determine the number of threads to be
executed (up to a limit intrinsic to CUDA), but if there
are more threads than the warp size, then they are time-
shared on the actual hardware resources. Any thread can
have access to all the GPU memory in the CUDA program-
ming model, but there is a performance boost when threads
access data located in shared memory, which is explicitly
managed. Therefore, large data structures must be stored
in the global memory and often-used data structures must
be stored in the shared memory, in order to efficiently use
the GPU’s computational resources. This issue is particu-
larly important in the collision check algorithms for crowd
simulations.

5. COLLISION CHECK ALGORITHMS
The collision detection problem has been addressed in many
areas like Computer Graphics, Computer Animation, Agent
based Simulation, etc. A collision among agents within a
crowd simulation occurs when the volume occupied by one
agent intersects with the one occupied by other agent (this
problem can be reduced to a two dimensional environment
considering the 2D shape that represents each agent instead
of its volume). Usually, the simulated scenario is divided by
means of a n-dimensional grid in order to efficiently solve
the collision check problem. In this way, only the agents
contained in a given grid cell and the agents contained in
the neighboring cells are checked. A naive GPU implemen-
tation of this grid (called collision grid) consists of defining
a static array and assigning each grid cell to each position
of this array. The mapping of agents to grid cells is per-
formed by a spatial hashing method, depending on the cell
size and the position of agents. Since many agents can fall
within the same cell and GPU threads can simultaneously
update the same memory address, atomic operations are
needed in order to keep consistency [9]. However, atomic
operations cause a performance penalty, increasing the ex-
ecution time of the collision check procedure. Due to this
penalty, other approaches based on sorting have been shown
to obtain better performance than static approaches based
on atomic operations [10, 3].

In a previous work, we implemented a collision check pro-

cedure for crowd simulations using an on-board GPU [18].
This algorithm consists of five steps, each one implemented
as a GPU kernel. Figure 2 shows a scheme of the five steps
and the data structures involved in this algorithm, as well
as the input and output of each step. The upper part of
Figure 2 shows a snapshot of a 2D grid, composed of six-
teen cells containing six agents. In the lower part, this Fig-
ure shows the values of the data structures corresponding
to that snapshot for each step of the algorithm. First, the
hashing of the agents within the collision grid is performed,
determining on which cell is located each agent (more than
one agent can be assigned to the same cell). The result is an
array containing the cell identifier assigned to each agent.
Second, the sorting of the previous array based on the cell
identifier (in increasing order) is performed, in order to al-
low the GPU threads to efficiently access to this grid. Third,
the data structure containing the agents positions are also
sorted to match the same cell order established in the sec-
ond step. As a result, all the agents located in the same cell
are in adjacent positions of the data structure. Fourth, a
data structure representing the collision grid is computed.
This structure allows a fast access to the agents located in
each grid cell, and it consists of a sparse array. Finally, the
last kernel is the collision check algorithm. This algorithm
finds in which cell is located each agent and which other
agents are located in the same or the neighboring cells (that
is, the possible collisions are checked). In order to perform
this task, it uses the data structure computed in the fourth
step. The result is an array whose elements are a collision
flag for each agent. We have denoted this algorithm as the
Baseline implementation. Since this implementation is the
basic translation of a GPU-based method for collision tests
[10, 3], we have developed an improved implementation of
that algorithm as a reference for comparison purposes.

5.1 Improved Baseline Algorithm
The Baseline algorithm is composed by five kernels. In order
to improve the baseline algorithm, the first step is to deter-
mine which kernels are the most time consuming. We have
measured the percentage of the global execution time con-
sumed by each kernel for a simulation of one million agents.
These measurements are shown in Figure 3. This figure
shows that the most time consuming kernel is the one per-
forming the collision check, consuming 63% of the total time.
That is, this kernel does not take advantage of the GPU
memory hierarchy in the Baseline version, since it only ac-
cesses the global memory.

Each agent checks its neighborhood in the collision check
kernel. This data locality can be exploited by using the on-
chip GPU memories. Concretely, the input arrays of the
kernel performing the collision check can be bound to the
texture memory. Hence, neighbor cells are cached and they
can be fetched from the texture memory instead of the de-
vice memory, increasing the memory bandwidth. We have
considered this as the first improvement of the baseline al-
gorithm, and we have denoted it as the texture memory op-
timization. On other hand, data locality can be exploited
by using the shared memory along with a tiling technique
[19]. We define tiles within the collision grid in such a way
that collisions can be independently checked by each GPU
block, avoiding inter-block synchronization. We propose the
ordering of the collision grid cells in global memory based on
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Figure 2: Baseline algorithm for GPU-based colli-

sion check

2%
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calcHash

radixSort

reorderData

findCellStart

collisionCheck

Figure 3: Percentage of execution time required by

the kernels for the baseline version.

Figure 4: Grid mapping to global memory in the

baseline version

the tile organization. In this way, all threads in a GPU block
collaborate in loading the assigned tile from global memory
to shared memory, obtaining a coalesced access and reduc-
ing the number of accesses to device memory. This mem-
ory layout also avoids bank conflicts in the access to shared
memory. In order to illustrate this improvement, Figure 4
shows the memory access pattern of the baseline algorithm,
while Figure 5 shows the memory access pattern of the im-
proved baseline algorithm. Both figures show a collision grid
with sixteen cells. Figure 4 shows how a given tile consisting
of 3x3 cells (from cell 5 to cell 15 except cells 8 and 12) is
stored in global memory. It can be seen that the neighbor-
ing cells are stored in non-adjacent memory segments (cells
8 and 12 are interleaved within the tile segments) preventing
coalesced accesses to global memory.

A tile in the improved algorithm consists of 3x3 cells, as
in the case of the baseline algorithm. Figure 5 shows how
the improved algorithm replicates those cells that are in the
border of a tile. In this figure, the numbers in the middle of
each cell denotes the cell number in the collision grid, while
the small numbers in the corners of each cell denote the
replicas of that cell in each tile. For example, the cell number
3 is replicated as cell 4 in the first tile, cell 12 in the second
tile, cell 19 in the third tile, and cell 27 in the fourth tile.
The advantage of this data replication consists of having all
the cells belonging to a given tile linearly ordered in the
same global memory segment, as shown in the lower part of
Figure 5. Therefore, all threads in a warp (half-warp) can
linearly access to the same global memory segment and load
the data into shared memory obtaining a coalesced access.
We have denoted this improved organization along with the
use of shared memory as the shared memory optimization. A
key parameter in the shared memory optimization is the tile
size, since it determines the number of threads in each block.
In turn, this number of threads must be an entire multiple
of the warp size in order to obtain a good performance. The
tuning of the tile size should be experimentally performed.
Concretely, a tile size of 16x16 (256 threads per block) has
provided the best result for populations ranging from 10.000
to 1.000.000 agents.
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Figure 5: Grid mapping to global memory in the

improved version

Besides the collision check kernel, the kernel performing the
radix sort is the second most time consuming kernel in the
baseline algorithm (see Figure 3). In order to improve the
performance, the radix sort procedure used in the baseline
algorithm can be replaced by the fastest published version
of this sorting algorithm [15]. Finally, although the execu-
tion time for the rest of the kernels are less significant than
the previous ones, some optimizations can be performed on
them. The kernels corresponding to the third and fourth
steps in the Baseline algorithm can be merged into a sin-
gle one, as there are no global synchronization requirements
between them. Therefore, the cost of synchronization can
be saved. Furthermore, the shared memory can be used by
the fourth kernel, taking advantage of the data locality and
improving the global memory bandwidth.

In order to show the improvements achieved by the opti-
mized version of the Baseline algorithm, Figure 6 shows the
impact of the optimizations in terms of percentages of the
execution time (being 100% the total execution time of the
Baseline algorithm on the left bar). This bar shows that the
effect of the optimizations represents a reduction of a 70%
in the global execution time respect to the Baseline version.
The right bar in Figure 6 zooms in the results obtained for
the improved version. In this version, the most time con-
suming kernel is the radixSort, with a 54% of the global
execution time for the optimized version. For this reason,
we propose a new algorithm to perform the collision check
that is not based on sorting.

5.2 A New GPU-Based Algorithm for Colli-
sion Check

We propose an algorithm that avoids the sorting step in the
collision check procedure. In order to achieve this goal, we
use a static grid. Nevertheless, if many agents fall within the
same grid cell and they try to write into the same memory
address, atomic operations are needed. In order to avoid
the performance penalty caused by atomic operations, we
propose a different approach in which the size of each grid
cell is fixed in such a way that the simulation consistency is
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Figure 6: Percentage of execution times required by

the kernels in the baseline optimized version.

guaranteed. Concretely, the consistency is guaranteed if

p

L2 + L2 = D = 2R (1)

where L is the size of the side of a grid cell, D is the diagonal
of a grid cell and R is the radius of the agents. When the
distance between two agents is less or equal to twice the
agent radius (2R) a collision occurs. For that reason the
condition in Equation 1 establishes that all the agents falling
in the same cell will collide since the maximum distance
within a cell is the diagonal of the cell (i.e. D = 2R). In
this way the condition in Equation 1 implicitly performs the
collision detection for agents trying to move to the same
cell. In that situation the consistency can be guaranteed by
allowing the movement of one agent and forbidding the rest
of the movements. It must be noticed that the selection of
the agent to perform the movement can be done in a non-
deterministic fashion since agent-based simulations evolve in
this way.

As a result of using the condition in Equation 1 to define the
cell size, more neighbor cells will have to be queried during
the collision check. Since the side of a cell can be shorter
than 2R, not only the closest neighbor cells must be queried
but also those cells that are one cell distant. We denote
this set of cells as extended neighbor cells. Nevertheless, in
spite of the higher number of neighbor cells accessed, the
performance can be improved by loading these cells from
global memory only once and store them on shared memory.

Using the consistency condition (equation 1), we have de-
fined a new collision check algorithm consisting of four steps,
each one containing one GPU kernel call. In this new algo-
rithm there is an array (denoted as CollisionResponseArray)
containing a pair (collision flag, agent identifier) in each po-
sition. Another array called ObjectPositionsArray contains
the agents positions, and the array collisionGrid contains in
each position three elements. The first element indicates the
current step of the simulation. The second element stores
an agent id indicating which is the target cell for that agent.
The third element stores an agent id indicating which is the
source cell for that agent. Agents positions are copied by the
CPU onto device memory and then the collision check test
is launched. Once the test is finished the result is returned
back to the CPU by copying the CollisionResponseArray.
The actions performed in each step of the new algorithm
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are illustrated in Figure 7. This figure shows an example
of the whole process, including the data structures involved
as both input and output of each step. The upper part of
this figure shows a snapshot of a 2D grid, composed of six-
teen cells containing four agents at given locations. In the
lower part, this figure shows the data structures with the
values corresponding to that snapshot for each step of the
algorithm described above. The actions performed in each
step are the following ones:

Figure 7: New algorithm for collisions check on the

GPU

1. In the first step, the collisionResponse array is initial-
ized indicating that there are collisions for all agents
(see Figure 7). This initialization is necessary because
one agent can overwrite other agent when falling in the
same cell. Overwritten agents can detect the collision
by means of this initialization step.

2. In the second step, the hashing to determine the target
and the source cell for each agent position stored in Ob-
jectPositionsArray is performed. Each thread writes
a step identifier and the agent identifier in both the
source and target cells. Since agents move at the same
time in a simulation cycle of our tests, all the move-
ments in the same cycle share a common step identi-
fier. This identifier allows to determine whether the

information within a cell is correct or it contains ob-
solete data. We use this step identifier to avoid using
the function cudaMemset( ). The execution time of
this function significantly increases the global execu-
tion time, specially when the size of the array to be
cleared grows. The hashing performed in this step by
the calcHash kernel is shown in Figure 7. Since cell 1
is the previous one for Agent 0 and it wants to move
to cell 3, Agent 0 writes its identifier in these cells
in the corresponding slot. Agent 2 moving from cell
11 to cell 8 and Agent 3 moving from cell 12 to cell
11, write their identifiers in the corresponding slots in
these cells. Also Agent 1 writes its identifier in the
proper slot of cell 8 (the source cell of Agent 1) but
the value for the target cell (cell 3) is overwritten with
the value stored by Agent 0 when the kernel calcHash
finishes. All agents share the step identifier 0, since
this is the first movement of each agent.

3. The third step of the new algorithm consists of agents
detecting whether their desired movements are possi-
ble or not. If the desired movement of an agent was
overwritten in the previous kernel or generates a colli-
sion, it means that the desired position is not possible.
In this case, the collision grid is updated in the follow-
ing way. Agents which desired movement was finally
written, clean their identifier from their source cell.
However if the movement of an agent is not possible it
checks whether its source cell is the target cell of other
agent. In such case the overwritten agent notifies that
the desired movement is not possible. It must be no-
ticed that restoring the previous position cannot lead
to an inconsistent situation, since the initial scenario
is collision free (i.e. position restore is possible), and
for each cycle the agents positions are updated keeping
the consistency. In Figure 7, Agent 0 cleans its identi-
fier from its source position, cell 1. On the other hand,
Agent 1 notifies to Agent 2 that its desired movement
to cell 8 is not possible. Also Agent 2 notifies to Agent
3 that the desired position of the latter agent generates
a collision.

4. Finally, the collision check is performed in the fourth
step. For each grid cell, if the agent identifier stored
in that cell is written in the Desired Cell slot then its
extended neighbor cells are queried to detect a colli-
sion. If no collision is detected, then the collision flag
in collisionResponse array is set to 0, indicating that
there is no collision. If the movement is the previous
one, then the collision flag is not overwritten, since the
desired position generates a collision. Figure 7 shows
that the collision for agent 1 is detected. The collision
for agent 2 and agent 3 are also detected, since they
are notified about it.

The algorithm described above performs global synchroniza-
tion through finishing the second kernel launch. In this way,
in the third kernel the overwritten agents are restored to
their previous positions and the consistency of the simu-
lation is kept. We have implemented a version of this al-
gorithm using atomic operations for comparison purposes.
This new version consists of merging the second and third
steps in a single kernel. In order to merge these two steps,
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atomic operations are needed (the global synchronization
achieved through the second kernel termination should be
performed by using atomic operations). However, the ad-
vantage of saving one kernel launch at the cost of using
atomic operations should be analyzed.

6. PERFORMANCE EVALUATION
This section shows the performance evaluation of the GPU
algorithms for collision check described in section 5. Our
performance tests are based on different configurations of
the simulated scenario, varying the number of agents, in
order to evaluate the scalability of each algorithm version.
We use random agent movements for evaluation purposes.
Concretely, one hundred random movements are computed
per agent, using the agent identifiers as the seed for the
random generation, in order to obtain reproducible results.
The execution times reported below are the aggregated time
obtained for all the movements performed by all the agents
considered for each simulation. Since the considered algo-
rithm should scale up with the physical parallelism available
on the GPU, we have considered different NVIDIA Tesla
GPUs: the Tesla C870 (16 SMs) and Tesla C1060 (30 SMs).

Figure 8 and Figure 9 shows the overall execution time
for the different collision check implementations on differ-
ent graphic cards. These figures show on the X-axis the
number of agents considered for the simulations. The Y-
axis shows the aggregated execution time obtained for each
collision check method. Figure 8 shows the results for the
Tesla C870 platform. The new version using atomic opera-
tions has not been tested for this platform, since it does not
support this kind of operations. As it could be expected,
the greatest differences arise for the largest population size,
that is, one million agents. We use the texture memory
to decrease the use of the device memory in the first opti-
mization, obtaining 50% of reduction in the execution time
respect to the Baseline version. In the second optimization,
the shared memory is used along with the new organization
of the collision grid in global memory, in such a way that a
coalesced access to device memory is guaranteed. This op-
timization obtains 70% of reduction in the execution time
with respect to the Baseline version. Nevertheless, the pro-
posed technique achieves the best results, obtaining 85% of
reduction in the execution time.
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Figure 8: Execution times on Tesla C870 card

Figure 9 shows the execution times obtained for the Tesla
C1060 card. In this case, the effects of the texture memory
optimization hardly arise. The reason is that for this card
the global memory access algorithm has been improved re-
spect to the C870 platform [9], allowing to obtain more co-
alesced accesses. Therefore, the baseline algorithm requires
much shorter execution times than for the case of the C870
card. The optimization that uses shared memory allows a
decrease in the execution time of 53% with respect to the
baseline version for a crowd size of one million agents. Never-
theless, the proposed algorithm achieves the best execution
times, with a reduction of 65% when using atomic opera-
tions and around 75% without using atomic operations. If
Figure 8 and Figure 9 are compared, then it can be seen
that the execution times are inversely related to the number
of SMs available on the cards.
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Figure 9: Execution times on Tesla C1060 card

In order to show that these execution times are directly re-
lated to the workload generated by each method, we have
measured the throughput of the different versions in terms of
number of collisions checked per second. Figures 10 and 11
show the collisions check rates obtained when increasing the
number of agents for both the Tesla C870 and C1060 cards.
Figure 10 and Figure 11 show that the proposed method
without atomic operations performs the highest numbers of
collision checks per second for all the population sizes. These
figures also show that the collisions check rate performed by
the proposed method significantly increases with the num-
ber of available SMs on the GPU, assessing the scalability
of this method.

7. CONCLUSIONS
In this paper, we have proposed a new algorithm for GPU-
based collision check in distributed crowd simulations. Un-
like other collision check algorithms in the literature, the
absence of both sorting procedures and atomic operations
in the proposed method significantly reduces the comput-
ing workload of the collision check procedure while keeping
the consistency of the crowd simulation. The performance
evaluation results show that the execution times required
for the proposed method are significantly lower than the
ones of the methods used for comparison purposes, since
the latter ones are based on sorting. Also, the results show
that the number of collision checks per second achieved by
the proposed method are the highest ones, showing that
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Figure 11: Collisions rate on Tesla C1060 card

the proposed method allows a higher throughput. Finally,
the performance evaluation results show that the proposed
method properly scales up with the number of multiproces-
sors available in the GPU.
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ABSTRACT
In this article, we address the problem of computing, storing
and sorting, at an interactive rate, all of the intersections be-
tween millions of triangles (a 3D scene) and millions of rays
starting from the same point. This paper focuses on the
fast GPU construction of a grid in projective space referenc-
ing the triangles of a 3D scene. It introduces a fast GPU
algorithm used to build a grid of the rays constituting the
scene, in the same projective space. This ray-based grid is
computed during the initialization of the scene, which al-
lows us to achieve higher performance, and to construct the
triangle-based grid in distinct passes for very large scenes,
without having to manage memory transfers between CPU
and GPU. This algorithm works the same way for both static
and dynamic scenes, allowing us to achieve interactive pro-
cessing of complex and dynamic scenes.

These optimizations are used to speed up the geometrical
computations used in the nuclear field to evaluate the im-
pact of radiative sources on an operator. These geometrical
computations are similar to those of traditional ray tracing,
except that only highly coherent rays are thrown in our ap-
plication, and that we are looking for all intersections along
each ray.

1. INTRODUCTION
Preparing interventions in nuclear field notably implies to

evaluate the impact of radiative sources on operators. Lots
of computation codes exist to simulate the propagation of
radiations, but most of them operate offline. Besides, de-
creasing computation times in a noticeable way brings inter-
activity to the user, allowing him to interact with the scene
and to intuitively study more appropriate scenarios. For
radiation protection purposes, people often take advantage
of simplified methods and algorithms, such as the straight
line attenuation method with build-up factors [2], which, in
most cases, gives results of the same order of magnitude as
those produced with more exact methods. In this method,

the radiative sources are represented as groups of punctual
sources. To compute the radiations received at a given posi-
tion, rays are traced between this point and the sources. For
each ray, all of the intersections with the objects of the scene
must be found. Since the treated scenes can have millions
of triangles, a very high number of intersections will have
to be stored. Even if additional computations are necessary
before getting a final result, the bottleneck of the overall
simulation always remains in these ray tracing requests.

Two main differences appear between our approach and
traditional ray tracing. First of all, this approach does not
require the management of secondary (and incoherent) rays.
On the other hand, however, the primary rays of the ap-
proach are similar to those of ray tracing: coherent rays,
all starting from the same point. The second main differ-
ence between the two approaches is that all intersections
along each ray have to be stored. This requirement, absent
of usual ray tracing, is very demanding, as explained later.
Moreover, these intersections also have to be sorted, in or-
der to compute depths of material intersected along each
ray. These depths will be used as inputs to compute the
radiations received at one point.

2. BACKGROUND

2.1 Ray Tracing
The problem of computing intersections between coherent

rays and triangles has been investigated a lot. Real-time ray
tracing, achieved during the last decade, is greatly due to
the use of algorithms performing extremely well for coherent
rays, like the introduction of ray packets[30]. Coupled with
fully optimized kd-trees [26], algorithms specially optimized
for coherent rays have brought impressive performances.

For several years, the BVH has become the best solution
for most coherent rays [31], like primary rays [5], because
it enables the traversal of very large packets. But in the
extreme case where all the rays start from the same point,
kd-tree or BVH are not the best structures anymore. [13]
defined a grid in perspective space (see Figure 2) that turns
out to be the most appropriate structure for primary rays.
The special shape of this grid allows a great reduction of the
traversal time for each ray, compared with the ones you can
get with kd-trees or BVHs.

To deal with dynamic scenes, the acceleration structures
have to be updated for each frame of the scene. It is possible
to only update some nodes of the tree for BVHs [21], but it
does not work for all kinds of dynamic scenes, and can lead
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Figure 1: nuclearCase scene (738K triangles) from two different points of view. 600 000 rays are traced, for
6 millions of intersections sorted, in 250 ms on a NVIDIA GTX 295. Rays are colored in white and become
red when meeting an object.

to trees of very bad quality after some frames. Interesting
attempts exist to update the BVH, and asynchronously re-
build another BVH concurrently to use the new one after
some frames [15].

In terms of construction times, great performances have
been achieved for BVHs [20] and kd-trees [33], but they are
still clearly outperformed by those obtained for grids [18].
The major drawback of the perspective grid is that it has to
be constructed for each frame, for both static and dynamic
scenes. But thanks to the obtained construction times, this
grid still outperforms other approaches for primary rays [13].
Then, this drawback can become an advantage, since the
dynamic and static scenes are treated the same way.

2.2 Rasterization
As noted in [13], the perspective grid has many similar-

ities to a Z-buffer. In our case, ray coordinates are known
in advance, as in traditional rendering. Therefore, it is nat-
ural to try to use the works of the rendering community to
solve our problem. Most of the time, to render a 3D scene,
triangles are passed through the graphic pipeline, and the
first intersection along each ray (here a pixel of the screen)
is kept thanks to the Z-buffer [8]. If very high framerates
can be obtained with rasterization techniques, they are not
applicable to the storing of all of the intersections for each
pixel. As a matter of fact, in the rasterization approach, the
amount of memory available for each pixel is constant, and
limited, so that other ideas have to be found to solve our
problem.

In fact, the problem of taking into account every inter-
section has also received much attention, since it can be es-
sential to solve aliasing problems, or to render transparency
effects. The first way to solve this problem is to modify the
hardware, and hence modify the storing of the results: the
first proposition of such a system was the A-buffer [6], in
which all fragments were stored as linked lists. Other solu-
tions have been proposed more recently ([32], [17]), and an
implementation of the F-buffer [23] has been made available
[12], but was restricted to ATI’s graphics hardware.

Other solutions have to be found, since hardware modifi-
cations are not an option in this case. The most intuitive
may be depth-peeling [10]: In each rasterization pass, the

first intersection is stored. Hence, a first pass can be exe-
cuted, to store the results, and then a new pass, adding a
depth test taking into account the results of the previous
pass. By repeating this process n times, the n first intersec-
tions can be stored for each ray. But, since all intersections
have to be stored, the maximum number of intersections for
one ray can be very high. The number of passes needed
would be equal to the maximum number of intersections for
a ray of the scene. This would lead to a number of passes
very difficult to predict, and potentially very high.

The same problem exists with the k-buffer [3], which al-
lows to store k intersections by pixel. This technique begins
to be less efficient for k = 8, which would there again force
us to run multiple passes. In order to treat all intersections,
the k-buffer technique performs blending operations between
fragments, which cannot be used in our case. Moreover,
the k-buffer suffers from read-modify-write (RMW) hazards,
and the solutions found strongly decrease performance level.
These RMW hazards do not exist anymore with the depth
peeling improvement proposed by Liu [22]: as for k-buffer,
multiple render targets (MRT) buffers are used to store up
to 32 intersections for each pixel. But with this solution,
intersections too close to each other can be missed. Such a
limitation cannot be accepted in our application case.

To sum up, none of the existing techniques completely
solves our problem. An other problem comes from the fact
that the rasterizer can only be used for regularly spaced rays.
In our application, all rays share the same starting point, but
the spacing between each other can be completely irregular.
Irregular rasterizers have already been proposed ([16], [1]),
but they also require a modification of the hardware.

3. ALGORITHM PRESENTATION
The structure that is used here is the perspective grid,

since it is the best structure for rays that share the same
starting point and since its construction time can be really
low. Since all of the intersections have to be found along
each ray, the 2D version of this perspective grid has been
implemented. Besides, high-level GPU programming lan-
guages, such as CUDA[24] and OpenCL[25], now really ease
the programming on GPU. It is now simple to perform ef-
ficient sort ([27], [29]), scan [28] and stream compaction [4]

GPUScA 2010 Vienna

12



operations. Thanks to that, the construction of the grid
and the computing of all of the intersections can be done on
GPU.

The GPU grid construction algorithm we present here has
strong similarities with the ones proposed by [18] and [14].
But our implementation is optimized for the computation of
every intersection, and our algorithms allow us to avoid grid
storage issues mentioned by [18].

After having chosen the grid in projective space as an
acceleration structure, a classical approach would be:

1. Build a grid giving, for each cell, the list of triangles it
overlaps,

2. Then, for each ray, find the corresponding cell, and,
thanks to the grid, find the corresponding triangles
with which intersections need to be tested.

3. Finally, compute the intersections between rays and
triangles.

We will explain in this section why we decided to change
the structure of the algorithm, build a ray grid, and create
partial triangle grids.

3.1 Grid storage issue
First comes a description of the data organization chosen

to represent the grid, identical to the one presented in [19].
Working on GPU, it is not possible to have for each 2D cell a
vector giving the indices of the triangles intersecting the cell,
as the access to these vectors from the GPU kernel would be
tedious. Instead, a unique vector, called trgIds, is used. It
stores contiguously the indices of triangles overlapping each
cell. These indices are sorted by index of corresponding cell.

Now, given a cell i, it is necessary to know how to get the
list of triangles overlapping this cell. This piece of informa-
tion is given by a second vector, cellStartId. cellStartId[i]
gives the position in trgIds where begins the list of triangles
that correspond to the cell i. This way, indices of triangles
overlapping a given cell i will be found in the vector trgIds,
between the positions cellStartId[i] and cellStartId[i + 1].
The construction of the grid thereby consists in the con-
struction of these two vectors, obviously as fast as possible.

The main concern with this approach comes from the sizes
of these two vectors, which can vary significantly from one
scene to another, or even from one viewpoint to another, and
cannot be directly predicted knowing only the number of
triangles in the scene. Scenes with numerous large triangles
are likely to be difficult to handle. The Sully Scene (804K
triangles) is a good example of such a scene. The grid of
this scene is composed by more than 10 million cells, which
means that after the only building of the grid, and before
any intersection test is made, a lot of memory is already used
on the graphical unit to store ray and point coordinates,
triangle descriptions, and these two vectors.

3.2 Triangle tracing
This is why we decided not to construct this grid, and

swap the steps 1 and 2 of the algorithm described at the
beginning of this section. Instead of what was presented,
we build a grid that stores information about rays. This
grid enables us to know, for each cell, which rays fall inside
of it. The building of this new ray-oriented grid will be
the new initialization step of the algorithm. Then, during
the computation step, triangles will be ”traced” against the

Figure 2: Example of 2 triangles A and B in a per-
spective view. The associated perspective grid has
a resolution of 4 ∗ 4, indices of the cells are indicated
in the upper-left corner of each cell. Red circles
numbered from 0 to 9 are the rays starting from the
eye.

ray grid: for each triangle, the cells overlapping the triangle
are found, and then intersections are computed with rays
overlapping these cells.

By doing this switch, this technique becomes practically
equivalent to hierarchical rasterization, which is quite logi-
cal, since those approaches face similar problems:

1. Building a fixed regular grid in 2D perspective space
is equivalent to a regular tiling of the screen.

2. Stream over triangles, and build a grid over them is
equivalent to testing triangles against the tiles of the
screen.

3. Intersecting rays and triangles within the same cell is
equivalent to performing sample tests in screen tiles
which overlap the triangle.

4. Generating all hits, rather than just nearest hits: with
depth testing optimizations disabled, a rasterizer will
always generate all hits.

In fact, this switch basically corresponds to irregular ras-
terization. It can also be noticed that some of the first at-
tempts to adapt the ray-tracing algorithm on GPU were
based on a very similar idea: targeting older-generation
GPUs with limited programmability, [7], for instance, also
streamed the triangles, testing each against all rays.

The difference with hierarchical rasterization comes here
from the storing of all hits, which is made possible with
our technique. Also, as stated above, a classical rasterizer
cannot be used if the rays are not regularly spaced.

The construction algorithm of the classical projective grid
requires a radix sort on a vector which size is the number
of couples triangle/cell (noted nbRefs) that can be found
in the scene. This radix sort is the bottleneck of the overall
simulation. Instead, the radix sort used for the ray grid con-
struction will be applied to a vector which size is the number
of rays falling in a cell of the grid (noted nbRaysUsed). Ex-
cept for very small scenes, nbRaysUsed will always be far
smaller than nbRefs (we need approximately a million of
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rays in our scenes, and have found the best resolution to be
1000 ∗ 1000 for the grid). This will make the radix sort far
faster for most cases. The use of the ray grid will also imply
sorting the intersections found by index of ray, but, during
our tests, the ray grid always remained more efficient. The
fact that the ray grid is far smaller than the triangle grid
will also reduce the time needed to bind arrays to texture,
which can be relevant for very large scenes.

The second main reason for doing this switch is that it is
now possible to build the triangle grid in multiple passes.
This way, the memory that has been used for a previous
group of triangles can be deallocated before treating an-
other bunch of triangles. The only memory that cannot be
freed between these passes is the one used to store intersec-
tions. But this is not a demanding one, as an intersection
is described by 8 bytes : an integer for the ray index, and a
single float for the coordinate of the intersection along the
ray. Hence, scenes with lots of large triangles can now be
treated, and transfers to the CPU mentioned by [18] to avoid
memory overflows are no more needed.

The last advantage of this algorithm is that it can be easily
used on multi-GPU platforms, as the ray grid just has to be
duplicated on each GPU, and then each GPU can handle a
unique set of triangles.

4. RAY GRID CONSTRUCTION
After having exposed the reasons for introducing the ray

grid, we present in this section the algorithm (see Figure 3)
used to construct the ray grid in perspective space using the
GPU. An example of a very simple scene can be seen on
Figure 2. Figure 3, presenting the algorithm exposed in the
next section, use this case as an example.

The two vectors describing the grid are named rayIds
and cellStartId, with the same conventions than with the
triangle grid (See 3.1). The different steps of the algorithms
can be found on the figures, they are numbered like the
different subsections.

4.1 Find ray position in projective grid
First step of the algorithm is obvious: each thread works

on one ray and finds in which cell it falls.

4.2 Group rays by cellId
The next step of the algorithm consists in sorting cou-

ples ray/cell (respectively found in the arrays rayIds and
cellIdOfRay) by increasing index of cell. This way, the
rays that belong to a same cell will be contiguous in mem-
ory. We used here the sort implementation of Thrust [11],
based upon the latest results in the litterature, as [27] and
[29]. This step is in fact the bottleneck of this ray grid con-
struction. It can be noticed that rayIds is already the vector
we wanted to produce.

4.3 Count number of rays by cell
Now comes the less obvious parts of the algorithm. To

construct the reference vector cellStartId describing where
each cell begins in rayIds, it is first necessary to generate an
array giving the number of rays each cell contains (it will be
obtained at step 4.4). This array will be first initialized with
zeros. Then will be needed the number of rays in each non-
empty cell and the position where to write this number in the
array, given by the index of the associated non-empty cell.
On a CPU, these informations are easy to find by executing

a simple loop on the array cellIdOfRay generated in step
4.2. It is not possible to directly adapt this loop on GPU,
because it would produce writing conflicts. To avoid these
conflicts, it is necessary to generate two separate vectors, one
giving the indices of the non-empty cells, and the other one
giving the number of rays in each of these cells, indicating
respectively where and what each thread will have to write
to produce a correct array at step 4.4.

These two arrays are easily obtained by performing a seg-
mented reduction, with cell indices (from cellIdOfRay) as
keys and a constant array of ones as values. An efficient im-
plementation of this operation can also be found in Thrust
[11] (see thrust::reduce by key).

4.4 Write number of rays by cell
Thanks to the previous step, it is now possible to write the

values included in nbRaysByCell in the array cellStartId,
at positions given by cellIdOfRay.

4.5 Final writings in cellStartId
Now that the number of rays in each cell is written in

cellIdOfRay, an exclusive scan on this array provides a vec-
tor cellStartId that is exactly the one we wanted to produce.

5. TRIANGLE TRACING
After this initialization comes the phase that could be

called triangle tracing. For each triangle, the cells overlap-
ping it are identified. Then, thanks to the ray grid, the
potentially intersecting rays are found, and the intersection
tests are performed.

5.1 Creation of the list of couples triangle/cell
This step can be seen as a very partial construction of the

triangle grid. Here, it will only be a list of the couples trian-
gle/cell found, when the classical algorithm would also have
included a sort of these couples by index of cell and other
steps to generate the vector of references cellStartId. Com-
pared with the ray grid algorithm presented in the previous
section, we could say that we just execute here the step
4.1. But this step is in fact more complicated and time-
consuming, since each triangle can overlap more than one
cell.

The triangles are rasterized via a scanline algorithm. To
reduct load balancing issues that could be created by tri-
angles of very different widths, they will be divided into
different lines, and then each thread will work on a different
line. Since the number of lines for each triangle cannot be
known in advance, it is not possible to directly predict where
each thread will have to write its own results.

Therefore, each thread is being assigned a triangle, and
must count the number of lines (of the grid) it overlaps.
The result is written in nbLines. An exclusive scan is per-
formed on this vector, so that each thread working on the
triangle i will write its results at the position nbLines[i] in
the array startStop. startStop[i] is a little structure of three
integers, so that startStop[i].start and startStop[i].stop are
respectively the beginning and ending indices of cells for the
line number i in the overall scene. startStop[i].trgIdx is the
index of the triangle concerned by this line.

Each thread working on a triangle now scans the lines
between the highest and the lowest vertex of the triangle,
and stores the startStop associated with each of these lines,
beginning to write at position nbLines[i].
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Figure 3: Ray grid construction algorithm. The GPU vectors given as example use the grid presented in
Figure 2. cellStartId is of size gridSize + 1, in order to get the number of rays in the last cell by computing
cellIdOfRay[gridSize] - cellIdOfRay[gridSize - 1].

The same work than the one executed for lines is now
made for cells. First, a new kernel is run, which counts
the number of cells for each line. An exclusive scan on the
resulting vector provides the total number of cells, and the
position where each thread working on one line will write the
corresponding couples cell/triangle. Hence, a new kernel is
thrown, in which each thread works on one line, and effec-
tively stores in memory the associated couples triangle/cell.

5.2 Prepare to store intersections
Now that the couples cell/triangle are generated, we just

have to find for each cell the rays it contains. Then, the
intersection tests will be made with the associated triangle.
Since each cell can contain more than one ray, it is necessary
to begin by computing the number of tests to be executed
for each cell. This is done by using for the first time the ray
grid generated in section 4. The number of rays falling on
a cell of index i is given by the value cellStartId[i + 1] −
cellStartId[i]. Each thread working on a different couple
cell/triangle counts the number of rays contained by its cell.
This value is the number of tests that will be executed for
the associated couple cell/triangle. An exclusive scan on the
generated array provides the positions where each thread
will have to store the indices of rays/triangles to be tested.

Then, each thread is being assigned a couple cell/triangle,
and, thanks to the previous step, generates the couples ray-
triangle to test.

5.3 Compute intersections
To store these results, two arrays result and rayAndCoord

are created. If an intersection is found for test number
i, result[i] is set to 1, and rayAndCoord[i] to the value
(rayId, t), where rayId is the index of the related ray, and
t the intersection coordinate. If M is the intersection point,
and ~OP the ray, t is defined such that ~OM = t. ~OP .

5.4 Removing couples triangle/ray not inter-
secting

To compute the final list of intersections, elements in the
array rayAndCoord unrelated with an intersection are re-
moved.

5.5 Sorting intersections by ray index
The array rayAndCoord is then sorted by increasing index

of ray. Then, intersections related to a same ray are sorted
by t coordinate. Therefore, rayAndCoord is then the array
of intersections that had to be produced.

6. RESULTS AND DISCUSSION

6.1 Implementation
Having described the algorithms used in our GPU exhaus-

tive raytracer, we can now evaluate its performance on sev-
eral scenes. We use an NVIDIA GeForce GTX 295 (2*896
MB, GPU/shader/memory clocks of 576/1242/1998 MHz),
coupled with a 4 core, Intel(R) Xeon(R) X5550 @ 2.67GHz.
After the transfer of the data between the CPU and the
GPU, all of the computations are done on the GPU. To
test the algorithm on different levels of complexity, we use
various scenes: Erw6, Fairy Forest, Conference, Sully and
NuclearCase. NuclearCase is a scene we designed to control
the quality of the mesh: we need very clean meshes grouped
by object. Each mesh associated with an object must be
closed, so that we do not miss any entry or exit point (only
one omission can lead to a completely false result).

6.2 Grid constructions
Experiences showed that the ray grid construction time is

almost constant for a given number of rays falling in the grid.
It is due to the fact that the bottleneck of this algorithm is
the radix sort performed at step 4.2 of the algorithm. The
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performance of this sort is very regular for a given number
of couples to sort.

A total construction time of 20 ms was obtained for a
grid referencing one million rays. These times are a little
better than those obtained by [18], for a triangle grid with
1,1 million of references (27 ms for the Conference, 24 for
Fairy Forest).

The partial construction time of the triangle grid is far
more influenced by the repartition of the different trian-
gles in the scene. Times to generate the list of couples
cell/triangle for a resolution of 1024 ∗ 1024 can be seen on
table 1.

Scene nbTrgs nbCouples Time T C
Erw6 804 1.3M 14 17K 10.8
Fairy 174K 4.1M 28 160 6.8
Conf. 283K 6.1M 47 166 7.7
Sully 804K 29M 123 152 4.2
Nucl. 738K 28M 210 37 7.5

Table 1: Build statistics for various scenes. nbCou-
ples is the number of couples cell/triangle. The
column Time gives the times necessary to generate
these couples. T means the time spent per million
of triangles, and C the time spent per million of cou-
ples. Times are given in milliseconds. Nucl. stands
for NuclearCase.

Table 1 clearly shows that the construction time does not
depend on the number of triangles of the scene, but on the
number of couples triangle/cell that can be found in the
triangle-oriented grid. This observation is based on the val-
ues of the coefficients C and T , respectively giving the num-
ber of milliseconds necessary to treat one million of couples
triangle/cell. Contrary to T , the value C seems quite stable
in the different scenes. This observation confirms the fact
that our algorithm is not limited by the number of triangles
in the scene, but by their respective width.

6.3 Exhaustive intersection computation

Scene nbTests nbInters trgTrace compInter
Erw6 1.3M 1.2M 48.3 56.9
Fairy 4.0M 1.8M 73.3 84.1
Conf. 6.1M 2.7M 125.9 143.5
Sully 29.1M 3.7M 305 325.4
Nucl. 14.0M 10.3M 498.4 517.9

Table 2: Intersection test statistics for 1024*1024
primary rays on various scenes. trgTrace stands for
the time spent to execute the complete triangle trac-
ing algorithm presented in section 5, and compInter
is the overall time of the simulation (except for the
ray grid construction time). Times are given in mil-
liseconds.

Performances of our overall algorithm are reported on ta-
ble 2. The rays thrown are 1024*1024 primary rays. In such
a case, some optimizations like those done in rasterization
could have been investigated. But we did not want to mod-
ify our algorithm, in order to see how it could work without
knowing that the rays are so regularly spaced. The ray con-
struction time is not included in these results, which means
that about 20 ms have to be added to compInter to get

Figure 4: Times for the different stages of the algo-
rithm described in section 5 (in milliseconds). The
last step of the algorithm (sorting the coordinates
for each ray) is not included.

the overall time of the simulation in each case. This table
clearly shows that most of the computation time is spent in
the execution of the algorithm described in the section 5.
It also has to be noticed that the execution of the program
for the NuclearCase scene required two loops of triangles in
order to avoid memory overflow.

Figure 4 shows more precisely how the time is used dur-
ing the execution of this phase. It can be noticed that the
intersection requests are not the bottleneck of these compu-
tations. The major step of the algorithm is the generation of
the couples triangle/cell (rasterization step), but all of the
steps participate in the computation time in a noticeable
way. The rasterization step could certainly be improved by
using more adapted rasterization techniques, such as [9], but
this would not modify our results by an order of magnitude.
For most of the scenes, we are able to achieve 20 millions of
intersections by second, which is quite good, since all these
intersections are sorted, and since the generation of all of
the intersections produces a lot of overhead to prepare the
memory for writing the results.

To compare these results, we also implemented the clas-
sical algorithm, i.e we generated the triangle grid and then
scanned the different rays of the scene. Since these algo-
rithms share lots of common operations, it is very simple
to compare them. On the one hand, the classical algo-
rithm builds the triangle grid and generates the list of cou-
ples ray/cell. On the other hand, the triangle tracing algo-
rithm builds the ray grid and generates the list of couples
ray/triangle. It also has to sort the intersections by index of
ray at the end of the computations. Since the time to gener-
ate the list of couples ray/cell for the classical algorithm is
not relevant (about one millisecond for one million of rays),
we just have to compare the triangle grid construction time
with the sum of the three steps only executed in our algo-
rithm. The results are given in table 3. First, it has to be
noticed that the triangle grid could not be generated on the
NuclearCase, because the amount of memory available on
the GPU was not enough to generate the grid (985 MB of
memory would have been necessary for this case). It reminds
that one of the reasons for inverting the classical algorithm
was that it would solve these kinds of memory overflow is-
sues. Then, it can be seen that the classical algorithm is
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clearly less efficient than the ray grid, especially when the
size of the scene increases.

Scene couplesConstr sortInters total trgGrid
Erw6 14.0 10.8 44.8 33.2
Fairy 28.3 15.0 63.3 69.2
Conf. 46.6 21.7 88.3 108.0
Sully 123.4 30 173.4 408.9
Nucl. 210.0 108.0 318.0 X

Table 3: Comparison between the triangle tracing
and the classical algorithm. couplesConstr is the
time used to build the couples cell/triangle for the
triangle tracing algorithm, and sortInters the time
needed to sort the intersections by index of ray. To-
tal results from the sum of these two numbers added
to the ray grid construction time. It has to be com-
pared with trgGrid, giving the construction time of
the classical triangle grid. Times are given in mil-
liseconds.

This can easily be explained: as seen above, the bottle-
necks of the grid constructions are the sorts that have to
be done on the couples ray/cell (for the ray grid) and trian-
gle/cell (for the triangle grid). The number of couples trian-
gle/cell will for most cases be far greater than the number
of couples ray/cell (at most equal to the number of rays).
This can lead to a very longer sorting time for the triangle
grid, as can be seen on the Sully case. The drawback of our
method is that we have to sort the intersections by index
of ray, whereas they are already sorted in the classical al-
gorithm. But, for most cases (especially large scenes), it is
not enough to compensate for the time lost in sorting the
couples triangle/cell in the classical algorithm.

We decided not to implement a BVH or other classical ac-
celeration structures, because the perspective grid is clearly
the structure that implies the fastest traversal time. This al-
lows a fast access to the potentially intersecting rays for each
triangle, once the cells it overlaps have been found. With a
classical structure such as a BVH, the traversal time for one
ray can be very long: in order to compute all intersections
for each ray, it would first be needed to determine for each
ray how many intersection tests have to be performed, then
doing again this traversal to write the associated indices of
triangles in memory, and finally run the tests. This would
easily lead to load-balancing issues that are avoided here.
Moreover, the construction times of the BVHs are clearly
too elevated in the case of dynamic scenes, especially com-
pared with our grids.

6.4 Experimentations on a nuclear-like scene
Finally, we tried to execute a test case representative of

the usages that will be done for nuclear industry. We de-
fined 6 groups of 100 000 points, representing the sources of
radiation of the nuclearCase scene. All rays thrown in our
test case start from the same point (representing the point
where the dose has to be measured), and end at one of the
points described in our separate file.

These rays and the overall scene are seen through an ex-
ternal camera. When a ray passes through the air, it is
colored in white, and it becomes red when passing through
an object (see Figure 1). To detect if a ray enters in an
object or leaves it, we consider that the starting point of the
rays is not included in any object of the scene. Thus, since

the scene is very clean, the first intersection found along a
ray can be considered as an entry point in an object, and
the next one will be the exit point of this object.

We were able to compute and sort about 6 millions of in-
tersections by step of the simulation, in a time of 400ms.
The difficulty here was that 6 grids had to be generated to
cover the whole space. To be more efficient, and avoid stor-
ing memory for cells that will, for sure, not generate any
intersection, we used the bounding boxes of the groups of
sources. First step in the computations consisted in test-
ing if the triangles were overlapped by these boxes, and to
discard them if not. We also tried to use the fact that the
Nvidia GTX 295 is in fact the union of two GPUs. Thus, we
used another card to display the graphics, and we tried to
distribute the computations over the two GPUs. We tried
two different strategies: the first one only consisted in giving
three grids to the first GPU, and three others to the second
one. The second strategy consisted in arbitrarily splitting
the triangles into two groups of same dimension and to make
each GPU work on a different group. The first one was the
more efficient here: we could achieve a total time of 250 ms
for the overall simulation, while we only achieved a time of
350 ms with the second strategy.

This can be explained by the good repartition of the dif-
ferent groups over the scenes in this case. But it is clearly a
problem that needs to be investigated in the future.

7. CONCLUSION
We proposed a new GPU algorithm designed to compute

every intersection between highly coherent rays and a com-
plex 3D scene. In order to increase performance and avoid
memory overflow issues, we introduced the use of a ray grid
in perspective space. We postpone the partial building of the
triangle grid after the building of the triangle grid. All of the
algorithms proposed are designed to efficiently manage the
finding of all of the intersections along each ray, which can
sometimes lead to solutions fundamentally different from the
ones used in traditional ray tracing.

This algorithm can also be very useful in a multi-GPU ap-
plication, since each GPU can process the computations for
a different bunch of triangles. As seen above, a simple repar-
tition of the different triangles between the different GPUs
is not very efficient. Strategies for efficiently distributing
the triangles over the GPUs could bring much higher per-
formance, and have to be investigated in the future.
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ABSTRACT
(l, d) planted motif problem is defined as: Given a sequence
of n DNA sequences, each of length L, find M , the set of
sequences(or motifs) of length l which have at-least one d-
neighbor in each of the n sequences. Planted motif problem
is an important and well-studied problem in computational
biology. Motif finding is useful for developing methods to
obtain transcription factor binding sites, sequence classifica-
tion, in developing methods for building phylogenetic trees
etc. The planted motif problem is difficult to solve espe-
cially for challenging instance sizes (15,5), (17,6), (19,7),
and (21,8). The challenging instances are computationally
intensive and require large amount of memory. Several serial
implementations have been proposed for solving this prob-
lem. The time required by these methods for solving large
challenge instances is prohibitively expensive. In this paper,
we propose a parallel implementation on GPU that solves
the challenge instance (21,8) in 1.1 hours. We are not aware
of any sequential or parallel method that will solve this chal-
lenge instance in better time. Additionally, to the best our
knowledge we are not aware of any previous implementation
of a parallel method to solve the planted motif problem on
GPU.

1. INTRODUCTION
Motif finding is an important and well-studied problem in
computational biology [20] [6]. Motif finding is useful for
developing methods to obtain transcription factor binding
sites, sequence classification, in developing methods for build-
ing phylogenetic trees etc. [11]. Finding motifs is a compu-
tationally expensive and challenging task. Many variants of
motif finding problem can be found in the literature [6]. One
set of variants concentrates on finding repeated patterns in
a single sequence, and the other set concentrates on finding
patterns that appear in multiple sequences. The planted
motif problem (PMP) falls in the second category.

The (l, d) planted motif problem can be defined as “Given a
sequence of n DNA sequences, each of length L, find M , the

set of sequences(or motifs) of length l which have at-least
one d-neighbor in each of the n sequences”. A d-neighbor of
an l-mer(sequence of length l) p is defined as an l-mer that
is at a Hamming distance of d or less from p. In the rest
of the paper, we refer to l as enumeration length and d as
enumeration distance.

A number of approaches have been proposed to solve the
motif finding problem including PMP. Some of these ap-
proaches find approximate motifs [14], [2], [16] and others
find exact motifs[9], [18], [19], [5], [17], [12], [3], [15], [10],
[8]. These approaches can be classified into two types: it-
erative approaches and combinatorial approaches. Iterative
approaches like Gibbs sampling and expectation maximiza-
tion are based on position weight matrices while combina-
torial approaches like MITRA, WINDOWER are based on
hamming distances. Planted motif problem defined in this
paper is based on hamming distances.

Most approaches to solve PMP are serial in nature and are
difficult to parallelize. We had recently proposed a new par-
allel approach to solve PMP called BitBased approach[7].
BitBased is a simple, easily parallelizable approach. It out-
performs all the approaches proposed so far to solve the
planted motif problem. In this paper, we show how to imple-
ment BitBased on GPU architecture. Iterative approaches
like Gibbs sampling [21] and MEME [4] have been imple-
mented on GPU while there are no combinatorial approaches
implemented on GPU currently.

BitBased is an enumeration based approach to solving planted
motif problem. It uses n′ bit arrays, n′ ≤ n, of size 4l each to
find the planted motifs. Each bit in the bit array corresponds
to an l-mer. The key idea of BitBased is to enumerate all
the l-mers in the input sequences to find their d-neighbors
and set the bits corresponding to the d-neighbors in the bit
arrays. It then uses the bit arrays to find the planted mo-
tifs. It can be noticed that BitBased has high memory re-
quirement. To reduce memory requirement one can use the
iterative BitBased approach at the expense of increasing the
execution time. Iterative approach works by virtually par-
titioning the bit arrays into chunks such that a chunk fits
in the available memory. We then make multiple passes of
the original algorithm to find motifs. The number of passes
is determined by the number of virtual partitions. A small
chunk size results in increased number of virtual partitions,
and thus increasing the overall time to find motifs.
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GPUs are becoming increasingly popular in the world of
parallel computing. GPUs, which were once used only for
graphics, are now being used for different types of appli-
cations to achieve high performance. With the advent of
CUDA, the task of programming for GPU has become much
simple. A GPU is a massively parallel, multi-threaded,
manycore processor with hundreds of cores and huge com-
putation power. It can execute thousands of threads con-
currently. The programmer must carefully design her appli-
cation to map to GPU and effectively utilize the hardware.

In this paper we parallelize the BitBased approach[7] for
GPU. Though BitBased approach is easily parallelizable, it
is challenging to effectively implement it on GPU. The rea-
son being the high memory requirement. We have seen that
BitBased uses bit arrays to find planted motifs and that the
bit arrays are of size 4l bits each. And moreover the access
to the bit arrays is very scattered. For example, to solve
a (15, 5) instance, BitBased needs bit arrays of size 128MB
each. Such amount of memory is only available on GPU’s
global memory. But global memory has very high latencies
especially when the access pattern is scattered. In such cases
it is highly recommended to use GPU’s shared memory. But
the shared memory is too small (16KB for Tesla C1060 and
S1070) to accommodate the bit arrays. So we use iterative
BitBased approach and partition the bit arrays into chunks
that fit in shared memory. We then optimize the approach
by decreasing the register usage which increases the occupa-
tion of the GPU. We also do reordering of shared memory
to avoid bank conflicts. .

We have implemented BitBased on NVidia Tesla C1060 which
has one GPU device and NVidia Tesla S1070 which has four
GPU devices. Tesla C1060 has 30 multi-processors with 8
streaming processor cores each while Tesla S1070 has 960
cores. We tested the (15,5), (17,6), (19,7), (21,8) challeng-
ing instances. Tesla C1060 took 8 seconds, 1.52 minutes,
19.7 minutes and 4.5 hours respectively and Tesla S1070
took 3 seconds, 23.9 seconds, 5 minutes and 69 minutes re-
spectively. These are the best timings obtained for planted
motif problem so far. We also compare with the results on
multicore architecture. We found that a single GPU shows
up to 13 to 14 times speed-up and 4 GPU devices shows up
to 40 to 60 times speed-up compared to single core CPU.

2. THE BITBASED APPROACH
BitBased approach is a simple, easily parallelizable approach
to solving PMP. It is based on exhaustive enumeration of l-
mers in the input sequences. Let S = {Si|0 ≤ i ≤ n − 1}
be the set of n input sequences. An l-mer in Si starting at
location j, 0 ≤ j ≤ L− l is represented as Sl

i{j}. The set of

d-neighbors of all the l-mers in Si is represented by N l,d
i . It is

easy to see that the set of planted motifs is M =
∩n−1

i=0 N l,d
i .

Therefore, to find the planted motifs we first need to gener-
ate the set of N l,d

i , 0 ≤ i ≤ n− 1, and then find the motifs,

i.e. l-mers that are present in all N l,d
i , 0 ≤ i ≤ n − 1. The

main issue here is the memory requirement. To see the issue
consider (15, 5) instance. For a 15-mer, there can be 853584
number of 5-neighbors. For a sequence of length 600, the
size of N l,d

i is 500200224 integers which requires approxi-
mately 2GB of memory for a single sequence. To reduce the
memory requirement we use bit arrays of size 4l. Each bit

in the bit array corresponds to an l-mer. For example, when
l = 4 bit 0 represents AAAA, bit 1 represents AAAC, bit
255 represents TTTT assuming A=0, C=1, G=2, T=3. For
(15, 5) instance we now require only 415 bits i.e. 128MB of
memory for each input sequence. The memory requirement
can further be reduced using the approaches mentioned in
sections 2.1.1, 2.1.2 and 2.2.

2.1 The basic BitBased approach
The basic BitBased approach consists of two phases, setting
bits and finding motifs. In setting bits phase, N l,d

i , 0 ≤ i ≤
n−1, is generated. N l,d

i is represented using bit arrays. A bit
array Bi is assigned to each input sequence Si, 0 ≤ i ≤ n−1
. Each l-mer in sequence Si is enumerated to generate all
its d-neighbors and the bits are set in the bit array Bi at
the indexes corresponding to the d-neighbors. The index
corresponding to an l-mer can be obtained by replacing A
by 00, C by 01, G by 10 and T by 11. For example the
index corresponding to the 4-mer GACT is 10000111. After
setting bits phase, a bit array Bi has a bit set only if the
l-mer corresponding to its index is present in N l,d

i .

In finding motifs phase, the equivalent to M =
∩n−1

i=0 N l,d
i

is performed. We perform logical AND operation on the bit
arrays to generate a single bit array which can be used to
obtain the planted motifs. The final bit array B is obtained
by B = B0

∧
B1

∧
...

∧
Bn−1. A bit is set at index j in

B only if the bit is set at index j in all the bit arrays Bi,
0 ≤ i ≤ n − 1 . In other words, the l-mer corresponding
to the index j is present in all N l,d

i , 0 ≤ i ≤ n − 1 making
the l-mer a planted motif. Therefore the planted motifs are
nothing but the l-mers corresponding to the indexes in B in
which a bit is set.

To reduce the memory requirement further, we use two mod-
ifications to the basic approach: Increment motifs and filter
motifs. These modifications, if applicable, not only reduce
the memory requirement but also improve the performance.

2.1.1 Increment Motifs
This modification is based on the observation that given the
set of motifs for (l−1, d) instance, their d-neighbors and cor-
responding distances in all the n sequences, we can find the
motifs for (l, d) instance in O(n) time. Let p be a motif for
(l− 1, d) instance. Let (j0, j1, ..., jn−1) and (d0, d1, ..., dn−1)
be the locations of d-neighbors in n sequences and their dis-
tances respectively. We can say that p|R, R ∈ {A, C, G, T}
and ’|’ is append operation, has a d-neighbor in sequence
Si if it satisfies any of the following conditions: 1. residue
at location ji + l is R. 2. di < d. For each motif p for
(l−1, d) instance, we find if p|A, p|C, p|G, p|T is a motif for
(l, d) instance using the above conditions. Therefore to find
(l, d) motifs, we can first find (l′, d), l′ ≤ l, motifs and then
use the above logic incrementally to find (l, d) motifs. With
decreasing values of l′, the number of (l′, d) motifs increase
exponentially and hence the time spent in increment motifs.
Therefore the value of l′ must be carefully chosen.

2.1.2 Filter Motifs
Instead of setting bits and finding motifs for all n sequences,
this modification first finds the motifs for n′ sequences where
n′ ≤ n. These motifs are called candidate motifs. These
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candidate motifs are then filtered to find the final planted
motifs. This is done by checking each of the candidate motifs
if it is present in all the remaining n − n′ input sequences.
This modification reduces the memory requirement because
we now require only n′ buffers instead of n buffers. By
decreasing the value of n′, not only the space requirement
decreases but also the time decreases. The reason being
that the time taken by BitBased approach is dominated by
setting bits phase. By reducing n′ we need to set the bits
for fewer sequences and hence reducing the time taken. But
if the value of n′ is chosen to be too low, then the time spent
in filtering motifs increases and so the overall time. So it is
important to chose an optimum value for n′.

2.2 The Iterative BitBased Approach
This is a crucial modification to the basic BitBased approach
and also is the basis for implementing BitBased on GPU. As
we have seen previously, BitBased has high memory require-
ment. It might not always be possible to satisfy such re-
quirement. In such cases, we can use the iterative BitBased
approach. Iterative BitBased approach solves the planted
motif problem with much less memory requirement but at
the expense of increase in time due to the increase in num-
ber of operations. Iterative approach works by reusing the
available memory to accomplish the required task, which is
to find planted motifs. Let lmax=max{i |4i bits of memory
can be allocated}. We virtually partition the bit array of
size 4l into 4l−lmax chunks, each chunk of size 4lmax bits. In
ith iteration, the l-mers of input sequences are enumerated
in such a way that the bits are only set in the ith chunk.
After finding motifs in ith chunk the same memory is then
reused for the (i + 1)th iteration. Note that when bit array
of size 4l bits is partitioned into 4l−lmax chunks, the first
l − lmax residues corresponding to the indexes in a chunk
are all the same. For example, when we partition 417 bits
into 16 partitions, all the 17-mers corresponding to the in-
dexes in the first chunk start with AA, second chunk starts
with AC, and so on. To effectively enumerate the l-mers, we
reduce the enumeration length from l to lmax as shown in
algorithm 1. Note that the more number of chunks the bit
array is partitioned into, the less is the enumeration length.

3. OVERVIEW OF GPU
GPU is a massively parallel, multi-threaded, manycore pro-
cessor. Each GPU device is an array of streaming multipro-
cessor which in turn consists of a number of scalar proces-
sor cores. GPU is capable of running thousands of threads
concurrently. It is able to do so by employing SIMT(single-
instruction multiple-threads) architecture. The threads are
created, scheduled and executed in groups called warps. All
the threads in a warp share a single instruction unit. The
threads in a GPU are extremely light weight and they can
be created and executed with zero scheduling overhead.

CUDA is a parallel programming model that enables pro-
grammers to develop scalable applications to be executed on
GPU. It exposes a set of extension to C and C++. A CUDA
program is organized into sequential host code which is exe-
cuted on CPU and calls to functions called kernels which are
executed on GPU. A kernel contains the device code that is
executed by the GPU threads in parallel. CUDA threads
can be grouped into thread blocks. Using CUDA one can

Algorithm 1 IterativeApproach

Input: n, l, lmax

Output: M , the set of (l, d) planted mo-
tifs

1: Let ldiff = l − lmax

2: M = ∅
3: for idx = 0 to 4ldiff − 1 do
4: get the sequence p of length ldiff that corresponds to

idx
5: {setting the bits in idxth chunk}
6: for i = 0 to n− 1 do
7: for j = 0 to L− l + 1 do

8: get distance d′ between p and S
ldiff
i {j}

9: generate N lmax ,d−d′

i {j + ldiff }
10: for each lmax -mer q in N lmax ,d−d′

i {j + ldiff } do
11: get index idx′ corresponding to q
12: set Bi[idx′] = 1
13: end for
14: end for
15: end for
16: {finding motifs in idxth chunk}
17: B = B0

∧
B1

∧
...

∧
Bn−1

18: for i = 0 to 4lmax − 1 do
19: if B[i] = 1 then
20: Let r be the lmax -mer corresponding to i
21: Append r to p and add the appended sequence

to M
22: end if
23: end for
24: clear all the bit arrays B0 to Bn−1

25: end for

define the number of blocks and the number of threads per
block that can execute a kernel.

3.1 Memory organization
The device RAM is virtually and physically divided into dif-
ferent types of memory: global, local, constant and texture
memory. Apart from device RAM the threads can also ac-
cess on-chip shared memory and registers as shown in figure
1 [13]. Global memory and texture memory have highest
latency compared to the other types of memory. A thread
has exclusive access to its local memory. All the threads in
a block can access on-chip shared memory. All the threads
across all thread blocks have access to global, texture and
constant memory. Constant and texture memories are read
only while global is both read and write.

3.2 Performance considerations
A CUDA program should be properly designed taking ad-
vantage of the resources for better performance. Since GPU
uses SIMT architecture in which all the threads in a warp
use a single instruction unit, the best results can be achieved
when all the threads in a warp execute without diverging.
When threads diverge they are executed serially, thus de-
creasing performance.

Global memory has very high latency. But by coalescing the
global memory accesses, high throughput can be achieved.
For example if the threads in a warp access contiguous ad-
dress, then only two transactions are issued. But if the

GPUScA 2010 Vienna

21



Figure 1: GPU Memory

threads access separate addresses then 32 transactions are
issued.

Shared memory is divided into equally sized blocks called
banks. If two threads in a half warp access the same bank,
this would result in bank conflict and the accesses are se-
rialized thus reducing the effective bandwidth. In order to
avoid this, the programmer should try to make sure that the
threads in a half warp access different banks.

The memory latencies can be hidden by executing other
warps when a warp is paused. So to keep the hardware
busy there should be enough active warps. Occupancy is
the ratio of number of active warps per multi-processor to
the maximum possible number of active warps. If the occu-
pancy is too low, then the memory latency cannot be hidden
resulting in performance degradation. So the programmer
should try to increase the occupancy to effectively use the
hardware.

4. PARALLELIZING BITBASED ON GPU
Though BitBased is a easily parallelizable approach, it is
not straight-forward to implement it on the GPU. The main
issue is that BitBased has high memory requirement. As we
have seen in section 2, it requires 4l bits of memory for each
bit array. Such high amount of memory is only available on
the global memory. But global memory has a drawback of
high latency. Furthermore, the access pattern of the bit ar-
rays is very scattered making it difficult to use the coalescing
feature of the global memory. So to avoid using global mem-
ory, we partition the bit arrays into smaller chunks that fit
in shared memory. This is similar to the iterative approach
discussed in section 2.2. The only difference is that instead
of iterating, we assign the task of each iteration to a GPU
thread block.

Let t be the number of threads in each block. To solve
(l, d) instance we first find l′ and n′ as explained in [7]. Let
ls=max{i | 4in′ bits of memory can be allocated on shared
memory}. The bit arrays are partitioned into chunks of 4ls

bits of memory. Each chunk is assigned to a single block.

Thus the number of blocks is 4l′−ls . The threads in each
block enumerate the l-mers in such a way that they generate

the d-neighbors only in the chunk of bit arrays assigned to
the block. We use the same logic as in iterative approach.
Note that the enumeration length here is ls.

The t threads in a block are responsible for enumerating the
l-mers in the input sequences and setting bits in the chunk of
bit arrays assigned to the block. The l-mers are distributed
among the t threads. The consecutive l-mers are assigned
to consecutive threads. After all the threads have finished
enumerating the l-mers and setting bits, the threads enter
the find Motifs phase. After finding the candidate motifs,
they must be filtered by checking if they are present in the
remaining n − n′ input sequences. We perform this step
in a separate kernel called FilterMotifs to avoid divergence
of threads. So a thread, after finding a candidate motif
instead of performing the filtering phase, it writes it to the
global memory so that the candidate motif can be accessed
in the FilterMotifs kernel. To write on to global memory,
we use a variable called gIndex. When a thread finds a
candidate motif, it first atomically increments gIndex and
then writes the candidate motif to the global memory at the
index returned by the atomic operation. This is to avoid
different threads in different blocks writing to the same index
in global memory.

After finding the candidate motifs, filtering them is straight
forward. Let c be the number of candidate motifs. For the
FilterMotifs kernel, we need c/t blocks. The c candidate mo-
tifs are equally distributed among the blocks. Within the
block, the candidate motifs are further distributed among
the threads. Each thread is assigned a candidate motif and
it checks if the candidate motif has d-neighbors in the re-
maining n − n′ input sequences which were not considered
during finding candidate motifs. If a thread finds that the
candidate motif is a planted motif, it writes to the global
memory using the same logic explained previously. We im-
prove this implementation by using two modifications: Bit
representation and repartitioning and reordering.

4.1 Bit Representation
As we have seen in section 3, each multiprocessor has a lim-
ited number of registers. This implementation is limited
by the number of registers. Since each thread consumes
large number of registers, the number of threads per block
is less and hence the occupancy of GPU. To improve the
occupancy and performance, we need to reduce the registry
usage as much as possible. Each input sequence of length L
has L−l+1 l-mers. If the input sequence is represented using
a character array then an l-mer requires l bytes of memory.
Instead we can represent an l-mer using an integer, 2 bits
for each residue [1] [17]. For example, the 4-mer CGGA can
be represented using an integer whose binary representation
is 01101000. By doing so, an l-mer, l ≤ 16, would need only
4 bytes and l ≤ 32 would need 8 bytes of memory. So we
convert the input character array into an integer array, the
integer at index i represents the l-mer starting at location i
in the input sequences. By converting into input array, GPU
threads only need to read one integer rather than l bytes.
This would not only reduce the registry usage by also re-
duce the I/O time as only an integer need to be read. We
use texture binding to read the input sequences.

4.2 Repartitioning and reordering
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Figure 2: (a) The integer array is partitioned into 16 chunks so that the ith thread in a half warp only accesses
ith chunk. (b) The integer array is reordered such that the ith thread in a half warp only accesses ith bank.

Table 1: Comparison with multicore
(15, 5) (17, 6) (19, 7) (21, 8)

GPU time speed-upspeed-up time speed-upspeed-up time speed-upspeed-up time speed-upspeed-up
devices(seconds) 1 core 16 cores (seconds) 1 core 16 cores (minutes) 1 core 16 cores (hours) 1 core 16 cores

CPU CPU CPU CPU CPU CPU CPU CPU
1 8 13.5 1.4 91.2 13.6 1.6 19.7 14.3 1.6 4.5 - 1.5
2 4.4 24.5 2.5 46.1 26.8 3.1 9.9 28.5 3.1 2.3 - 3.0
3 3.2 33.6 3.4 31.1 39.7 4.6 6.62 42.6 4.6 1.5 - 4.6
4 2.7 40 4.1 23.9 51.7 6.0 5 56.4 6.1 1.1 - 6.3

We have seen in section 3 that the shared memory is orga-
nized into banks. Successive 32-bit words are assigned to
successive banks. We implement a bit array using a 32-bit
integer array. Therefore successive integers are assigned to
successive banks. Each thread executing the kernel enumer-
ates ls-mers in the input sequence and may set the bits in
any of the integer and therefore in any bank resulting in
bank conflicts. In order to avoid bank conflicts we repar-
tition the integer array and then reorder the integer array.
The integer array, which was once partitioned to fit in the
shared memory, is repartitioned into 16 chunks(as there are
16 banks in Tesla). The ith thread in a half warp enumerates
the ls-mers to set the bits in ith chunk. We then reorder the
integer array such that the ith thread in a half warp would
only access the integers in the ith bank. For example, when
ls = 6, each bit array has 46 bits and is implemented using
an integer array of size 128. We partition the integer array
into 16 chunks each of size 8 integers. Figure 2(a) shows the
partitioned bit array. The first thread in a half warp(threads
0, 16, 32, ...) only accesses the first chunk i.e. integers 0 to
7. Now we reorder the integers in the bit array such that
the integers 0, 1, .., 7 belong to the same bank. Figure 2(b)
shows the reordered integer array. It can be seen from the

figure that threads 0 and 16 only access the integers in bank
0 and threads 15, 31 only access the threads in bank 15.
Therefore there will be no bank conflicts after reordering
the integer array.

In addition to avoiding the bank conflicts, repartitioning and
reordering has another advantage. Partitioning a bit array
into chunks reduces the enumeration length. Because we
partition the integer array into 16 chunks, the enumeration
length reduces from ls to ls − 2. Note that the maximum
enumeration distance is equal to the enumeration length.
For example, when enumeration length is 4, the maximum
enumeration distance is 4. So the maximum enumeration
distance also decreases by 2. Thus we only need to enumer-
ate to generate (ls − 2)-neighbors instead of ls-neighbors.
This would reduce the registry consumption of each thread
and hence we can increase the number of threads per block.
Having more threads per block would increase the occupancy
resulting in better performance.

5. EXPERIMENTAL RESULTS
We have implemented BitBased on Nvidia Tesla C1060 and
Nvidia Tesla S1070 both running at 1.3GHz. C1060 has 30
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multiprocessors with 8 scalar processor cores each. S1070
has four GPU devices with 240 cores each. We have tested
our code with 20 input sequences of length 600 each. We
tested it on random sequences with motifs planted at ran-
dom positions in the 20 sequences. We have used n′ = 6 for
all our experiments. C1060 and S1070 both have a shared
memory of 16KB per processor. As we have described in
section 4 we need to find the value of ls where ls=max{i |
4in′ bits of memory can be allocated on shared memory}.
We have found that 6 is the most suitable value for ls. Table
1 shows the performance results obtained on 1 to 4 GPUs.

We have also experimented the approach using 1 to 120
multiprocessors on Tesla S1070 with only one active block
for each multiprocessor and the load is distributed equally
among the multiprocessors. It can be seen from Figure 3
that the approach scales well with the number of multipro-
cessors. We have also collected the results using different
number of GPU devices. Figure 4 shows the speed-up of the
approach with respect to number of GPU devices. It can be
seen clearly that the approach scales well with the increase
in number of GPU devices.
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Figure 3: Plot showing the speed-up of the approach
with respect to number of multiprocessors.
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Figure 4: Plot showing the speed-up of the approach
with respect to the number of GPU devices.

5.1 Comparison with multicore

The BitBased approach was implemented on a 4 quadcore
2.67 GHz Intel Xeon X5550 machine with a total of 16 cores
using 1GB memory. The basic BitBased approach was used
for (15, 5) and lower instances and iterative BitBased ap-
proach was used for (17, 6) and higher instances. Table 1
shows the results obtained on the multicore machine. It
shows the speed-up obtained on GPU with respect to 1 core
CPU and 16 cores CPU. The actual results for multicore
are discussed in [7]. It can be seen that a single GPU device
is 13 to 14 times faster than a single core of Xeon X5550
machine. It performs better than 16 core Xeon machine. 4
GPU devices are 40 to 60 times faster than single core CPU
and 4 to 6 times faster than 16 core CPU.

6. CONCLUSION
We presented an efficient parallel approach for solving the
planted motif problem on GPU. This approach is modifica-
tion of a BitBased approach that was originally proposed for
Intel based multicore architectures. The BitBased approach
had to be modified for GPU architecture. The proposed im-
plementation solves the challenge instance (21,8) of planted
problem in 1.1hrs. We are not aware of any sequential or
parallel method that will solve this challenge instance in bet-
ter time. Additionally, to the best our knowledge we are not
aware of any previous implementation of a parallel method
to solve the planted motif problem on GPU.
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ABSTRACT
In this paper, we study the scalability of a real applica-
tion to the available number of cores in the GPU. Our ap-
plication is a real-time image processing in which a foot-
ball player feature extractor based in color patterns obtain
feasible measures for tracking system. Since football play-
ers are composed for diverse and complex color patterns,
a Gaussian Mixture Models (GMM) is applied as segmen-
tation paradigm. Optimization techniques have also been
applied over the C++ implementation using profiling tools
focused on high performance. Time consuming tasks were
implemented over NVIDIA’s CUDA platform, and later re-
structured and enhanced, speeding up the whole process sig-
nificantly. Our resulting code is around 4-11 times faster on
a low cost GPU than a highly optimized C++ version on
a central processing unit (CPU) over the same data. The
optimized application has been benchmarked over different
GPUs with different number of cores. Due to data depen-
dencies performance increase 1.4x when doubling number of
cores.

1. INTRODUCTION
Real-time image processing systems are specially relevant
in Computer Vision. Any advanced image processing appli-

∗This work was supported in part by grants TIN2010-
21291-C02-01, TIN2007-66423 and TIN2007-60625 (Span-
ish Government and European ERDF), gaZ: T48 research
group (Aragón Government and European ESF), Consolider
CSD2007-00050 (Spanish Government), and HiPEAC-2
NoE (European FP7/ICT 217068).

cation requires a previous extraction of significant features.
These features could be used in recognition or tracking sys-
tems for several applications. Our proposal is oriented to
improve drastically the performance of image segmentation
systems. Concretely, we focus on feature extraction and ob-
ject classification based on those features, not only over pre-
recorded video sequences but also from live video streaming.

Our method to extract those features consists in an image
segmentation according to color information. Segmentation
systems are usually a first stage inside an image processing
framework. Thus, for instance, results generated by seg-
mentation techniques can be used as input for a tracking
algorithm. In the literature, it exists a broad variety of
methods for a reliable segmentation of objects in an image.
One of the most popular approaches consists in a Gaussian
mixture model (GMM ) in which every object can be rep-
resented by one or more Gaussians. This is because most
objects are composed of a mixture of different tones asso-
ciated to a unique color or even of several different colors.
Although GMM is a successful and broadly used method for
feature extraction, its computational cost is a strong hand-
icap for real time applications. The spectacular evolution
that CPUs experimented in the past has provided a tool
for mitigating the problem. Nevertheless, the progressive
slowdown during the last years has stopped this progres-
sion whereas it has promoted parallel architectures, such as
multi-core, as a solution for increasing the computational
power. Unfortunately, most programs are conceived using
a serial philosophy. Serial code cannot automatically take
advantage of multiple cores to execute itself faster, so that
code must be redesigned from a newer parallel point of view.

The GPU architecture is optimized for massively parallel
processing with peaks up to hundreds of GFLOPS. Recently,
in order to take advantage of these high performance com-
puting devices, some extensions to well-known programming
languages have been generated, such as CUDA C [4]. This
language is a set of parallel extensions of the C/C++ pro-
gramming languages and it is able to interact with a special
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hardware interface built into all current NVIDIA GPUs.

In the last few years, the amount of scientific application
tested over GP-GPU has increased [3]. Although generally
those researches are focused on specific calculations, they
provide an initial idea about the intrinsic potential of this
new platform [10]. Particularly, in our field of interest, sev-
eral studies probe this capability in modern GPUs [7]. Tra-
ditional methodologies have been implemented, such as pat-
tern recognition algorithms based on textures [6], Gaussian
mixture models [9] or image feature extraction techniques
[13, 15]. All these examples give an idea of the increase of
efficiency that can be achieved thanks to these devices.

In our research, we have developed an application which is
able to detect football players in a video sequence. Once they
are extracted from background, each player is classified into
any of the teams. For classification purposes, a color-based
method is employed. Our election has been Expectation
Maximization for Gaussian Mixture Models [9]. Since one
of our main objectives is to process multi high-resolution
cameras, detection and classification processes must be ap-
plied on real time in a extremely efficient manner. In order
to achieve that, we have adapted and implemented those
tasks over GPU platform taking advantage of its high par-
allel computational capability (Section 5).

The evaluation of our implementation has been made over
a set of different low cost GPUs with 16, 32 and 64 cores
to study the scalability of the implementation. These tests
have also been run under different CPUs, to clarify as much
as possible the real contribution of our implementation.

The outline of the paper is as follows. In Section 2 the
hardware infrastructure is described. Section 3 introduces
the stages that compose our application and discusses their
computational cost. Section 4 explains the computational
cost of a prototype implemented in an optimized version in
C++ running in a conventional CPU. In section 5, the paral-
lelization as well as the CUDA implementation are detailed.
Section 6 presents a comparison between CPU and GPU re-
sults and its scalability. Finally, conclusions are presented
in Section 7.

2. INFRASTRUCTURE
Our approach consists of the processing and classification al-
gorithms for football players in sequences provided from one
or multiple cameras, which are installed in a real football
stadium. In our infrastructure, we propose a system com-
posed of 8 static high definition digital cameras (resolution
1388x1036) with overlapping fields of view. The cameras are
positioned around the stadium as is shown in fig. 1.

This camera distribution has been done in this way because
the minimum number of cameras for covering the football
field with enough resolution is 8 and the overlapping cameras
are crucial to solve occlusions, specially in conflictive areas.

In order to check the performance improvement and scal-
ability that our implementation achieves, we have tested
the algorithm over different types of processors and GPUs.
Thus, three different types of PCs are available for scalabil-
ity study and a fourth PC is used to confirm results. These

Micro GHz nVidia Cores Bandwidth
(GB/s)

PC1 Core 2
T7500

2.2 Geforce
8600M GS

16 6.7

PC2 Core 2
T8900

2.4 Quadro
FX 1600M

32 11.2

PC3 Core 2
Quad

2.83 Quadro
FX 1800

64 38.4

PC4 Core i7
Quad

2.8 Geforce
GTX260

216 111.9

Table 1: Different types of CPUs and GPUs for testing

Figure 1: Camera distribution on the roof

equipments are shown in table 1. These equipments are
close to the average current processors, giving us a significa-
tive sampling of the market. On the other hand, 4 different
GPUs have been tested too keeping same philosophy. They
also fulfill another requirement: since our implementation
employs atomic functions to obtain synchronism, we need
video cards compatible with CUDA Compute Capability 1.1
or higher. For every possible combination of both platforms
(CPUs and GPUs), a scalability study was made.

3. DESCRIPTION OF APPLICATION
The proposed classification algorithm can be decomposed
into a set of steps. Most of them should be done per camera.
The steps and input data that they require are described
next.

3.1 Independent processing per camera
• Image Capture: at this stage, images are retrieved on

demand from each camera.

• Color Space Transformation from Bayer to RGB: high-
resolution cameras usually provide images in raw for-
mat (also called Bayer-type RGGB [2]), i.e. 8 bits
per pixels for color codification. To obtain a RGB im-
age, we need an intermediate transformation process
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called BayerToRGB. RGB values which match up in
the RGGB sequence are mapped directly, while other
channels are calculated as an arithmetic mean of all
neighbors corresponding to the same channel.

• Motion Detection: it consists in a thresholded sub-
traction between the current image (fig. 2 a)) of ev-
ery camera and a pre-generated image of the scenario,
called background (fig. 2 b)). Process is shown in fig.
2 c). Motion detection image contains the dynamic
areas, which will be used for posterior processing like
distracter removal.

• Color Space Conversion RGB to HSV : under vari-
able illumination conditions, better segmentation re-
sults can be obtained by applying a transformation in
the color space [14]. Instead of RGB, HSV (Huge, Sat-
uration, Value) has shown a better accuracy.

• Blob Labelling: it is the algorithm that seeks con-
nected areas, called blobs, in the resulting image of
the previous step. By grouping pixels into blobs and
assigning a common label we simplify the posterior
tracking stage.

• Color Segmentation: this procedure tackles the prob-
lem of identifying different areas of the image. GMM
(Gaussian Mixture Model) has been chosen as paradigm,
which implies a preliminar training by extracting color
features from regions of interest. Thanks to this tech-
nique, a distinction into three groups is obtained: player
of team 1, player of team 2 and noise from the back-
ground.

a) Current image b) Background image

c) Motion Image, thresholded subtraction
between the current image and background.

Figure 2: Current image, background image and sub-

straction result image.

Fig. 3 details the processing flow per camera. Output gen-
erated from previous stages is used as input for a tracking
algorithm in order to ensure the temporal coherence. Al-
though it is out of the scope of this paper, a Multi-Camera
Uncensted Kalman Filter (MCUKF) [8] has been used to

Figure 3: Processing schema

demonstrate the global feasibility. Empirical experiments
allow us to conclude that a successful tracking can be ob-
tained with a processing frame rate between 8 and 15 per
each camera and to process 8 cameras we need more than
64 images per second for real time.

3.2 Gaussian Mixture Method for Image Seg-
mentation

In collaborative sport applications, it is known a priori that
both teams, as well as background, are defined by clear and
distinctive color patterns in their clothing. These color pat-
terns can be easily modeled by parametric methods.

GMM is a method that allows a reliable object modeling
and image segmentation even in presence of complex targets,
which can be composed of multimodal appearance distribu-
tions. Since it is a parametric technique, it needs a off-line
training phase to calculate those parameters. Training re-
sults are used afterwards in classification On-line stage.

The simplest technique to model the appearance coefficients
consists in assuming the target as a monochrome region and
modeling it as a Gaussian using only two parameters: mean
µ and covariance σ2. Although this assumption limits the
generality of the methodology, it can be easily extended by
dividing the target into a predefined set of monochrome re-
gions [12].

p(x) =
1√
2πσ

e−(x−µ)2/2σ2

(1)

p(x) =
N∑

i=1

wi
1√

2πσi

e−(x−µi)
2/2σ2

i (2)

Both off-line training and on-line classification are composed
of different phases:

1. Off-Line Computing consist of a sample selection in or-
der to supervise sample selection for every group (team
1, team 2 and background), parameter tuning to ade-
quate number of Gaussians used to model every group
and training.

2. On-Line Computing is composed of a classification step
in which every pixel is classified into one of the differ-
ent groups. For this, it is required to HSV conversion,
computation of the distance between the pixel candi-
date and the different model of every group, final deci-
sion based on minimum distance and probability com-
putation to measure the membership degree to every
group. This last process generates, as result, probabil-
ity images [5] that can be used to improve the tracking
quality based on stochastic approaches.
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As the offline stage is only applied once at the beginning and
under supervision, it can be considered out of the real-time
system and, therefore, its implementation is not required
over a GPU platform for our goals. However, this process is
also amenable to be implemented using the GPU, as it was
demonstrated in [9], obtaining excellent results.

4. CPU IMPLEMENTATION
A single thread implementation of the algorithm was made
in C++ language running under Windows.

For this optimization process, performance analysis tools,
such as Intel VTune Performance Analyzer were applied to
identify the possible hotspots. This tool aimed at increasing
performance, in addition to the location of hotspots, allowed
us to perform a deep analysis of them. Thus, Intel VTune
Performance Analyzer let us to detect, to re-code and to op-
timize our implementation, improving the performance sub-
stantially. An important difference must be noticed between
those general optimizations and those that act on specific
parts of the code.

• General optimizations: they improve the global per-
formance of the application. Our main optimizations
consist in:

1. Usage of a specific optimizing compiler, such as
Intel C++ compiler. Full optimization and spe-
cific architecture compilation flags are both used
in this implementation.

2. Classical Code Optimizations [1]. It is crucial to
take into account the memory mapping of data
structures. In this way, we ensure a high success
rate in the access to cache memories. For that,
input data must be stored consecutively in mem-
ory as often as possible, i.e. data are stored in
memory in raw order. Therefore, in loops, image
data have to be accessed by rows. Thus, data ac-
cess obtains high cache hit. Access by columns
fails in cache because data are not consecutively
in memory.

• Specific optimizations: they improve the performance
of given functions. The most important of them is
the use of Look-up Tables or LUTs. Those func-
tions with a clear and repetitive pattern, such as color
classification, can be replaced for a storage in mem-
ory of all possible result for any input combination.
This resulting matrix is called Look-up Table (LUT ).
An example is color space conversion. For each RGB
value, the classification result is calculated and stored
in LUT. After its generation, the expensive calcula-
tion is replaced for a memory access to the right mem-
ory slot, which implies a substantial boost of the effi-
ciency. The more complex the operation is, the more
efficient this technique is. For our particular case, cal-
culations for determining the segmentation of a pixel
costs 39.96ns, whereas the memory access to check the
value in the LUT is 6.02 ns, which implies a speed-up
x6.63. Although generating the LUT implies a fixed
cost of 670.48 ms, it can be done off-line since the color
model is usually static.

Stages Time (ms) % of total

Conversion Bayer to RGB 15.7 10.34
Motion Detection 9.83 6.47
Conversion RGB to HSV 35.61 23.45
Labelling 5.3 3.49
Segmentation 85.39 56.24

Table 2: Time of different stages over optimized In-
tel C++ compilation [ICC] and percentage time of
them over total time.

In table 2 is shown that any implementation using Intel C++
[ICC] achieves good results.

RateIntel(fps) = 6.58fps

In spite of this considerable improvement, Conversion RGB
to HSV and Segmentation stages still remain as critical bot-
tle necks. Therefore, in order to raise the performance and
to be able to achieve our goals, a more powerful tool is re-
quired. Moreover, other stages that were not so critical a
priori, like Conversion RGB to HSV, have acquired now a
more important role. It is because of this reason that stages
shown in Table 2 have been implemented on the GPU plat-
form, with a special focus on the Segmentation stage.

5. GPU IMPLEMENTATION
The hardware architecture of a system with a GPU can
be seen in fig. 4. A GPU is a hardware device connected
to the main system through a fast bus, second-generation
PCI Express currently. It has some very specific processing
features allowing to take advantage over the current CPUs.

Figure 4: Hardware architecture of a system with GPU

Specifically, the features that make GPUs specially powerful
in massively parallel computing are:

1. Hardware composed of several computing functional
units and several multicores.

2. In single precision floating point, a GPU can reach up
to 500 Gflops owed to the 30-50 Gflops of conventional
CPUs.

3. It has a high bandwidth to the internal memory of up
to one order of magnitude higher than the bandwidth
of a CPU and system memory (about 86.4 GB/s in a
GPU versus 8.5 GB/s in a CPU).
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4. In order to take advantage of such high bandwidth,
GPUs allow several memory access operations to run
simultaneously.

5. Paradigm Single Instruction Multiple Thread, SIMT,
is used by the GPU. This specific execution allows
and needs many independent and simultaneous active
threads that execute the same instructions over differ-
ent data. All of them are running into a unique kernel
at the same time.

Attending GPU characteristics and SIMT paradigm, a pre-
liminary study of our application is needed. Different crite-
ria have been used in this analysis: Computational cost and
redesign of several algorithms for massively parallel comput-
ing.

5.1 Preliminary Study
In this section, the adequacy of each stage to be implemented
on GPU has been analyzed. The CUDA implementation
was tested using PC3 (see Section 2 table 1) obtaining the
results shown in fig. 5, where we can conclude:

• Conversion Bayer to RGB : this stage requires, for
every pixel, access to the neighbor pixels in order to
calculate the resulting RGB. The processing is made
per pixel independently, although the final result also
depends on the adjacent input values. Therefore, there
is no easily adaptable and massively parallelizable im-
plementation due to a dependency among the instruc-
tions data. In spite of pixelwise calculation, Conver-
sion Bayer a RGB stage presents several dependencies
in its data. CUDA implementation has to be carefully
studied because time is higher in CUDA implementa-
tion as is depicted in fig. 5.

• Motion detection: Since it is basically a pixelwise
subtraction, there is not dependency with the neighbor
pixels and a new thread per pixel can be launched in-
dependently. Motion Detection and Conversion RGB
to HSV stages prove a good behavior when they are
implemented over CUDA. This results are obtained be-
cause in this phases the computation is realized pixel
by pixel and dependency data is very scarce. Time
cost is reduced considerably.

• Conversion RGB to HSV : in the same way as the
previous stage, processing is pixelwise but there is no
data dependency regarding the neighbor pixels.

• Blob Labelling: this algorithm searches for connected
zones in the image. The nature of the connectivity
search produces a strong dependency among neigh-
bors. There is not a simple parallel solution and a
new algorithm should be developed to take advantage
of the available features. Labelling stage is not par-
allelizable and our designed algorithm for GPU has a
deficient behavior. Its computation time has increased.

• Color Segmentation: it is also a good candidate
to be implemented on GPU as computation does not
have dependency with the neighbors and it implies a
substantial part of the total time. It can be decom-
posed into three substages: resulting image calculation
by consulting the corresponging LUT, LUT update for
the next frame and noise filtering by morphological op-
erators. CUDA implementation of Segmentation stage

Figure 5: Computational cost for [ICC] and CUDA (over

PC3) implementations.

presents a significative improvement.

Because of data shown in fig. 5, relevant decisions can be
taken. Analyzing fig. 5, it can be observed that segmenta-
tion, for being the most expensive stage, must be analyzed
carefully. This stage takes between 58.27% to 57.8% of com-
puting time (without taking into account labelling time) in
[ICC] or CUDA implementations respectively. Since Con-
version Bayer to RGB stage takes between 25.37% (in PC3)
of the total time in CUDA implementation and its data de-
pendencies detected, it needs a special optimization. For
Motion Detection and Conversion RGB to HSV stages, data
independence provides margin to get better.

A critical design phase is the labelling computing, since it is
not parallelizable. Since labelling becomes a expensive stage
in GPU as observed in fig. 5, it is worthy to take special
care in aspects as kernel context switch or data transfer with
CPU, avoiding unnecessary waste of time. Three solutions
must be studied:

• Option 1: All the stages are run on the GPU : La-
belling allows identifying active areas in the image, re-
ducing the segmentation to those areas and making un-
necessary segmenting the rest of the image. Total com-
putational cost would be Ttotal1 = Tp + tegpu + tsblob ,
where Tp is the time due to the pre-labelling stages,
tegpu is the labelling cost in GPU and tsblob is the seg-
mentation cost on the active areas.

• Option 2: Previous stages to labelling are run on
GPU, results are transferred to the host, which runs
the labelling and returns the result to the GPU, where
the segmentation is done on the active areas. Ttotal2

= Tp + ttotaltrans + tecpu + ttotaltrans + tsblob , being
ttotaltrans the transference cost + kernel commutation
cost + driver access cost.

• Option 3: All the stages are run on GPU an the
labelling is eliminated. This implies that segmentation
is applied to the whole image and not only over active
areas. Ttotal3 = Tp + tsimage .

In each kernel switch or data transference, the CPU needs
to access the GPU driver to complete the operation, which
implies an additional time.
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Figure 6: Comparison: First CUDA (over PC3) imple-

mentation versus optimized C++

1. The computational cost of transferring data CPU ⇒
GPU or GPU ⇒ CPU is around 7.19 ms. By running
as many instructions as possible inside the GPU, just
two transfers should be needed: to introduce input
data and to obtain the results.

2. For each kernel switch, the GPU requires extra time
for changing the context. By grouping different stages
in a shared kernel, we save this extra time.

Therefore, every single operation of any type that we could
run into the GPU will avoid to waste time unnecessarily.
Thus, it is a good practise to design stages which could run
into the same kernel.

Previous options have been tested and results are shown in
fig. 6 from PC3. By minimizing the computational cost
(Ttotal1 , Ttotal2 and Ttotal3), the optimum decision can be
taken. As fig. 6 shown, option 3 provides the optimum
solution (64.78 ms) in comparison with the other alternatives
whose costs are 144.91 and 71.25 ms. As fig. 6 shows, option
1 is even more expensive than [ICC] implementation whose
processing time is about 100.52 ms. Because the extra data
transfers and the kernel context switching, option 2 is worse
than option 3 although the whole image is segmented in the
last one. In the light of previous results, we can conclude
that Blob Labelling is not efficient for parallel computing
and, in case it would be necessary for the posterior stages
such as tracking or distracter removal (football field lines),
must be relegated to the CPU. Taking this decision as a new
starting point, the next step consists in the optimization of
all the stages.Therefore option 3 has been selected, Labelling
stage is relegated to CPU ( if it is needed ) and segmentation
is applied over the whole image.

5.2 Techniques for optimizing GPU code
Several techniques are at our disposal for an optimum use
of GPU capacities according to recommended methodolo-
gies [11]. Across all the stages these techniques have been
evaluated. A GPU is a device designed for highly paral-
lel computation having a very high number of functional
units and a large memory bandwidth. Therefore, the main
techniques for increasing performance are based on keeping
up the occupation of functional units (known as occupancy)

and maximizing the use of effective bandwidth to memory.
Next, the most effective ones are described.

5.2.1 Occupancy
Occupancy is measured by the number of threads assigned to
each processor. Maintaining a high occupancy in the GPU
is important to performance due to it can be achieved by
means of two different ways: through the number of regis-
ters and through the amount of shared memory employed.

As a general rule, the less the number of register used per
kernel, the higher occupancy. However, it is worthy to note
that this modification is not always easy since it strongly
depends on the algorithm and could imply a deep restruc-
turing.

By analyzing one of the segmentation substages and restruc-
turing an indexing instruction for memory allocation, we
were able to save 2 registers per kernel. This complex re-
duction implies the core occupancy has gone from 66% to
100%

5.2.2 Coalescence
Coalescence is a technique for optimizing memory accesses.
Memory accesses from different threads can be merged into
a single access if the required conditions are fulfilled [4].
This fusion process is known as coalescence. Coalescence
is defined as a mean to gather several simultaneous mem-
ory accesses in parallel. It is promoting during the global
memory accesses.

Coalescence is, without doubt, the most powerful method
for optimization in GPU. It consists in a mechanism that
fuses into a unique operation all read/write accesses from
the running threads in the current active block. GPUs have
specific hardware that detects and makes this fusion, allow-
ing to hide the high latency of threads accessing to local
or global memory when cache is not available, and improv-
ing the speed-up above two orders of magnitude for these
operations.

This technique is specially relevant in the following stages,
although it has been applied across the whole system: con-
version Bayer to RGB: 100% coalescent on writing and on
some reading, conversion RGB to HSV: 100% coalescent on
both writing and reading, motion detection: 100% coales-
cent on both writing and reading and color segmentation:
≈ 10% coalescent in substage 1, ≈ 30% coalescent in sub-
stage 2 and 100% coalescent in substage 3.

5.2.3 Others Techniques
Other techniques to achieve improvement in GPU are:

• Masking of high latency memory accesses: this can be
achieved by sending non data-dependant instructions
to the processing units during the transference cycles.

• Avoiding branch divergence: when several threads should
take different paths, it is called divergence and the ex-
ecution times of all the branches become serialized,
increasing the cost for every divergent thread.
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CPU GPU Speedup

PC1 4.11 8.66 2.11

PC2 5.33 12.37 2.32

PC3 6.58 22.45 3.41

PC4 5.94 63.38 10.67

Table 3: Final results (in number of frames)

6. RESULTS AND SCALABILITY TEST
As our system is composed of identical high definition cam-
eras (1388x1036), we will only analyze the processing time
for one of them. Later, we could extrapolate results to work
out the scalability of our processing kernel.

A scalability study aims to assess the performance of our
algorithm as a function of the number of images, the number
of cameras or the computational power. To this end, we
have processed the algorithms on several computers that
have been selected on the basis of different criteria:

1. The CPUs will be of mid-high range because it seeks
a significant increase in computational power.

2. The first 3 GPUs have been chosen with the criteria
of having a number of cores that is a multiple of the
number of cores of the previous GPU. The aim is to
study the evolution of the cost of processing each of
the phases and the global system.

3. The fourth GPU is chosen to confirm the tendency
showed in the previous tests as this section describes.

Thus, the chosen configuration for each experiment is as is
shown in Section 2 table 1.

Analyzing results from the application point of view (see
Table 3), a considerable speed increase has been obtained
(10.67x), being possible to process 63.38 frames per second
with a Geforce GTX 260 versus the 5.94 that CPU4 could.
A comparison GPU - CPU in PC1 shows that achieved im-
provement is around 2.11x, since this CPU processed 4.11
fps and its GPU processed 8.66 fps. Values in comparison
GPU - CPU in PC2 achieve 5.33 fps in CPU2 and 12.37 fps
in GPU2 resulting in a speed up of 2.32. Values in compari-
son GPU - CPU in PC3 achieve 6.59 fps in CPU3 and 22.45
fps in GPU3 resulting in a speed up of 3.41.

In the same manner, a comparison among the time cost
evolution of different stages and process ratio in fps over
different equipments has been extracted (see fig. 7 and 8).

In these figures, results using the 4 GPUs with 16, 32, 64
and 216 cores are depicted. Two comparative analysis can
be done: evaluating the time cost for every stage for each
GPU or comparing the global performance of the application
using the 4 different CPUs against the GPUs measured in
frames per second, fps.

Analyzing in the stage level (fig. 7), it is important to note
that improvement increase with GPU performance, almost
always proportional to the number of cores. The only ex-
ceptions are the conversion Bayer to RGB and segmenta-
tion stages, where input data dependence produces a slightly
lower rate (see fig. 7). Global improvement has an almost

Figure 7: Stage computing time using different GPU

models.

linear tendency achieving an execution code 7.32 time faster
in GPU4 than in GPU1.

In fig. 8, results are compared in the application level be-
tween three GPU-CPU configurations, and the same ten-
dency can be appreciated. A very low-cost laptop equipped
with GPU1 is able to obtain enough processing ratio in fps
to connect a tracking stage (8 fps or more). Nevertheless a
highly optimized implementation in a medium PC as PC4
is not able to do that without the GPU.

It is also worthy to note some characteristics of the three
different equipments under test. Despite the fact that the
pair CPU-GPU are contemporary, the evolution of both ar-
chitectures are not equal over time. CPU power increase
in the last two years is really smaller in comparison with
GPUs in the same period. This can be explained due to the
maturity of both technologies and the improvement margin.

It has to be noticed how a low-cost GPU as Geforce 8600M
GS with only 16 cores takes advantage over a medium-high
CPU as Core i7 (8.66 fps versus 5.94 fps, respectively), being
1.46 times faster in global processing.

Finally, note that the speed-up increase with the number of
cores is constant although not in the same proportion. This
difference is mainly due to the overhead of the transference
time CPU ⇔ GPU.

Given that a minimum processing rate of 8 fps is required
for a posterior tracking stage and that we need to process 8
cameras, it is necessary a minimum processing rate of about
8 ∗ 8 = 64fps. Thus, the scalability can be obtained as:

• PC type 3 processes 6.58 fps per camera using CPU3,
so we need 10 medium-high PC.

• A GPU Quadro FX 1800 (GPU3 ) processes 22.45 fps
per camera, so we need 3 low-cost GPUs.

GPUScA 2010 Vienna

33



Figure 8: Ratio in frames per second for different GPUs

in comparison with the three available CPUs.

In addition, since the performance increase is ∼1.4x when
the number of cores doubles, we could extrapolate that a
machine with a GPU with a triple number of cores, could
process the 64 fps needed over only one equipment.

This extrapolation has been confirmed in a experiment over
a Geforce GTX 260 while price is around 150 dollars. Re-
sults show a processing ratio around 64 fps proving that our
scalability study is correct.

7. CONCLUSIONS
In the light of these results, we can assert a set of interesting
conclusions:

• Usage of high-capability computing devices, such as
GPUs, have a potential for this kind of applications.
It has been possible to segment football players in real
time by making an efficient use of these platforms. We
are able to improve all the processing stages, with the
exception of labelling, with speed-ups up to 40x and
using medium-cost hardware. The global performance
improvement is x10.67 making possible a processing
rate of 63.38 fps instead of the 4.11 fps in low-medium
PC (PC1), 5.33 fps in medium PC (PC2), 6.58 fps in
medium-high PC (PC3) or 5.94 fps in medium-high
PC (PC4).

• We have been able to make the functionality indepen-
dent of the scalability. Therefore, we have proved that
a single but more powerful card would be able to pro-
cess our 8 cameras.

• Even optimizing the GPU occupancy and the effec-
tive memory bandwidth using coalescence, scalability
is affected by the data dependencies.
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ABSTRACT
Recent developments in programmability and performance
of graphics processing units have enabled GPU programmers
to simulate various physical phenomena in real-time that
are calculated in weeks on classic CPU-based architectures.
One of these phenomena are fluid simulation, which allow
simulation of water, wind and weather among many others.
The Lattice Boltzmann method fits very well into the GPU
architecture as exposed by NVidia’s CUDA, which will be
shown in this paper. An adaptation to CUDA using the
methods for handling complex obstacles presented here has
not yet been demonstrated to the best of our knowledge,
and so this paper serves as a demonstration that the Lattice
Boltzmann method can be executed efficiently on a GPU,
and outlines the specific adaptations required for a CUDA-
based implementation.

1. INTRODUCTION
Graphics processing units (GPUs) on current graphics cards
are generic programmable stream processors. This class of
processors is designed for parallelizable algorithms that do
not make heavy use of branching. Algorithms having these
properties can be accelerated significantly compared to im-
plementations on current central processing units (CPUs).
Additionally, GPUs do not suffer from caching issues, since
they have very closely defined input and output streams and
are optimized at the hardware level for this configuration.

Grid-based fluid simulations are an obvious choice for GPU-
based calculation, since operating on the cells of a grid is
easily parallelizable. However, care has to be taken to avoid
slowdowns caused by making inefficient use of the card’s
features.

Applications for real-time fluid simulations include metrol-
ogy, games and medical purposes. It especially enables real-
timer interaction of the user with the simulation, for example
using a stick to stir water.

Section 1.1 introduces the traditional method of simulating
fluids, while section 2 outlines another method better suited
for the task at hand. Section 3 explains how to use graphics
cards as general purpose processing units and how to apply
this knowledge to fluid simulations. Section 4 enhances the
fluid simulation by adding obstacles, and Section 5 evaluates
the implementation. Section 6 concludes this paper.

1.1 Previous Work
The first attempts at simulating fluids in computer graph-
ics were using wave-based approximations that do not al-
low interactivity with the fluid [5], but give a very realis-
tic impression used in many computer games for panorama
views. Wejchert and Haumann [20] implemented more com-
plex two dimensional flows by assembling them from well-
known primitives like vortices and sinks.

Chen and da Vitoria Lobo [3] introduced the Navier-Stokes
equations (NS) to the graphics community, which are di-
rectly derived from Newton’s second law, as a method for
simulating flows even at interactive rates. They allow cal-
culating the fluid movements at arbitrary detail, and are
suitable for describing many different phenomena, like wa-
ter, clouds, smoke, foams, and even motion of stars inside a
galaxy.

The basic formulation of the NS for incompressible fluids
is [3, 15]:

∇ · u = 0 (1)

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+ ν∇2u+ f (2)

where · denotes a dot product between vectors, ∇ is the
vector of spatial partial derivatives, u and p are the velocity
and pressure field of the fluid respectively, ρ is the density
and ν is the kinematic viscosity. f is a vector representing
external forces.

The NS is inherently dimensionless. In practice, this means
that both two dimensional and three dimensional solutions
are possible. Since calculating the equations for three dimen-
sions is computationally more expensive, Chen and da Vito-
ria Lobo [3] solved them for two dimensions only, and then
used the pressure field p as a height map (higher pressure
results on more displacement of the mesh from the ground at
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that point). The justification given is that higher pressure
at the base of a fluid results in taller columns of the surface
above, due to the incompressibility of the fluid. Krüger and
Westermann [7] propose using multiple layers of two dimen-
sional fluids and interpolate between them to get a more
realistic look.

The difficulty imposed by Equation (2) is the part on the left
side of the equal sign, ∂u

∂t
. This is non-linear, and thus can

not easily be solved. Various solutions have been proposed,
which is outlined below.

Chen and da Vitoria Lobo [3] used a finite-difference solution
to create an iterative solver for the NS.

Stam [15] emphasizes the importance of stable calculations.
When the time steps used for calculating the NS are too
large (also limited by other factors like the size of the do-
main or the viscosity), the simulation “blows up”. This
effect is non-linear and causes small errors in the simula-
tion to amplify due to numerical reasons. To avoid this,
Stam used a method called method of characteristics using
a semi-Lagrangian solver, which is unconditionally stable.
However, the simulation suffers from too much numerical
dissipation [14], which means that this method is only suit-
able for situations where the fluid simulation is only used as
a visual effect.

Liu et al. [10] implemented the solver introduced by Stam
[15] on the GPU in three dimensions. It slices the third
dimension of the domain into multiple planes, which are then
tiled into a two dimensional texture. Scheidegger et al. [14]
used a different method called “Simplified Marker and Cell”,
which uses an explicit solver, that means it is subject to
certain time step limitations to maintain a stable simulation.

The first attempt at mapping the Lattice Boltzmann Method
to the GPU was documented by Li et al. [9], but uses the
shader programming language, which was not designed for
tasks like this. Thus, some additional steps have to be taken,
like using multiple shaders for a single simulation step, which
reduces the maximum possible throughput due to the higher
amount of memory access.

2. FLUID SIMULATION USING THE LAT-
TICE BOLTZMANN METHOD

In 1872, the Austrian physicist Ludwig Boltzmann devel-
oped the Boltzmann equation, which is a mathematical model
to describe the dynamics of an ideal gas at microscopic scale.

If this equation would be applied directly, every single molecule
of the gas would have to be stored and simulated (using its
position and direction). Calculating these would be unreal-
istic today, due to the limitation posed by processors and
memory. Thus, simplifications were developed.

2.1 The Lattice Boltzmann Method (LBM)
In this method, the simulation domain is split into discrete
cells, forming a lattice. Every cell stores a molecule dis-
tribution function by a varying number of values fi, which
denote the amount of fluid molecules traveling in this cell in
a certain direction ei. The velocity u and density value ρ of

a cell as known from the NS can be calculated by [8]:

ρ =
X

i

fi u =
1

ρ

X
i

fiei (3)

Calculating the simulation is split into two phases: Stream-
ing and collision. In the streaming phase, the molecule dis-
tribution fi is copied one cell into the direction ei. In the
collision phase, a new distribution is calculated based on the
information available solely in this cell. The formulas used
for this are outlined here:

After discretizing and simplifying the Boltzmann equation,
the following equation can be derived:

fi(x, t+ ∆t)− fi(x, t) = Ωi (4)

where Ωi is a fluid collision operator to be determined.

In 1992, a simplified collision operator called the Bhatnagar-
Gross-Krook approximation was introduced to the LBM [17].
It uses a single relaxation time approximation to reduce the
operator to operations suitable for computers. It is based
on the idea that the main effect of the collision operator is
to bring the molecule distribution closer to the equilibrium
distribution, which is defined as

feq
i = ωiρ

„
1− 3

2
u2 + 3(ei · u) +

9

2
(ei · u)2

«
(5)

where ωi is a constant that depends on the lattice geometry
(more on that later, see Table 1). The collision operator
itself is defined as

Ωi = −∆t

τ
(fi(x, t)− feq

i (ρ, u)) (6)

where τ is a constant that represents the viscosity ν of the
fluid, given by τ = 1

2
(1 + 6ν) [19].

Unlike most methods based on the NS, the LBM is uncondi-
tionally stable, while still demonstrating fluid behavior. The
only limitation is that information in the grid cannot travel
faster than one cell distance per streaming phase (usually
called cs, speed of sound or “Mach number”).

2.1.1 Lattice Geometry
A LBM lattice has to be symmetrical to satisfy the isotropic
requirement of fluid properties [19], which means that it has
to be an equally-spaced grid.

Since the selection of the geometry depends on the applica-
tion and dimension, a nomenclature has been developed for
easy identification. The format is “DnQm”, where n is the
number of dimensions (usually 2 or 3), and m is the num-
ber of distinct lattice velocities. A common two dimensional
geometry used is D2Q9, shown in Figure 1.
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Figure 1: The D2Q9 geometry. The zero-velocity
vector is visualized by a small circle in the center.

In three dimensions, three options are widely used [19], as
can be seen in Figure 2. They are:

1. D3Q15: Zero velocity, faces, corners

2. D3Q19: Zero velocity, faces, edges

3. D3Q27: Zero velocity, faces, edges, corners

Figure 2: From left to right: D3Q15, D3Q19,
D3Q27.

The number of velocity vectors has a direct impact on the
performance of the simulation. D3Q15 is prone to numerical
instability and other visual artifacts, while D3Q27 requires
27 copy operations per streaming phase, which is expensive.
D3Q19 is a good tradeoff between those two extremes, and
thus is used in most papers [19, 8, 17, 18].

Table 1 lists the constant weight ωi for the D3Q19 lattice
geometry used in this paper.

i →ωi

i = 0 →ωi = 1/3
1 ≤ i ≤ 6→ωi = 1/18
7 ≤ i →ωi = 1/36

Table 1: The weight ωi for the D3Q19 lattice geom-
etry.

2.1.2 Gravity
In its original form, the LBM does not account for external
forces acting on the fluid like gravity. Buick and Greated [2]
outline several methods of varying complexity and compare
them using test cases.

The most accurate extends the BGK collision operator by
another factor:

Ωi = − 1

τ
(fi(x, t)− feq

i (x, t)) +
2τ − 1

2τ

3

ωi
F · ei (7)

where F is the force to be applied. This force can not only
be gravity, but also others like solid macroparticles acting
on the fluid.

2.1.3 Initial Conditions
Since the fluid simulation tends towards the equilibrium dis-
tribution, the rest position can be determined by using feq

i

with an arbitrary ρ and u, which can serve as the initial
conditions.

Note however, that in a system using gravity, this configu-
ration does not result in a rest configuration, since this force
causes the rest configuration to have an uneven density dis-
tribution. One possibility for working around this problem is
to run the simulation until it comes to rest before introduc-
ing any other forces and presenting the interactive display
to the user.

3. GENERAL PURPOSE-PROGRAMMING
ON GRAPHICS HARDWARE USING CUDA

Programming a parallel streaming processor requires a vastly
different approach to solving problems than in common single-
threaded multi-purpose processing. For example, while the
heapsort and quicksort algorithms are considered to be very
efficient, they do not easily support parallel processing. When
it comes to implementing sorting on the GPU, the NVidiaTM

developers recommend the bitonic sort introduced by Batcher
[1] or radix sort.

The classical approach to General Purpose-Programming on
Graphics Hardware (GPGPU) is using the programmable
shader graphics pipeline to implement arbitrary parallel al-
gorithms [9]. However, this approach requires intimate knowl-
edge of one of the graphics application programming inter-
faces, which creates a barrier-to-entry for scientific develop-
ers. NVidiaTM tries to remove this barrier by implementing
a new approach, a general purpose C++-derived compiled
language, which is run directly on the GPU. This also allows
greater control of the processors at the expense of simplicity.

3.1 Architecture
Since CUDA approaches the GPGPU topic at a lower level
than shading languages, a deeper understanding of the un-
derlying architecture of the NVidia graphics cards is re-
quired.

The main focus of GPUs is on data processing. In order
to optimize for this type of operation, its architecture de-
votes more transistors to arithmetic operations than regular
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CPUs, sacrificing flow control sophistication (branch predic-
tion for example). Memory latency is hidden by interleaved
arithmetical operations instead of data caches. They also
employ a data-parallel programming model, meaning that
the same operation is applied to multiple input data sets.

The GPU maintains its own memory separate from the host
system, but copies between them via a direct memory access
controller are possible. Its hardware design is following a
layer-approach for memory access and thread scheduling,
the reader is referred to the CUDA documentation for an
overview.

3.2 Adapting Fluid Simulations to the GPU
Using CUDA

Fluid simulation using the Lattice Boltzmann method is
well suited for being adapted to CUDA. Since there are no
global operations, every cell can be mapped to exactly one
thread, and all threads can be executed independently of
each other, increasing the flexibility for the thread sched-
uler. The shared memory feature of CUDA is not required,
thus the block and thread size can be chosen in any de-
sired way for attaining optimal performance. This is the
main contribution of this paper and it demonstrates how
an efficient implementation can be achieved, based on the
knowledge about the CUDA architecture.

The input data required for LBM can be stored in arrays
residing in global memory. Li et al. [9] propose a certain
texture memory layout for shader-based LBM D3Q19 cal-
culations that exploits the possibility to retain data locality
even when using bounce back-boundaries. This layout can
be used for CUDA for the same reasons and is explained in
Table 2. This allows fetching all required data by using a
single 128-bit fetch instruction per array. Additionally, the
“structure of array” concept is applied instead of the usual
“array of structures” preferred on CPUs, as recommended
by NVidiaTM .

Array X Y Z W
u ux uy uz ρ
f0
f1
f2
f3
f4

f(1,0,0)
f(1,1,0)
f(1,0,1)
f(0,1,1)
f(0,0,1)

f(−1, 0, 0)
f(−1,−1, 0)
f(−1, 0,−1)
f( 0,−1,−1)
f( 0, 0,−1)

f(0, 1, 0)
f(1,−1, 0)
f(1, 0,−1)
f(0, 1,−1)
f(0, 0, 0)

f( 0,−1,0)
f(−1, 1,0)
f(−1, 0,1)
f( 0,−1,1)

unused

Table 2: Distributing the D3Q19 variables in a way
to collect values that are required at the same time
in the same vector.

Since the streaming operation requires reading in adjacent
cell values and global synchronization is not possible, the
same arrays can not be used for both reading and writ-
ing. Thus, the commonly-used flip flop technique is applied,
where all arrays are created twice, and on every frame, the
input and output arrays are exchanged. This doubles the
memory required for the LBM values, but for real-time sim-
ulation, the bandwidth is a greater limiting factor to the
fluid grid size than the memory available on the current
GPUs anyways.

Li et al. [9] use separate shaders for the stream and col-
lide phases. This would be counter-productive for CUDA-
based implementations, since the kernel instruction count
and the number of read/write operations are not as lim-

ited, and reading/writing from the global memory space is
expensive compared to using local registers.

Both scatter and gather approaches are possible on CUDA
and the LBM. A scatter operation was chosen, allowing a
single kernel to calculate the whole simulation using the fol-
lowing steps:

• Read all values fi from global memory (by utilizing
the texture units via tex1Dfetch).

• Calculate u and ρ.

• Calculate the collisions.

• Write the result to the next cell in direction ei, imple-
menting the streaming operation.

Since visualization requires the macroscopic fluid informa-
tion u and ρ, this information has to be written to a separate
array in the process. A single slice of the domain might suf-
fice for this, though, depending on the type of visualization.

3.3 Visualizing the Flow
Two ways of visualizing the fluid simulation were imple-
mented: Advecting particle objects and mapping the veloci-
ties to a texture, which then is used for drawing an OpenGL
quad. Both of these require the OpenGL interoperability
feature of the CUDA API, which allows accessing a vertex
buffer object or pixel buffer object from a kernel.

For the velocity texture, the resulting pixel buffer object has
to be copied to a texture, since accessing an OpenGL texture
from CUDA is not possible until the version 3.0, which was
not yet available during development.

For the particles, a vertex buffer object can be used directly
as the input for glDrawArrays using GL POINTS as the
drawing mode. Since OpenGL allows mapping textures on
points, a particle system-based gas visualization can be ren-
dered using the fixed-function pipeline without having to
copy the particle positions. The particles’ position was cal-
culated using Euler integration.

3.3.1 Geometry Shaders
Using geometry shaders available on CUDA-enabled graph-
ics cards as an OpenGL extension, arbitrary glyphs (like
spheres) can be used for rendering the points generated by
the particle visualization, too. Since point particles cannot
visualize the velocity and velocity textures can only visual-
ize a single slice of the domain, a particle glyph that can
represent direction can be used to visualize the flow velocity
in three dimensions. Using a geometry shader, displaying a
field using pyramids used as arrows like in Figure 3 can be
achieved.

A geometry shader uses a primitive as its input (a point
in this case) and emits any number of primitives (usually
triangles), which are then sent to the rendering pipeline.

Using CUDA, the movement direction of a particle can be
stored in the texture coordinates of a point in the VBO. This
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information can be used in the geometry shader to rotate the
glyph to point to the direction the fluid is moving.

4. BOUNDARY CONDITIONS IN FLUID SIM-
ULATIONS

Since the fluid domain has to be finite, the borders have to
represent one of these types of boundaries:

1. Closed boundaries: The fluid is enclosed by walls which
can not be passed.

2. Free-flow boundaries: The fluid is not enclosed in any
way, but molecules exiting the domain are discarded.

3. Periodic boundary: Molecules exiting the domain on
one side enter the domain on the opposing side. For
two dimensions, this can be thought of like wrapping
the fluid around a three dimensional torus. This con-
cept does not exist in nature, but it can be helpful for
programatically generating tiling textures [15].

The LBM handles physical interactions at a local level, so
it can be enhanced to support domain boundaries and dif-
ferent fluid (like water and air, or water and oil) and solid
interactions with complex boundaries with minimal change.
This has been documented by Li [8], Wei et al. [19], Thürey
et al. [18].

When considering fluids interacting with solids, there are
three different types possible:

1. Fluid-solid: The fluid affects the solid, but the solids
are treated like having no mass. One application for
this are tin cans floating in water.

2. Solid-fluid: The solid affects the fluid. For example,
this can be used for simulating water in a non-changing
environment. Wei et al. [19] demonstrate this interac-
tion type in combination with LBM.

3. Two-way interaction: Both are affected by the other.
A LBM-based implementation is described by Thürey
et al. [18]. This is the most reality-like simulation, but
can be quite challenging due to the combination of two
different kinds of physics (fluid and rigid). GPU-based
implementations face an additional challenge here, since
the rigid body simulation has also to be implemented
on the GPU for optimal performance (NVidiaTM has
implemented this into their physics simulation library
PhysX, but no direct integration is possible for appli-
cations due to the API not exposing the GPU data).

4.1 Integrating a Physics Engine into a Fluid
Simulation

The GPU can be used for rigid body physics calculations.
However, no physics simulation library using CUDA for ac-
celeration exploses their internal data structures used for
this to the outside, and so, collaboration between a CPU-
based physics engine API and a GPU-based fluid engine is
required.

Any physics engine that allows to get the rigid body’s cur-
rent velocity in a point of its surface and then applying force
on that point can be used for the integration.

4.2 Solid-Fluid Coupling
Only closed boundaries are applicable for objects immersed
in the fluid. They can be taken into account by implement-
ing a bounce-back rule (inverting the streaming direction)
instead of the regular streaming step. For the domain edges,
a check based on the coordinates of the current cell has to be
used to check for these special cases. For other cases, a flag
in every cell defines whether there’s a solid at that point.

This technique is limited in two ways: First, moving bound-
aries do not accelerate the fluid, and second, the accuracy is
limited to the grid spacing.

Mei et al. [11] developed a refinement that fixes both prob-
lems. However, this technique does not lend itself well to
CUDA-based implementations, because it requires branch-
ing, and so edge cells would cause divergent threads. This
would have a noticeable impact on performance.

Noble and Torczynski [13] use a different approach, which
is still based on bounce back. Every cell of the fluid lattice
contains a certain fraction ε of solid material to fluid mate-
rial, which is zero for fully fluid and one for fully solid cells,
but can be anything between these values. This value can be
determined by using any voxelization algorithm that lends
itself to a GPU-based implementation, like inside-outside
voxelization [4].

A function B is defined as

B(ε, τ) =
ε(τ − 1

2
)

(1− ε) + (τ − 1
2
)

(8)

The Equation 4 is modified to include a second collision
operator for collisions with the solid object:

fnew
i (x, t)− fi(x, t) = (1−B)Ωi +BΩs

i (9)

Two different options for Ωs
i are offered. However, Strack

and Cook [16] demonstrate that Holdych [6] offers a more
stable equation:

Ωs
i = f−i(x, t)− feq

−i(ρ, us) + feq
i (ρ, us)− fi(x, t) (10)

where us is the velocity of the solid object at the cell’s point.

In addition to being more stable, since the equilibrium equa-
tion contains the same parameters except for the inverted ei,
considering e−i = −ei, this equation can be simplified to

Ωs
i = f−i(x, t)− fi(x, t) + 6ωiρ(ei · us) (11)

This simplification significantly reduces the amount of in-
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structions required. Note that the method presented by No-
ble and Torczynski [13] has three significant advantages over
the one developed by Mei et al. [11] for CUDA-based imple-
mentations:

1. Since ε is just a multiplication parameter, no branches
are required, which avoids divergent threads for any
type of obstacle.

2. No ray casting is required for determining the obstacle
border. Using the method presented in Crane et al.
[4], fractional ε can be derived by increasing the vox-
elization grid’s resolution with respect to the fluid grid
resolution, and then counting the number of solid vox-
elization cells in a fluid cell.

3. Due to the limited resolution of the fluid grid, porous
media like sand cannot be represented with solid ob-
stacle particles. By multiplying the results of the vox-
elization process by some factor between 0 and 1, a
solid obstacle can be made arbitrarily porous.

When the simulated rigid bodies are not porous, the fluid
simulation suffers when objects move at a faster pace through
the domain, since the density of the solid in a cell fluctuates,
also causing a fluctuating fluid density in the cell. This can
be partly remedied by making all objects slightly porous.
Experimentation with a concrete simulation is required for
getting a good balance.

The result of this technique can be seen in Figure 4.

4.3 Fluid-Solid Coupling
In rigid physics simulations, forces applied to rigid objects
are stored as only two values with respect to the center of
mass: impulse and torque. Since an external physics engine
is used, only these values have to be determined by the fluid
simulation to be able to let the fluid domain apply any force
to the rigid object.

The values calculated by the boundary conditions described
by Noble and Torczynski [13] can be used to determine these
two values, too, as explained by Strack and Cook [16].

F =
∆x∆y∆z

∆t

X
n

Bn

X
i

Ωs
i ei (12)

for the impulse and

T =
∆x∆y∆z

∆t

X
n

(xn − xs)×

 
Bn

X
i

Ωs
i ei

!
(13)

for the torque, where n is the iterator over the cells, xs is the
center of the solid’s mass and xn is the position of the nth
cell. Note that Bn

P
i Ωs

i ei is the same in both equations and
has only to be determined once. In addition, Ωs

i is already
required for the collision step for the method of Noble and
Torczynski [13] and can be re-used.

When implementing this operation in CUDA, the sum has
to be implemented as a reduce operation. Since the GPU

Figure 3: Visualizing the fluid domain’s velocity us-
ing pyramid glyphs used as arrows.

Figure 4: A sphere submersed in the fluid.
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is a parallel processing unit, summing is non-trivial. How-
ever, NVidiaTM provides example code called “reduce” to
explain on how to implement this without sacrificing the
performance advantage of the GPU.

Since the fluid-solid coupling uses the same parameters as
the solid-fluid coupling, it is preferable to combine them into
the same CUDA kernel to provide optimal performance.

4.4 Two-Way Coupling
In theory, a combination of the techniques presented in the
previous two sections would result in full two-way coupling.
However, there are certain issues that have to be kept in
mind.

Solids moving faster than the speed of sound in the fluid
domain would cause a breakdown of the simulation. This
can be avoided by limiting the maximum speed of moving
boundaries. However, in two-way coupling, this causes the
fluid-solid-coupling to generate incorrect results, too.

Since a physics engine and a fluid simulation have to com-
municate with each other, the physical units have to be kept
in sync. For example, a 1m metal sphere with a mass of 1kg
might look realistic in a purely rigid simulation, but would
generate unexpected behavior when immersed in a fluid.

Further, when a rigid object moves faster than it would be
possible in the given fluid due to aerodynamic resistance,
the fluid’s recoil into the opposite direction has a greater
force than the object’s force into its current direction. This
is due to skipping the step of applying forces to the fluid and
directly using the current speed of the boundary.

5. EVALUATION
In previous experiments [12], the voxelization technique for
solids was determined to be the major deciding factor of the
runtime performance. Thus, the integration between solid
and fluid lends itself well to using inherently voxelized data
structures like octtrees. Further, primitive objects like cubes
and spheres can be voxelized using an algorithm optimized
for these object types.

However, since voxelization is not a focus of this paper, only
the performance of the fluid simulation itself was evaluated,
as can be seen in Figure 5 (note that performance is indepen-
dent of the simulation results). The testing equipment used
was an Intel Core2 Quad running at 2.83GHz on Ubuntu
Linux with a NVidia GeForce GTX 295 (also running the
display) with 896MB RAM. The application was compiled
in 64bit mode for CUDA 2.3.

Due to RAM limitations on the GPU, a maximum of 128×
128 × 128 cells could be simulated. The results are shown
in Table 3. The memory requirements for a single cell are
5 four-component vectors of floats (16 bytes each), plus an-
other four-component vector of floats if a visualization is
desired (containing the velocity and pressure of each cell).
Note that the visualization was not part of this performance
measurement.

Using a 128× 128× 128 domain, an average performance of
83.4 simulation steps per second could be achieved. One sim-

ulation step involves one collision and one streaming step.
This amounts to over 174.9 million cells per second.

On a 64× 64× 64 domain, an average performance of 615.7
simulation steps per second was observed. This amounts to
over 161.4 million cells per second. This number being lower
stems from the fact that a higher overhead has to paid.

Also of note is that the typical behavior of CPU-based tim-
ing, that performance increases over time when an algorithm
is executed over and over again, can not be experienced on
a GPU, since there are no caches to “warm up”.

6. CONCLUSION
Due to the advancements in graphics processing hardware,
grid-based fluid simulations have moved into the radar of
real-time applications.

Graphics processors have become stream-based processing
units capable of processing tasks with large amounts of data
and a high arithmetic density in a time frame where real-
time simulations are possible, even when rendering is also
taken into account.

It has been demonstrated that the Lattice Boltzmann method
is ideally suited for GPU-based implementations due to its
simplicity and accuracy. Further, integrating complex ob-
jects using two-way coupling is possible with minimal modi-
fications to the original equations and any voxelization tech-
nique that utilizes the GPU.

The main limitation of simulations is the RAM requirement,
not the calculation performance. This will be rectified over
time with newer GPU generations (as well as increasing the
performance). Scaling the simulation to any number of par-
allel threads is not a problem, it even reduces the calculation

Figure 5: A lid-driven cavity flow.

Resolution Steps Per Second Cells per Second
64× 64× 64 615.7 161.4 million
128× 128× 128 83.4 174.9 million

Table 3: The evaluation results of the implementa-
tion demonstrated in this paper.
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time per cell.

The next step to optimize the simulation process would be
to offload the rigid body physics to the GPU, in order to
decrease the two-way communication required between the
two processing units.
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ABSTRACT
We have developed a framework that uses multicore CPUs
and GPUs found on personal computers to accelerate the
computations needed for a class of deformable object mod-
eling algorithms. In recent years there has been a growing
interest in using deformable objects in computer applica-
tions such as animation, video games, garment CAD, and
surgical simulation. Deformable object modeling is quite
computationally expensive. However, since most of the re-
lated calculations can be parallelized, we have developed a
framework that utilizes Nvidia’s CUDA technology to ac-
celerate a set of deformable object modeling algorithms by
transferring their core computations to the GPU. Our re-
sults show that frame rates can be improved more than 20
times using GPU compared with using a multi-core CPU. In
addition, we have developed a method called Local Shape
Matching which is an extension to Shape Matching method.
Using this new method we have achieved fast and robust
simulations which are demonstrated in the presentation.

1. INTRODUCTION
GPUs are becoming a natural platform for computation-
ally demanding tasks in a wide variety of application non-
graphical, Scientific Computation domains. This is due to
the increased performance of graphics hardware, and to re-
cent improvements in their programmability.
Even though CPUs have evolved so much and their price
has declined significantly, commodity GPUs are delivering
better performance with respect to cost for parallelizable
computations.
For example, the NVIDIA GeForce GTX 280 ($450 as of
June 2010) can achieve a sustained 141.7 GB/sec of mem-
ory bandwidth with a computing performance around 933
GFLOPS in single precision calculations. As of 2010, the
fastest PC processor has a theoretical peak performance of
79.9 GFLOPS (Intel Core i7 980X) in double precision cal-
culations with 25.6 GB/sec memory bandwidth. Not only
is current graphics hardware fast, but it is growing faster
than for CPUs as well. Semiconductor technology, driven

by advances in fabrication technology, is increasing at the
same rate for both CPU and GPU. The reason that the per-
formance of graphics hardware increasing faster than that
of CPUs is due to the scaled enhancement given by the
higher parallelism. CPUs are optimized for high perfor-
mance for sequential computing; therefore, many of their
transistors are dedicated to supporting non-computational
tasks like branch prediction and caching. On the other
hand, the highly parallel nature of graphics computations
enables GPUs to use additional transistors for computation,
achieving higher arithmetic intensity with the same transis-
tor count [16].
Because of the high parallelism that exists in physical sim-
ulation of deformable bodies, we can use the GPU to re-
duce the calculation time. GPUs have been used for general
purpose computing (GPGPU) for several years. However,
since they previously were designed specially for rendering
and rasterizing, programmers had to use complicated tricks
in order to take advantage of their stream processing ar-
chitecture. However, efforts has been made to perform the
computations of deformable object modeling on GPUs using
shaders. Georgii and Westermann implemented mass-spring
system on GPU [7]. Nonlinear FEM has even been imple-
mented on GPU [21]. However, since GPU hardware and
shaders were not designed for this kind of operation, cod-
ing was complicated. NVIDIA’s CUDA[1] GPGPU tech-
nology is a fundamentally different computing architecture
for solving complex computational problems. CUDA (Com-
pute Unified Device Architecture) supports development us-
ing high-level language, further enhancing its popularity.
In the next section we will provide background on deformable
object modeling and review the literature on their GPU im-
plementation. In section 3 we explain four methods that are
implemented in our framework and introduce Local Shape
Matching Method. In section 4 we will explain our GPU
based framework for deformable object modeling. In sec-
tion 5 we have shown our results and we have concluded in
the last section.

2. BACKGROUND
We begin by reviewing the literature and motivating our se-
lection of the set of deformable object modeling algorithms
that will be implemented comparatively in this paper.
Mass-Spring models have been popular in Computer Ani-
mation for over 20 years. In SIGGRAPH 87 John Lasseter
shocked the computer graphics industry by presenting Luxo
Jr. his first 3D animation which was produced at Pixar
[11]. His ideas allowed animators to extend traditional 2D
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storyboarding techniques, keyframe animation, ”inbetween-
ing”, and scan/print to the 3D realm. At the same venue
Terzopouos et. al [23] presented the first paper on physically
based animation. They employed elasticity theory to con-
struct differential equations to model the behavior of non-
rigid curves, surfaces, and solids as a function of time. Since
then, many researchers have taken advantage of various sci-
entific concepts, in animation of deformable objects, hair,
cloth and fluids [8, 15].

2.1 Physically Based Methods
Most physically based methods for modeling deformable ob-
jects are based on continuum elasticity. Under the assump-
tions of continuum mechanics, the behaviour of a deformable
object can be expressed as follows. Suppose the rest shape
of a continuous deformable object is a subset of Ω of R3.
Ω consists of all the particles with positions x0 = [x, y, z]τ ,
where x0 ∈ Ω. x0 denotes the material coordinate of a point
in rest position. When a force is applied, the shape deforms.
We suppose that a point at location x0 moves to a new loca-
tion with a displacement denoted by u = [u, v, w]τ such that
the new location of particle x0 is x = u+x0. Usually a mea-
sure for deformation is defined (Strain) and at each iteration
of simulation internal forces are calculated such that linear
and angular momentum is preserved or strain energy stored
in the object is minimized. Once these forces are calculated,
displacements are calculated by integration.

2.2 Non-Physically Based Methods
Although physically based deformable object modeling meth-
ods are generally based on simple Continuum elasticity, pre-
cise solutions to these methods cannot be implemented in
real time. In addition, approximations can make the simula-
tions either very inaccurate, or unstable numerically. There-
fore, non-physically based methods that are based on sim-
plifying smoothness constraints are still an attractive choice.
Mass-Spring method and shape matching technique[13] are
two examples of non-physically based methods. For a com-
plete review of deformable object modeling you can refer
to[15].

2.3 NVIDIA CUDA and AMD FireStream
In 2006, ATI launched FireStream as the industry’s first
commercially available hardware stream processing solution.
At first it was designed as a virtual machine abstraction
for GPUs that provided policy-free, low-level access to the
hardware designed for high-performance, data-parallel ap-
plications [17]. In the same year AMD acquired ATI and
re-branded the API to the AMD Stream Processor, but it
was changed to AMD FireStream in 2007. NVIDIA lunched
their own GPU parallel computing architecture CUDA in
2007. CUDA gives developers access to the native instruc-
tion set and memory of the parallel computational elements
in CUDA GPUs. Using CUDA, the latest NVIDIA GPUs
effectively become open architectures like CPUs. CUDA
and FireStream both provide similar functionality, however,
CUDA seems to have been absorbed by the scientific com-
munity. It is shown that typical applications such as Traffic
Simulation, Thermal Simulation, and K-Means can be ac-
celerated using the GPU, demonstrating as high as 40 times
speedup when compared with a CPU implementation [4].

Hence researchers have used CUDA stream processing for a
variety of applications.
CUDA has been used for accelerating some existing deformable
object modeling techniques as well. Rasmusson et. al. [20]
investigated multiple implementations of volumetric Mass-
Spring-Damper systems in CUDA. They compared the per-
formance of CUDA to previous implementations utilizing
the GPU through the OpenGL graphics API and showed
that performance and optimization strategies differ widely
between the OpenGL and CUDA implementations [20] The
non-linear FEM method mentioned in [21] has been acceler-
ated with CUDA in [5] by Comas et. al. within their Sofa
Framework.

3. IMPLEMENTED METHODS
In this section, we provide an overview on the four methods
that are implemented in our framework.

3.1 Weighted Mass-Spring Method
Mass-spring Method (MSM) is the simplest, most intuitive
and most common method used in deformable object mod-
eling. Since the early works by Terzopoulos et.al. [22, 23]
mass-sprig method has been used for modeling of various
deformable objects such as cloth simulation [2, 19], face an-
imation [10] and soft tissue [8, 24].
In this system, the deformable object is considered in a dis-
crete space. This model consist of point masses connected
together with mass-less springs and dampers.
In the original mass-spring system no weight function is used
but we have added weight so nearest neighbours will have a
greater effect. By adding weights and considering constant
stiffness coefficient ks the elastic force is obtained by:

fs
i =

∑
j∈N(xi)

kswij(xij)

(
1−

l0ij
‖xij‖

)
(1)

Where xij = xj − xi in which xi is the position of node i.
l0ij is the initial length of spring between node i and node j,
N(xi) is the set of neighbours of node i and wij is the weight
of jth neighbour of node i. By considering weights and con-
stant damping coefficient kd, the damping is approximated
by:

fd
i =

∑
j∈N(xi)

kdwij
vτ

ijxij

‖xij‖
xij (2)

Where vi is the velocity of node i and vij = vj − vi.

3.2 Local Shape Matching (LSHM)
A special meshless non-physically based model for deformable
objects was developed by Müller er al. [13] that is able to
provide a robust simulation. We have developed a method
for modeling deformable objects based on the ”Shape Match-
ing” method. We have extended the concept of clusters in
Shape Matching, such that a cluster is defined for each point.
An overview of this approach is shown in Figure 1. At the
beginning of the simulation for each node i the center of mass
C0

i is calculated for that node and its neighbours; also the
vector νi from the center of mass to each node is stored. At
each iteration of the simulation, rotation should be extracted
from the deformation. The rotation is approximated using
the least square optimization explained in [13]. As shown in
Figure 1(c), extracting the rotation is equivalent to rotating
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the coordinate system in reverse xR = R−1x. For each node
i in the new rotated coordinate system, the goal position is
located at gR

i = νi + CR
i where CR

i is the new center of
mass of node i and its neighbours in the rotated coordinate
system. Once the goal position are found in the new co-
ordinate system, the goal positions are transformed to the
original coordinate system gi = RgR

i . Instead of using the
integration schema proposed by Müller et.al., we introduce
a restoring force from the current position to the calculated
goal position:

fs
i = ks(gi − xi) (3)

While rotation can be approximated for each node, we ap-
proximate the rotation for the whole shape and use it for
all nodes for simplicity. On the other hand, it turns out
that we don’t have to transform all the nodes to the rotated
coordinate system. The same results can be achieved if we
only rotate νi. An overview of our algorithm is given in
Algorithm 1.

Algorithm 1 Our Local Shape Matching algorithm

{Initialization}
for all nodes i do

C0
i = 1

‖N (xi)‖
∑

j∈N (xi)
x0

j

νi = x0
i −C0

i

end for
{At each iteration}
Approximate the rotation → R.
for all nodes i do

Ci = 1
‖N (xi)‖

∑
j∈N (xi)

xj

gi = Ci + Rνi

fi = ks(gi − xi)
end for
{Explicit integration}
for all nodes i do

ẋi ← ẋi +4tfi/mi

xi ← xi +4tẋi

end for

3.3 Meshless Finite Element method
If the finite element method is applied to a linear system it
produces a linear system of algebraic equations. Assuming
linear stain and assuming that our material is isotropic the
governing equation of the material (ρẍ = ∇ · σ + f) can be
simplified as follows:

ρẍ = µ4u + (λ + µ)∇(∇.u) (4)

Where ui = xi − x0
i is the displacement of each node, ρ

is the density of the material and λ and µ are Lamé’s co-
efficients. Debunne et.al. [6] used a mesh free method to
solve this equation. Their method is based on calculating
Laplacian(5 = 42) and gradient of divergence (5(5.)) in
a discrete fashion. Using their approach these geometric op-
erators are defined based on the neighboring nodes only as
follows:

4ui =
2∑

j∈N (xi)
lij

∑
j∈N (xi)

uj − ui

lij
(5)

∇(∇.u) =
2∑

j∈N (xi)
lij

∑
j∈N (xi)

[
(uj − ui).

lij

lij

]
lij

lij

lij
(6)

where lij = uj − ui and lij = ‖uj − ui‖ is the distance be-
tween sample points i and j.
In the original method mentioned all neighbours have the
same weight. We have modified such that closer neighbours
will have a greater effect as expected. On the other hand,
the original method does not handle significant rotations. In
order to fix this, we perform the calculations on the objects
coordinate system as we did in the previous section. There-
fore, at each iteration we approximate the global rotation of
the object. To calculate Laplacian (Equ. 5) and Gradient of
divergence (Equ. 6) we need to calculate the displacements
(ui = xi − x0

i ). To compensate for the rotation, before cal-
culating the displacements we rotate the original points with
the approximated rotation of the object:

x̃0
i = Rx0

i (7)

ui = xi − x̃0
i (8)

3.4 Point Based Animation
Point based graphics is an active research area in computer
graphics in which the surface is rendered as point sampled
surfaces(surfles) rather than polygonal surfaces [18]. There
has been growing interest in combining meshfree methods
and point based graphics. Müller et. al. proposed Point
Based Animation (PBA) a mesh free continuum mechanics
method for animation of elastic, plastic and melting objects
[14]. In their approach the geometrical strain is approxi-
mated around each node based on the deformation of neigh-
bours nodes. Then the derivation of elastic energy is approx-
imated in the area around each point(phyxel) to calculate
the resulting elastic force. They use moving least square op-
timization to approximate strain, stress and strain energy.
To calculate the elastic forces they use the same approach
to calculate the derivation of strain energy with respect to
displacement. The following is an overview of their method:

ut → ∇ut −→ εt → σt

↘ ↙
ut+4t ←− ft = ∇uUt ← Ut

(9)

4. OUR GPU BASED FRAMEWORK
We have developed a framework for animating deformable
objects based on particle-based methods. Our framework
was specifically designed for efficient implementation on CUDA
GPU architectures, and can be mapped easily onto other
multicore CPUs. An overview of our algorithm is shown in
Fig. 2. We made use of the OpenMP [3] library to map the
kernel loop onto all available CPU cores. Numerically, we
made use of explicit integration and restrict each step to
10 iterations. That means we enforce the boundary condi-
tions only once per 10 iterations which reduces the number
of transfers between host and device.
Ideally we want to perform all the tasks on the GPU how-
ever; some tasks can not be parallelized, and consequently
they would be even slower on the GPU. Our goal is to utilize
the GPU parallel computing capabilities fully by transfer-
ring the heavy computation of internal interaction of nodes
and numerical integration to the GPU. By doing so, the
CPU is reserved for performing sequential tasks such as col-
lision detection.
Transferring data (such as positions of the nodes) between
host (CPU side) and device (GPU side) is slow and can eas-
ily become a bottleneck for processing. Therefore, we limit
these transfers as much as possible.
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Figure 1: Local Shape Matching. (a) Node xi and its neighbours at the beginning of the simulation. C0
i is

the center of mass node i and its neighbours, νi = x0
i −C0

i (b) Node xi and its neighbours after deformation.
(c) The rotation is extracted by rotating the coordinate system. Then the goal position is calculated at the
rotated coordinate system; it is located at the same vector position from the center of the mass gR

i = νi +CR
i .

(d) Goal positions are rotated back to the original coordinate system and a force is applied in the direction
of xi − gR

i .

Figure 2: Overview of our simulation framework.

4.1 Data Structure
In our framework, for each node a set of arrays are gener-
ated to store variables associated with the simulation. These
variable are stored for all nodes and include position, ve-
locity, elastic force, list of neighbours, and weight of each
neighbour. In addition to these variables, there are others
that are specific to each of the methods that we compare,
and there fore are declared separately. In the Mass-Spring
method the original length of each spring is stored. One of
the features of our Local Shape Matching Method is that,
instead, the vector from center of mass of neighbourhood
to each node is stored. In the Debunne method only the
original positions are saved. In Point Based Animation the

matrix M−1 =
(∑

j xijx
T
ijwij

)−1

is retained. All variable

arrays described previously are created and initialized at the
beginning of simulation on the host(CPU) and copied into
the device(GPU). However, during simulation, only the po-
sitions and velocities are sent back and forth between host
and device. Positions and velocities are transferred to host
to perform collision detection, and then the corrected val-
ues are sent back to GPU for each next iteration. CUDA
has provided the OpenGL inter-operability which enables

the user to map a CUDA buffer to OpenGL buffer and vise
versa. Unfortunately since this operation is not implemented
efficiently, it turns out to be much faster for us to send us
the position to the GPU twice, once for rendering, and an-
other time for the simulation. The calculated forces are also
transferred to host at each iteration if haptic rendering is
required.
Table 1 shows the proprieties of each variable that is cre-
ated on the GPU. Velocity, position and force are of float
size 4 instead of 3. The reason is that in our CUDA ker-
nel we use float4 since the platform is not optimized for
accessing float3.1 The Neighbours array keeps the index of
n Neighbours closest nodes to each node and effect of each
neighbour is weighted according a function. We have used
two kernel functions in our simulation. The first kernel cal-
culates the forces(or accelerations) and the second kernel
is used for explicit integration. For each node, a thread is
generated; therefore, each thread gathers the required data
from the memory updates the force, velocity and the po-
sition of its corresponding node. Some of the arrays don’t
change during the simulation, and therefore we have used
the read-only cached texture memory for them. The rest of
the arrays are allocated to the global memory. The Global
memory has high latency compared to the shared memory.
Unfortunately we can not use the shared memory for those
arrays since the shared memory is only accessible within
threads of the same thread block. The size of the thread
block is limited and it is chosen based on shared memory
and register requirements. For a typical mesh the threads
are scattered on several thread blocks; Therefore, neighbours
of a node might reside on another thread block.

4.2 Weight Function
1Global memory resides in device memory and device mem-
ory is accessed via 32, 64, or 128 byte memory transactions.
These memory transactions must be naturally aligned: Only
the 32, 64, or 128 byte segments of device memory that are
aligned to their size (i.e. whose first address is a multiple of
their size) can be read or written by memory transactions.
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Table 1: Data arrays and their sizes
Array Name Type Size GPU Memory Transfer

Position float4 4× n Nodes Global Each Iteration
Velocity float4 4× n Nodes Global At Initialization
Force float4 4× n Nodes Global Each Iteration
Neighbours int n Neighbours× n Nodes Texture At Initialization
Nei Weights float n Neighbours× n Nodes Texture At Initialization

Method Specific
node distances (MSM) float n Neighbours× n Nodes Texture At Initialization
νi (LSHM) float4 4× n Nodes Texture At Initialization
Original Positions (DEB,PBA) float4 4× n Nodes Texture At Initialization
M−1 (PBA) float 9× n Nodes Texture At Initialization

Table 2: Weight functions used in mesh free meth-
ods [12].

Linear wij =
{

1 − q if q < h
0 otherwise

Gaussian Function wij =

 e

−q2

σ2 if q < 1
0 otherwise

Cubic Spline Function wij =


1 − 3/2q2 + 3/4q3 if 0 ≤ q ≤ 1

1/4(2− q)3 if 1 ≤ q ≤ 2
0 otherwise

Quartic Spline Function wij =
{

1 − 6q2 + 8q3 − 3q4 if q < 1
0 otherwise

Point Based Animation [14] wij =
{

(1 − q2)3 if q < 1
0 otherwise

where h is a threshold and q = |xij |/h

Different formulas have been used for the weights of the
neighbours. Some of these functions are shown in Table 2.
The weight function should be symmetric (wij = wji) and
it should be smooth, positive and monotonically decreasing.
All the functions in Table 2 satisfy these conditions. We have
chosen Cubic Spline Function as our weight function. On the
other hand we have to make sure that neighborhood rela-
tionship is mutual to ensure the third law of Newton(action
equals reaction) is preserved. Therefore, if for example j is
in the list of neighbours of i but i is not in the list of neigh-
bours of j we make the weight of j in the list of weight of i
to be zero.

5. RESULTS
In order to compare the accuracy of different methods quan-
titatively, we have analyzed our results with the Truth Cube
[9] experiment. Kerdoka et. al developed a physical stan-
dard to validate soft tissue deformation models. They took
CT images of a cube of silicone rubber with a set of em-
bedded Teflon spheres that underwent uniaxial indentation
tests. They used silicone rubber (RTV6166, General Electric
Co.) which exhibits linear behavior to at least 30% strain.
They scanned experimental setup when the cube was un-
loaded. Then plate was held level as it was lowered onto the
oiled top surface of the cube to a set displacement. Three
loading conditions were scanned: 4mm, 10mm, and 14.6mm
displacements producing 5.0%, 12.5%, and 18.25% nominal
strain respectively.
In order to make sure that we track the right positions, we
add 343 nodes to each reference mesh. The positions of
these additional mesh nodes were initialized based on the
position of measured Truth Cube data with zero displace-
ment. In the Truth Cube experiments the cube is in equi-

librium state with presence of gravity force. In other words
the stress and strain is not equal to zero from the begin-
ning. For our simulation, we assume that gravity is zero,
since if we don’t neglect the gravity, our model will deform
as soon as the simulation starts, while in Truth Cube exper-
iment there is no deformation if there is no contact. For the
used silicon rubber the Young’s modulus is equal to 15kPa
and an Poisson’s ratio is close to .5. In our simulation we
have assumed that Poisson’s ratio is equal to 0.499. Mass-
Spring system and Local Shape Matching are not based on
continuum elasticity, therefore they can not be expressed by
Young’s modules of elasticity. For these methods the spring
coefficient is manually adjusted to achieve reasonable results
for those comparisons.
We then simulated the truth cube experiment by lowering
a plate for to simulate the uniaxial compression test. The
plate was moved manually and the position of nodes corre-
sponding to truth cube experiment were saved on a file to be
processed later. By comparing the result of our simulation
to truth cube we can have a performance measure for linear
elastic state. We define a relative error measure for each
point as follows:

ei = 100
‖xs

i − xtc
i ‖

80
(10)

where xs
i is the simulation result for node i and xtc

i is the
position of corresponding node in truth cube experiment.
We have divided the error by 80mm to normalize the error
with respect to the dimension of the cube. The average is
then defined as follows:

E =
1

343

343∑
i=1

ei (11)

Figure 3 shows some screen shots of simulation of cube de-
formation. The cube is composed of 2207 nodes with 16
neighbours for each method. In the shown simulation the
bottom of the cube is fixed to the ground and the cube is
pressed from the top. The simulation is repeated using dis-
cussed modeling methods. The screen shots are taken at
rest state, 5.0%. 12.5% and 18.25% strain levels. As it is
shown in the screen shots, Mass-Spring method had failed in
18.25% strain. Our Local Shape Matching Method is more
robust than all other methods; however, it does not con-
serve the volume of the object. Debunne method and PBA
are more accurate since they are physically based, they also
conserve the volume better. On the other hand the Debunne
method has failed in 18.25% strain.
In Figure 4 we have compared the accuracy of the simula-
tions by comparing the errors found according to Equ.11.
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Figure 3: Simulation of uniaxial compression of a
cube with four methods in our framework. Number
of nodes:2207, number of neighbours: 16.

The results are given for 5 different mesh sizes and are com-
pared for three stages of deformation. We had to increase
the number of neighbours from 16 to 32 since simulations
were very inaccurate and unstable for larger mesh sizes.
As we expect the error is higher where there is greater de-
formation(strain). By manually adjusting the stiffness with
trial and error we were able to achieve good results, how-
ever we had to use different values for different meshes. For
example for the mesh with 3232 nodes and 32 neighbours
although the selected stiffness coefficient has resulted in low
error for 5% and 12.5% strain it has resulted in a total
collapse in the cube for 18.25% strain. The Local Shape
Matching method has resulted in lower accuracy compared
to MSM since it does not conserve the volume. The error
for LSHM is in the same range for all different mesh sizes.
This is a nice feature since it ensures we get the same be-
havior when the resolutions is increased or decreased. The
Debunne method has resulted in lower errors in general how-
ever it shows sensitivity to the mesh size. Although PBA is
the most sophisticated method in our framework it has not
resulted in less errors. This method might not be suitable
for materials with chosen physical properties. It is to be
noted that the mentioned comparison only provides a mea-
sure for linear elastic simulation. Different results might be
achieved in the dynamic simulation.

In order to compare the performance of different methods
together and effect of CUDA we run the simulation on a cube
meshes with different resolutions. We ran the simulation on
a PC with Intel(R) Core 2 Quad 2.4Ghz CPU with 4GB
of ram and graphics processing unit of NVIDIA GTX 8800
with 128 CUDA cores and 768MB of memory. We measured
the calculation time for single core CPU, 4 core CPU and

CUDA.
In Figure 5 the calculation time is compared for different
implementations. We have used logarithmic scale to bet-
ter observe the differences. The simulation is repeated for
all four methods for different mesh sizes (639, 2207, 3232,
5567 and 10932 nodes) and the average calculation time is
given in milliseconds when running the algorithm on a single
core of CPU, on 4 cores of CPU and on the GPU. Our Lo-
cal Shape Matching method is faster than any other method
since there is no square root operation in its calculations. On
a typical processor square root requires 18 cycles while Ad-
dition Subtraction and Multiplication require 2 cycles and
Division requires 12 cycles.
For all methods the calculation time grows linearly as the
number of node increases. Using all 4 cores of the CPU we
were able to accelerate the simulation almost three times
but it will not be fast enough for real time applications if
the number of node is too high. On the other hand by us-
ing CUDA we have an acceptable frame rate for all methods
even when there are 10932 nodes. As it is shown the slope
of the curves are almost the same for single core and multi
core cpu but CUDA has resulted in a much lower slope for
all methods. There is a sudden increase in CUDA calcu-
lation time for all methods around 3000. We can conclude
that at lower sizes the speed is bounded by the calculation
while at higher mesh sizes it is bounded by the bandwidth
of the host-device transfer.

6. CONCLUSION
In this paper we have introduced an efficient framework to
implement mesh-free deformable object modeling methods
on CUDA. We have shown how deformable object modeling
methods can be implemented in this framework. Our frame-
work is more suitable for meshfree methods however simple
mesh based methods such as Mass-Spring method can be
implemented with minor adjustments. Four different meth-
ods for modeling deformable objects including the new Local
Shape Matching method where included in the framework
to take advantage of GPU parallel processing. We showed
that while using multi-core CPUs the calculation can be ac-
celerated, but it grows with the same rate as a single core
CPU. However, we where able to achieve up to 20 times
faster simulations when the number of nodes was more than
tens thousands. The reason CUDA is faster than CPU is
not just having more processing cores, it is also related to
calculation method. When a CPU processing core is wait-
ing for data from the memory it tries to keep itself busy by
running awaiting non-dependent instructions out of order,
GPU on the other hand hides the memory loading time by
performing the same instruction on other threads.
We have compared the accuracy of implemented methods in
linear static state by comparing the simulation results to the
Truth Cube [9] experiment results. The Debunne method is
promising since it results in low errors while it is reasonably
fast. LSHM is very fast and robust however it results in high
errors since it does not conserve the volume. In the future
we will add volume conserving force to this method, to con-
verge towards the desired property of volume preservation
in tissue.
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Figure 4: Accuracy of the simulation
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Figure 5: Comparison of calculation time for different methods when 16 neighbours were considered. (a)
Mass-Spring Method. (b) Local Shape Matching. (c) Discretized Finite Element method (Debunne). (d)
Point Based Animation.
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ABSTRACT
The vast computing resources in graphics processing units
(GPUs) have become very attractive for general purpose sci-
entific computing over the past years. Moreover, central
processing units (CPUs) consist of an increasing number of
individual cores. Most applications today still make use of a
single core only, because standard data types and algorithms
in wide-spread procedural languages such as C++ make use
of a single core only. A customized adaption of existing
algorithms to parallel architecture requires a considerable
amount of effort both from algorithmic and programming
point of view. Taking this additional amount of work hours
required for an adaption to GPUs starting from scratch into
account, the use of GPUs may not pay off on the overall.

The Vienna Computing Library (ViennaCL), which is pre-
sented in this work, aims at providing standard data types
for linear algebra operations on GPUs and multi-core CPUs.
It is based on OpenCL, which provides unified access to
both GPUs and multi-core CPUs. The ViennaCL API fol-
lowing existing programming and interface conventions es-
tablished with uBLAS, which is part of the peer-reviewed
Boost library. Thus, the open source library can be easily
integrated into existing C++ implementations and therefore
reduces the necessary code changes in existing software to a
minimum. In addition, algorithms provided with ViennaCL
can directly be used with uBLAS types due to the common
interface.

The algorithmic focus of ViennaCL is on iterative solvers,
which are often used for the solution of large systems of lin-
ear equations typically encountered in the discretization of
partial differential equations using e.g. finite element meth-
ods. Benchmark results given in this work show that the
performance gain of ViennaCL over uBLAS is on both GPUs
and multi-core CPUs up up to an order of magnitude. For
small amounts of data, the use of ViennaCL may not pay
off due to an OpenCL management overhead associated with
the launch of compute kernels.

1. INTRODUCTION
General purpose scientific computing on GPUs has become
very attractive over the past years [11–13, 18]. In the early
days of such computations, the lack of double precision arith-
metic was often considered a major drawback. However, re-
cent GPUs such as a NVIDIA Geforce GTX 470 or an ATI
Radeon HD 5850 used for the benchmarks in this work do
not suffer from this restriction any longer, thus they push
into the field of high performance computing (HPC). Simul-
taneously, CPUs consist of an increasing number of cores,
for which many serial algorithms become less and less at-
tractive.

Considerable performance gains have been reported [11–13,
18], but the adaption of existing algorithms to GPUs start-
ing from scratch requires a considerable amount of change in
existing codes to account for the highly parallel architecture
of GPUs. Consequently, the effort required for porting an
existing code to GPUs was often considered to be too large
to have a considerable benefit on the overall. In particular,
programmers are required to learn specialized programming
languages like CUDA [14] or OpenCL [20], even if only stan-
dard linear algebra algorithms such as defined by the basic
linear algebra subprograms (BLAS) [2] are to be executed
on the GPU. It is thus desirable to have data types that
provide parallel standard operations on the target machine,
utilizing the available hardware in the best possible way.

There is a number of linear algebra libraries for GPUs avail-
able, for example ACML-GPU [1], CULA [4], MAGMA [6]
or CUBLAS [14], focusing on computationally demanding
operations such as dense matrix-matrix multiplications. How-
ever, sparse matrix arithmetic and iterative solvers are much
less pronounced or not provided at all, even though this
type of matrices is common for the discretization of par-
tial differential equations. Cusp [5] provides two iterative
solvers, but only matrix-vector products are computed on
the GPU, leading to considerable memory transfer overhead.
The CNC plugin in OpenNL [7] provides only a single iter-
ative solver. The functionality provided by these libraries is
available through function calls, which provide a certain set
of basic operations. Thus, appropriate data setup and ini-
tialization is typically left to the user. The approach of the
Vienna Computing Library (ViennaCL) [9] presented in this
work is to wrap GPU data in high level C++ datatypes and
provide an interface that adheres to established conventions.
In the following, we refer to version 1.0.5 of the library.
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This paper is organized as follows: First, the design of Vi-
ennaCL is discussed in Sec. 2. Sec. 3 presents the library
interface for linear algebra operations on BLAS levels 1 and
2. The iterative solvers provided with ViennaCL are ex-
plained in Sec. 4. The inclusion of custom compute kernels
is discussed in Sec. 5 and benchmark results are given in
Sec. 6. Finally, an outlook to future work is given in Sec. 7
and a conclusion is drawn in Sec. 8.

2. DESIGN OF VIENNACL
The roots of ViennaCL are in the need for fast iterative
solvers for the solution of large sparse systems arising from
the discretization of partial differential equations (PDEs) for
use in our in-house simulators. To allow other researchers
and engineers to benefit from our effort, ViennaCL is de-
signed to be used with other modern software packages that
serve a similar purpose, e.g. deal.ii [15], Getfem++ [17] or
Sundance [25], which are all implemented in C++. Conse-
quently, C++ is chosen for the implementation of ViennaCL.

For accessing GPUs, the two main branches are CUDA [14]
and OpenCL [20]. While CUDA is tailored to the specific ar-
chitecture of NVIDIA GPUs, the first royalty-free standard
for cross-platform parallel programming, OpenCL, provides
much higher flexibility with respect to the underlying hard-
ware. Thus, OpenCL supports a superset of the hardware
supported by CUDA and is not limited to GPUs. Moreover,
CUDA kernels need to be precompiled by a separate com-
piler, while OpenCL allows just-in-time compilation of the
source code on the target machine. The latter approach is
especially attractive for developers, because this allows to
create header-only libraries. For these reasons, OpenCL is
chosen for low level hardware programming.

The major design goal of ViennaCL is to be convenient and
easy to use. For simple integration into existing projects, Vi-
ennaCL is a header-only library, which simplifies the build
process considerably. On the other hand, initialization and
management of OpenCL is done completely in the back-
ground and is discussed in the following subsections.

2.1 Hardware Initialization
A common approach in parallel software such as PETSc [10]
is to rely on dedicated initialization routines that have to be
called by the library user prior to any use of other func-
tionality. In ViennaCL, hardware initialization is automat-
ically triggered when the first object of a type provided by
ViennaCL such as scalar or vector is created. In the back-
ground, available devices are queried. If a suitable GPU is
available, it is then used for all calculations, otherwise Vien-
naCL searches for a CPU supported by the OpenCL imple-
mentation. The simultaneous use of multiple devices is not
included in version 1.0.5 of ViennaCL, because multi-device
support was added to OpenCL only recently [20].

2.2 Source Code Compilation
The compilation of OpenCL source code at each run of Vi-
ennaCL leads to additional setup costs during the automat-
ically triggered initialization phase. A full compilation of all
OpenCL sources included in ViennaCL takes several seconds
and may be too long for certain applications. Therefore, Vi-
ennaCL groups sources into smaller compilation units asso-
ciated with the basic types and the underlying floating point

precision. This allows a on-demand compilation: The first
time an object of a particular type is created, all OpenCL
kernels associated with that particular type are compiled. A
more fine-grained compilation on a per kernel basis, which
compiles a kernel at the first invocation, turned out to have
larger overall setup costs in most cases. This just-in-time
compilation reduces setup times to a bare minimum.

2.3 Transfer between Host and Device
Prior to any calculations on GPUs, the data needs to be
transferred from the host memory to the OpenCL device
memory (e.g. GPU RAM). Even if ViennaCL is used on
multi-core CPUs, data also needs to be set up accordingly
in the OpenCL layer.

Since every data transfer from host memory to device mem-
ory and back from the device memory to host memory can
be seen as a copy operation, ViennaCL reuses the conven-
tions introduces with the Standard Template Library (STL)
(see e.g. [24]). In order to copy all entries of a vector cpu_vec

from the host to a vector gpu_vec in the GPU memory, the
call

1 copy(cpu_vec .begin (),
2 cpu_vec .end (),
3 gpu_vec .begin ());

is sufficient. The member functions begin() and end() return
iterators pointing to the beginning and the end of the vector
respectively. Thus, programmers acquainted with the itera-
tor concept and the STL can reuse their knowledge. More-
over, parts of a vector can be manipulated easily and also
plain pointers to CPU data can be supplied. A shorthand
notation for the above code line is

1 copy(cpu_vec , gpu_vec );

which only requires that the begin() and end() member func-
tions are available for the respective type of cpu_vec.

For dense matrix types, the iterator concept could also be
used in principal, but matrix dimensions would have to be
supplied in addition. Instead, data transfer from a matrix
cpu_matrix on the host, no matter if dense or sparse, to a
matrix gpu_matrix on the device is accomplished with

1 copy(cpu_matrix , gpu_matrix );

For this generic interface a number of type requirements
needs to be imposed on the type of the dense cpu_matrix,
which are as follows:

• A member function size1() provides the number of
rows

• A member function size2() provides the number of
columns

• Entries are accessed using the parenthesis operator
with index range starting at zero.

These conventions are fulfilled by uBLAS types, so data set
up in a dense uBLAS matrix can exchanged with ViennaCL
with a single line of code. Library users willing to use a
dense matrix type not fulfilling these requirements have to
provide a wrapper class.
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For sparse matrix types, instead of overloaded parenthesis
operators, data must be accessible via iterators as in uBLAS
[8]. As an alternative using only STL types, a sparse matrix
can also be supplied in a vector of maps, i.e.

1 vector < map <unsigned int , NumericT > >

where NumericT is either float or double.

To modify individual entries of a vector or a dense matrix
located on the OpenCL device, overloaded operators are pro-
vided. Sparse matrix types cannot be manipulated directly
in OpenCL memory in ViennaCL 1.0.5. For example, set-
ting the fifth element of a vector gpu_vec to seven, the line

1 gpu_vec (4) = 7;

is sufficient. Note that the indices start with zero. Under
the hood, the parenthesis operator in gpu_vec(4) returns a
proxy class, for which the assignment operator is overloaded
and the transfer from host to device is initiated. However,
direct initialization of all entries on the GPU as in

1 // one possible initialization of device
2 // memory (not recommended!)
3 for (int i=0; i <100000; ++i)
4 gpu_vec (i) = i;

is not recommended, because each update initiates a sep-
arate transfer with a significant overhead. Thus, the loop
above takes four to five orders of magnitude longer than for
pure host types. A much faster alternative is

1 std ::vector <NumericT > cpu_vec (100000) ;
2 for (int i=0; i <100000; ++i)
3 cpu_vec (i) = i;
4 copy(cpu_vec , gpu_vec );

which has only small overhead due to creation of the tempo-
rary vector cpu_vec and the copy operation at the end of the
for-loop. Consequently, it is recommended to fully set up
the data (i.e. vectors, matrices) on the CPU host, then copy
to the device and start processing the data with ViennaCL.

2.4 Kernel Execution
To start an OpenCL kernel, arguments need to be set and
several parameters need to be supplied using the C inter-
face. In ViennaCL, however, operator overloads and other
abstraction mechanisms in C++ allow an encapsulation of
all these details. For example, the addition of two vectors
vec2 and vec3, typically written in C++ using operator over-
loads as

1 vec1 = vec2 + vec3;

requires the launch of the appropriate OpenCL kernel with
the memory locations and the vector lengths as kernel argu-
ments. All these details are encapsulated, so that users of
ViennaCL do not have to deal with OpenCL internals.

3. BASIC LINEAR ALGEBRA
There are many linear algebra libraries available in C++,
one of the most commonly used is uBLAS [8] included in the
peer-reviewed Boost libraries [3]. In contrast to early imple-
mentations of BLAS functionality in FORTRAN, overloaded
operators are used in uBLAS whenever appropriate. Vien-
naCL accounts for the broad acceptance of the approach by

uBLAS and provides an interface that is to a large extent
a subset of that of uBLAS. More precisely, any code for al-
gorithms using linear algebra operations from ViennaCL is
required to be also valid when using uBLAS objects. This
simplifies testing and verification on the one hand and is a
benefit for uBLAS library users due to reusable algorithms
on the other hand.

The basic types used for linear algebra operations on BLAS
level 1 and 2 are the following:

1 scalar <NumericT > s; // scalar
2 vector <NumericT > v; // vector
3 matrix <NumericT > m; // dense matrix
4 compressed_matrix <NumericT > c1; //CSR
5 coordinate_matrix <NumericT > c2; //(i,j,aij)

Here, NumericT denotes the underlying floating point type
(either float or double). The compressed_matrix type stores
a sparse matrix in a compressed sparse rows format (see
e.g. [21]), while coordinate_matrix stores all matrix entries
as triplets (i, j, aij), where i is the row index, j is the column
index and aij is the corresponding entry.

BLAS functionality in ViennaCL can be invoked similarly
to uBLAS using overloaded operators:

1 // BLAS level 1
2 // x, y and z are vectors
3 y = 2.0 * x;
4 z = x + y;
5 x += 3.1415 * z;
6 NumericT n1 = norm_1 (x);
7 NumericT n2 = norm_2 (y);
8 NumericT ninf = norm_inf (z);
9 plane_rotation(x, y, n1 , n2);

The first three code lines manipulate vectors using over-
loaded operators. Unlike in naive C++, where expressions
like x += 3.1415 * z; would lead to a temporary object for
3.1415 * z, none of the expressions above leads to a tempo-
rary object due to the use of expression templates [27, 28].
Internally, only a single multiply-add kernel is called for this
example with vectors arguments x, z and scalar argument
3.1415. Temporary objects on GPUs are much more detri-
mental for performance and should thus be avoided, since
allocation has to be done via the OpenCL layer. Lines 6 to
8 in the above snippet compute the l1-, l2- and l∞-norm of
the respective function argument. The last line performs a
plane rotation of the argument vectors as required by BLAS
level 1.

On BLAS level 2, ViennaCL and uBLAS are also fully com-
patible:

1 // BLAS level 2
2 // x, y are vectors , A is a matrix
3 y = prod(A, x); //matrix -vector product
4 x = prod(trans(A), x); // transposed product
5 y = alpha * prod(A, x) + beta * y
6 y = solve (A, x, tag); // triangular solver
7 inplace_solve(A, x, tag);
8 A += alpha * outer_prod (x,y); // rank1 update

Lines 3 to 5 show matrix vector products are handled. Lines
6 and 7 call a triangular solver for dense matrices, where the
variable tag is either upper_tag, lower_tag, unit_upper_tag or
unit_lower_tag and is used to choose the dense linear solver.
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4. ITERATIVE SOLVERS
In many applications such as the discretization of partial
differential equations using finite element or finite difference
methods, large sparse systems of linear equations need to
be solved. While direct methods can be used for moder-
ate problem sizes, iterative solvers are necessary for large
systems of equations. The BLAS levels defined for sparse
matrices [16] are not fully implemented in ViennaCL 1.0.5
yet, but the most important sparse operation, namely sparse
matrix vector products, is provided and serves as a building
block for iterative solvers.

The choice of a suitable iterative solver strongly depends on
the properties of the system of linear equations. ViennaCL
1.0.5 provides the following three iterative solvers, which
cover most application areas:

• Conjugate Gradient (CG) [19] for the solution of sym-
metric, positive definite systems.

• Stabilized Bi-Conjugate Gradient (BiCGStab) [26] for
positive definite systems.

• Generalized Minimum Residual (GMRES) [22, 29] for
general systems.

Since no iterative solvers are provided by uBLAS, the in-
terface for the iterative solvers was designed such that it
naturally extends the existing solver interface for the trian-
gular solvers. In ViennaCL, the BLAS level 2 call for dense
matrices

1 y = solve(A, x, tag);

is extended to support the additional tags cg_tag, bicgstab_tag
and gmres_tag, hence the solvers can be called using

1 // CG solver :
2 result = solve(matrix , rhs , cg_tag ());
3 // BiCGStab solver :
4 result = solve(matrix , rhs , bicgstab_tag());
5 // GMRES solver :
6 result = solve(matrix , rhs , gmres_tag ());

Additional solver parameters can be passed to the construc-
tors of these tags to specify tolerances and maximum itera-
tion counts. For example, a relative tolerance of 10−8 and
at most 200 iterations for a CG solver can be set with the
line

1 result =solve(matrix ,rhs , cg_tag (1e -8 ,200) );

Since uBLAS and ViennaCL are mostly interface compati-
ble, the generic implementation of the iterative solvers allows
to directly reuse them with uBLAS types. Thus, the same
iterative solver code allows to run the iterative solver either
on GPUs or multi-core CPUs using ViennaCL or on a single
CPU core using uBLAS. For other matrix and vector types,
a wrapper facility allows library users to customize free func-
tions such as prod() for matrix-vector products, norm_2() for
computing the l2-norm or inner_prod() for computing inner
products to fit other matrix and vector types from external
libraries.

The convergence of iterative solvers can be greatly improved
by the use of preconditioners. ViennaCL 1.0.5 provides an
optional incomplete LU factorization (ILUT) preconditioner
with threshold [21], other preconditioners are in prepara-
tion. The ILUT preconditioner is due to its inherent serial
structure always computed and applied on the CPU, thus
the preconditioner is likely to serve as a bottleneck for an
otherwise GPU accelerated iterative solver.

Preconditioners are supplied as an optional fourth argument
to the function solve(). For example, an ILUT precondi-
tioner can be used within a conjugate gradient solver by
writing

1 // Set up ILUT
2 ilut_precond < compressed_matrix <NumericT > >
3 ilut(matrix , ilut_tag ());
4

5 // CG solver with ILUT preconditioner:
6 result = solve(matrix , rhs , cg_tag (), ilut);

Additional parameters for ILUT can be provided to the con-
structor of ilut_tag similar to the specification of parame-
ters in solver tags. Again, the preconditioner can be used
both for uBLAS types and for ViennaCL types. The generic
solver interface also allows to provide custom precondition-
ers, the only requirement is that the parenthesis operator is
defined for a vector argument.

5. CUSTOM COMPUTE KERNELS
Unlike other libraries, ViennaCL directly supports user-defined
compute kernels written in OpenCL. The user can fully fo-
cus on the kernel, since details of the underlying OpenCL
implementation are handled internally by ViennaCL.

For example, a kernel for elementwise products of two vec-
tors is the following:

1 __kernel void elementwise_prod(
2 __global const float * vec1 ,
3 __global const float * vec2 ,
4 __global float * result ,
5 unsigned int size)
6 {
7 for (int i = get_global_id(0);
8 i < size;
9 i += get_global_size(0) )

10 result [i] = vec1[i] * vec2[i];
11 }

vec1 and vec2 denote the operands, result is the result vector
and size the length of the vectors. Details on the OpenCL
programming language, which is a subset of C with some
extensions for parallelism, can be found in the specification
[20], where in particular the keywords __kernel, __global

and the functions get_global_id() and get_global_size()

are explained. With a few additional code lines, the above
kernel can be launched for three ViennaCL vectors of type
vector<float>.

The possibility to easily include custom compute kernels in
ViennaCL allows to run a long chain of possibly custom op-
erations on the GPU without the overhead of copying data
between host and device. For example, a custom matrix-
vector multiplication kernel could be required for a spe-
cialized matrix of type, say, A. After writing the custom
OpenCL kernel and overloading
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Compute Device float double

Intel i7 960, single core 0.33 0.32

Intel i7 960, ViennaCL 1.98 0.85

NVIDIA Geforce GTX 470 1.88 1.66

ATI Radeon HD 5850 0.86 0.89

Table 1: Computational speed (in GFLOPs) for
inner products of vectors with 3 000 000 entries.
Multiply-add operations are counted as single float-
ing point operations.

Compute Device float double

Intel i7 960, single core 0.17 0.16

Intel i7 960, ViennaCL 1.06 0.81

NVIDIA Geforce GTX 470 1.71 1.10

ATI Radeon HD 5850 1.30 0.93

Table 2: Computational speed (in GFLOPs)
for sparse matrix-vector multiplication using com-

pressed_matrix. The 65 025 matrix rows have seven
nonzero entries on average. Multiply-add operations
are counted as single floating point operations.

1 prod(A & a, vector <T> & b);

for matrix-vector products, objects of type A can directly
be passed to the iterative solvers provided. Thus, the pos-
sibility to provide custom compute kernels and the generic
implementation of the algorithms in ViennaCL result in high
flexibility for the library user.

6. PERFORMANCE
The performance of ViennaCL, version 1.0.5, is compared
on GPUs from ATI and NVIDIA and a CPU from Intel.
uBLAS is used to measure the performance on a single CPU
core. The test platform was a Intel Core i7 960 with 4 phys-
ical cores, 8 logical cores, and 6 Gigabytes of random access
memory, running a 64-bit Linux kernel. Stream SDK 2.2 was
used with kernel of version 2.6.33 and GPU driver version
10.6. The Stream SDK was also used for running ViennaCL
in parallel on the CPU. We observed that benchmark results
for ViennaCL using Stream SDK under Windows 7 are by
up to 30 percent better, especially when using double preci-
sion, hence the performance of ViennaCL is likely to improve
with better OpenCL support in the future. For NVIDIA
GPUs, a kernel with version 2.6.34 and a GPU driver, ver-
sion 195.36.24, was used. When evaluating the following
benchmark results in computational speed per money, it has
to be considered that the CPU is by a factor of around two
more expensive than each of the GPUs. All compute kernels
are launched with the default settings in ViennaCL, namely
128 work groups with 128 work items each.

In Tab. 1 benchmark results for inner products are shown.
Performance gains on GPUs and a fully loaded multi-core
CPU of a factor of up to six compared to a single CPU core
are observed. In double precision, the parallel execution on
the CPU still results in a performance gain of a factor 2.6. A

curiosity is that the OpenCL implementation of the Stream
SDK provides better performance in double precision than
in single precision on the GPU. We assume that this is due
to the early stage of OpenCL support by ATI.

Execution times for matrix-vector products in Tab. 2 de-
pict that the performance benefit over a single CPU core is
around a factor of ten in single precision and about a fac-
tor of seven in double precision. Running ViennaCL on the
CPU results in about 60 to 90 percent of the performance
of the GPUs. We note that additional notable performance
gains on GPUs can be obtained by the use of hybrid for-
mats [11,12], which are not included in ViennaCL yet. Ad-
ditionally, we observed that the use of vector data types in
the OpenCL kernels doubles performance on the GTX 470
in this case.

Tab. 3 lists the execution times for two iterative solvers. The
CG solver is accelerated by a factor of five on the NVIDIA
GPU, and only slightly on the ATI GPU. The performance
gain for BiCGStab is comparable to that of CG. Using the
ATI Stream SDK, a significant overhead of OpenCL ker-
nel launches becomes apparent: While the performance of
sparse matrix vector products, inner products and vector ad-
ditions is comparable on the two GPUs, a call of several dif-
ferent kernels has a much larger overhead using the Stream
SDK than for the NVIDIA implementation of OpenCL.

The observed performance gains of GPUs over CPUs for it-
erative solvers are essentially determined by the available
memory bandwidth, because the iterative solvers use BLAS
level 1 and 2 functions only. Further speedups can possibly
be obtained if parts of the assembly algorithm for the linear
system of equations are also ported to OpenCL. Higher per-
formance gaps are usually observed for BLAS level 3 func-
tions, e.g. matrix-matrix products, which are computation-
ally more demanding than lower BLAS levels. However, no
BLAS level 3 functionality is provided in version 1.0.5 of
ViennaCL, but planned for future versions.

7. OUTLOOK
With the possibility of using ViennaCL on many different
platforms, a global number of work groups and work items is
not sufficient to yield reasonable performance on all target
devices. While the choice is easier on CPUs due to the
smaller number of cores on a die, it has a much stronger
influence on GPUs. In particular, a higher number of work
items or work groups does not necessarily result in better
performance due to synchronization overhead. Thus, work
on an automated tuning environment is in progress, which
aims at finding the best set of parameters for each compute
kernel. Performance gains of about 25 percent have already
been observed for the operations compared in Sec. 6.

Having fast sparse matrix vector product available, an im-
plementation of eigenvalue computations using either Lanc-
zos’ or Arnoldi’s method is in progress. Simple implementa-
tions often suffer from severe round-off errors that introduce
so-called ghost eigenvalues, therefore orthogonality of the
Krylov basis has to be ensured by e.g. partial reorthogonal-
ization [23]. The time consuming matrix-vector and inner
products can then be carried out on the GPU or the CPU
in parallel.
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Compute Device CG, float CG, double BiCGStab, float BiCGStab, double

Intel i7 960, single core 0.23 0.21 0.25 0.22

Intel i7 960, ViennaCL 0.73 0.44 0.52 0.33

NVIDIA Geforce GTX 470 1.15 0.87 1.16 0.73

ATI Radeon HD 5850 0.40 0.35 0.20 0.22

Table 3: Computational speed (in GFLOPs) for the CG and BiCGStab solvers without preconditioner. The
65 025 matrix rows have seven nonzero entries on average. Multiply-add operations are counted as single
floating point operations.

8. CONCLUSIONS
The newly released open source library ViennaCL is pre-
sented in this work. It allows to use the huge computational
resources of both GPUs and multi-core CPUs without go-
ing into the details of the underlying hardware. Thanks to
a common programming interface with uBLAS, ViennaCL
library users benefit on the one hand from the reuse of a
widely accepted programming interface and on the other
hand from the implementation of the three iterative solvers
CG, BiCGStab and GMRES provided by ViennaCL, which
can also directly be used with uBLAS types as well as with
linear algebra types from other libraries using the generic
wrappers provided. Benchmarks show that the library pro-
vides good performance on both GPUs and multi-core CPUs
for large amounts of data. Performance gains of up to a fac-
tor of ten compared to a single CPU core can be observed
for common linear algebra operations. Due to the use of
OpenCL, ViennaCL can be run on many different parallel
architectures.
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ABSTRACT
Graphics processing units (GPUs) lack the capability to mi-
grate active threads from busy processors to idle processors.
This makes irregular applications, where the amount of work
per thread is unpredictable, vulnerable to severe load imbal-
ance, if work assignment to threads is determined statically.

In this paper we present a framework for efficient dynamic
work scheduling in GPUs, that enables general purpose ir-
regular applications to balance the load among threads. We
exploit the performance characteristics of the GPU memory
hierarchy as well as synchronization operations and utilize a
combination of private and shared work stealing structures
at different memory levels. To complement our dynamic
work scheduling framework, we propose and study thread
termination and “victim” selection policies.

To evaluate the performance of our framework, a bench-
mark that solves the shortest-path problem was built. A
performance comparison between our dynamic work sched-
uling framework and a version of the benchmark that assigns
work to threads statically is done for a variety of parameter
values. Our results indicate that our dynamic work schedul-
ing framework outperforms static scheduling by a factor of
up to 2× using graphs with a uniform random distribution
and up to 3× utilizing graphs with a geometric distribution.

1. INTRODUCTION
Modern Graphics Processing Units (GPUs) have evolved in
such a way that they achieve their maximum computational
power in applications that are compute-intensive and highly
parallel [9]. In these specialized many-core processors, it
is vital to keep all the processing cores busy, since GPUs
hide their memory access latency maintaining active threads
performing high arithmetic intensity calculations [1, 6, 10].

In the current GPUs’ model, a static low-overhead hardware
scheduler is responsible for scheduling threads on proces-

sors [7, 8]. However, the model lacks the capability to mi-
grate active threads from busy to idle processors. This cre-
ates a vulnerability for applications (see for instance Ref. [5])
where the amount of work per thread –or processing unit–
is unpredictable and variable as it may lead to severe load
imbalance.

To enable GPUs for general-purpose computing (known as
GPGPU), GPU manufacturers have given hardware support
for atomic operations. With the use of atomic operations
such as atomicCAS (Compare-and-Swap) and atomicExch
(Exchange), it is possible to implement, among other things,
mutual exclusion locks that could be used to enable multiple
threads to access shared data consistently.

In this work we present a framework for efficient dynamic
work scheduling in GPUs that overcomes the load imbal-
ance problem of irregular applications. In this framework we
utilize mutual exclusion locks to protect shared work steal-
ing structures in the larger but slower GPU memory and
we also take advantage of small private work structures in
the low-latency GPU memory to minimize the overhead of
work scheduling. Despite the additional overhead generated
by the use of mutual exclusion locks, our results show that
the migration of work effectively balances the load among
threads with significant performance gains.

Since the execution of a function on a GPU terminates only
when the last thread ends its execution, the policies for
threads to decide whether to end their execution or attempt
to steal work form unfinished threads, as well as which victim
thread to steal from, have deep impact on the performance
of an application. We compare two stealing policies; the
first chooses victims in a consecutive order while the second
approach selects victims randomly.

In order to test the performance of our framework and of
our different termination and victim selection policies, we
built a benchmark that solves the shortest-path problem.

This paper is structured as follows: in Section 2 we describe
the GPU’s hardware and software organization and their
implications. In Section 3 we present our framework for dy-
namic work scheduling as well as our thread termination and
victim selection policies. Details and results of our bench-
mark can be found in Section 4 where we show the capabil-
ities of our dynamic work scheduling framework compared
to static scheduling. Conclusions can be found in Section 5.
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2. BACKGROUND
2.1 Hardware organization
The NVIDIA GTX 280 graphics processing unit used in this
work has a total of 240 scalar processor cores organized in 30
multiprocessor units with 8 scalar processors each. Broadly,
it has two types of memory: a local low-latency memory
called shared memory of 16 KB inside each multiprocessor
unit and a larger but slower memory called global memory
accessible by all the active threads.

2.2 Software Organization
Functions that run on the GPU side are called kernels. To
invoke a kernel we must define the total number of threads
that we want to use in the kernel. Essentially, we have to
define the number of equal-sized blocks of threads that we
want to use in the kernel, and naturally, we need to indicate
the size of the blocks, i.e., the number of threads per block.

2.3 Hardware/Software Implications
The maximum number of threads per block is 512 and the
maximum number of active blocks –concurrently active in
the GPU– is limited by the number of available multipro-
cessors. A complete block must reside in the same multipro-
cessor and up to 8 blocks may be running concurrently per
multiprocessor; that is the case when there is one in each
scalar processor; however, the maximum number of blocks
that could be launched in a single kernel may exceed the
maximum number of active blocks.

The GPU’s shared memory only allows data sharing between
threads in the same block, threads of different blocks cannot
communicate through shared memory regardless of whether
they are on the same multiprocessor or not. If an inter-
block thread-cooperation is required, a higher-latency global
memory is available and visible to all the active threads in
the GPU.

Each block of threads is automatically split by the multi-
processor into groups of 32 threads called warps. When a
warp is available, the multiprocessor executes in lockstep
one common instruction in the warp in a single-instruction
multiple-data fashion called SIMT (single-instruction, mul-
tiple-thread). When threads in the same warp have dif-
ferent instructions, the multiprocessor SIMT unit executes
each branch separately, and therefore, the full efficiency is
a-chieved when all the threads in the warp share the same
instruction.

2.4 Atomic Operations
Some high-end NVIDIA GPU devices (with compute capa-
bility 1.1 and above) are capable of performing atomic op-
erations. Among other operations, NVIDIA gives support
for the atomic Compare-and-Swap (atomicCAS), atomic Ex-
change (atomicExch) and atomicMin operations defined as
follows [1]:

• atomicCAS(int* addr, int comp, int val): Atomi-
cally reads old (located in addr), computes (old==comp
? val : old), stores the result in addr and returns
old.

• atomicExch(int* addr, int val): Atomically reads
old (located in addr), stores val back to addr and
returns old.

• atomicMin(int* addr, int val): Atomically reads
old (located in addr), computes the minimum of old
and val, stores the result back to addr and returns
old.

2.5 Barrier Synchronizations
Due to the lockstep execution of instructions in the warps,
threads within warps are implicitly synchronized. A block-
level synchronization is available with the intrinsic function
__syncthreads(); it acts as a barrier that all the threads
within a block have to reach to continue with their execu-
tion. An inter-block synchronization is also possible using
the global memory, but should be handled with extra care
to avoid deadlocks.

The self-controlled hardware scheduler launches blocks on
available multiprocessors, these blocks cannot migrate to
other multiprocessors and they will not free up resources
until they complete their execution. A potential deadlock
condition may occur if we force a synchronization between
all the blocks, specially if we use more blocks than the ca-
pacity of the available multiprocessors, which is a normal
operating condition for GPU devices.

2.6 Memory Fences
When a thread performs a series of memory accesses, other
threads may observe an order for these accesses different
from the original. To avoid this, the fence function __thread

fence() ensures that an access to global and shared mem-
ory will be visible to all the threads, in program order. For
block-level-only scope, the function __threadfence_block()

can be used instead.

3. GPU DYNAMIC WORK SCHEDULING
The existence of two different levels of memory suggests us to
have a series of private work queues (WQ) and work stealing
queues (WSQ) in global memory and in shared memory. For
work stealing queues we utilize the Blufome and Leiserson’s
work stealing algorithm [3].

3.1 Hierarchy of structures
We propose a general queue structure (q-structure) that con-
sists of two small-sized queues in shared memory, a pri-
vate work queue, WQSh, and a shared work stealing queue,
WSQSh. We also have the corresponding larger work queue
and work stealing queue in global memory which we will rep-
resent with WQGl and WSQGl, respectively. Additionally,
we included in our designs a centralized shared queue whose
size needs to be large enough to accommodate the maximum
number of tasks. A q-structure may be constructed with any
combination of these individual queues.

3.1.1 Notation and Definitions:
For the ith thread Ti, we will represent each of the con-
stituent queues of a q-structure as qi

0, q
i
1, q

i
2, · · · qi

L, where qi
0

is the lowest queue, i.e., the first queue we try to access, and
qi

L the highest queue, i.e., the last queue we try to access.
We define a potential victim of thread Ti as another thread
Tj such that i 6= j.
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3.2 Policies for Using Hierarchy Layers
Given a q-structure configuration, we assign an instance of
the q-structure to each one of the threads or processing units
that participate in the execution. Assuming initially that
the component queues are fully or partly populated with
tasks, we define the following policies to manage the different
layers for any thread Ti:

1. If a task t taken from queue qi
j generates a new task

t′; we try to put the new task t′ in the first queue, qi
0.

2. If we try to put a task t in queue qi
j and find that qi

j

is full; we try to put t in queue qi
j+1.

3. If we try to take a task from queue qi
j 6= qi

L and find

that qi
j is empty; we try to take a task from queue

qi
j+1.

4. If we try to take a task from the last queue qi
L and find

that qi
L is empty; we have two options:

(a) we end the execution of thread Ti (static approach)

(b) we try to steal a task from a victim’s q-structure
(dynamic approach)

5. If a task t stolen from a victim generates a new task
t′; we put the new task t′ in the first own local queue,
qi
0.

Once a task is successfully stolen, the task is handled in the
same way as if it was taken from the local q-structure. It
should be noted that the public centralized queue guarantees
that all the generated tasks will find a position in at least
one queue.

3.3 Mutual Exclusion Locks
In Figure 1 we show two implementations of a test-and-
set lock. Figure 1(a) corresponds to a structure with the
atomicExch operation while Figure 1(b) shows the imple-
mentation with the atomicCAS operation. We make use of
the memory fence function __threadfence() to guarantee
that the lock acquisition and critical section manipulation
will be visible by all the other threads in the correct order.

3.4 Stealing Modes
3.4.1 Consecutive Order Mode:

The first and simplest mode is to steal tasks from victims in
consecutive order: thread Ti tries to steal from thread Ti+1

and if no task is found then it tries thread Ti+2, if not, then
thread Ti+3 and so on.

3.4.2 Random Order Mode:
Our second approach is to select victims randomly. For this,
we require a lightweight pseudo-random number generator to
produce a pseudo-random sequence of numbers that let us
to explore all the possible q-structures.

To implement this, we utilize a linear feedback shift register
(LFSR) which is a shift-register-based counter that is com-
monly used to produce pseudo-random sequences and that

while( atomicExch(&lock, 1) );
__threadfence();
  // critical section
__threadfence();
lock=0;

(a) Lock with atomicExch

while( atomicCAS(&lock, 0, 1) );
__threadfence();
  // critical section
__threadfence();
lock=0;

(b) Lock with atomicCAS

Figure 1: Test-and-set locks utilizing the atomic op-
erations atomicExch and atomicCAS. The memory
fences around the critical section guarantee that the
memory accesses will be seen in the correct order
by all the threads.

could be easily implemented with a couple of bitwise oper-
ations [2], as depicted in the 14-bit LFSR of Figure 2. The
maximum number of states given a n-bit LFSR counter is
2n − 1.

__device__ uint rng14bits(uint reg){
  uint bit;
  bit = ((reg>>0)^(reg>>1)^(reg>>2)^(reg>>12)) &1;
  return (reg>>1) | (bit<<13);
}

Figure 2: 14-bit LFSR implementation.

3.5 Termination Conditions
In an environment without dynamic work scheduling, if a
thread or processing unit exhausts its own q-structure, i.e.,
there are not more tasks to carry out, such thread termi-
nates its execution –this is the case 4(a) in the policies to
manage the layers of Section 3.2–, however, the kernel exe-
cution terminates only when all the launched threads reach
the same condition.

On the other hand, when threads have the capability to steal
from other q-structures –case 4(b)–, a maximum number of
steals can be attempted by the thread before terminating its
execution.

The number of steal attempts plays an important role in
the performance of the application. If we employ a small
number of steals, we run the risk of terminating the execu-
tion prematurely and missing the benefits of work stealing
queues. However, if a very large number of useless steals are
attempted, they will add unnecesary overheads to execution
time.

4. EXPERIMENTAL EVALUATION
All the experiments of this work were done in a NVIDIA
GTX 280 GPU running at 1.30 GHz with 1 GB of global
memory. The host CPU is an AMD Athlon 64 X2 5200+
Dual Core processor with 8 GB in RAM and running under
openSUSE 11.1 linux distribution.
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4.1 Evaluation of Overheads
To quantify the cost of each one of the layers of our general
q-structure we calculated the number of tasks per second
that could be done in each queue individually at different
number/size of blocks; the size of a block is the number of
threads that it contains.

In Figure 3(a) we show a throughput comparison of work
queues and work stealing queues in both global and shared
memory. We used 30 blocks and made a scan from 1 to 512
threads per block. Each thread had its own queue and for
each task we took and then put an item in their own queues.

We found that the use of work stealing queues reduces through-
put by a factor of 3 in shared memory and in the case of
global memory we found an even greater reduction, a factor
of 15.

In Figure 3(b) we calculated the throughput of a work queue
in shared memory with 30, 60, 90 and 120 blocks of threads.
As expected, if we use small-sized blocks, e.g., 128 threads
per block or less, we must launch enough blocks if we want
to saturate the GPU. With bigger blocks, e.g., 256 or more
threads per block, we reach the saturation regardless of the
number of blocks as long as we launch enough to “fill” the
available multiprocessors, 30 in this GPU.
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Figure 3: Illustration of the performance of work
queues and work stealing queues in shared and
global memory.

4.2 Graph Benchmark
We developed a parallel single-source shortest-path bench-
mark based on the Dijkstra’s algorithm [4]. Initially, the
N -vertex graph is fully connected with a nonnegative uni-
form random distribution in path costs and the objective is

to find the shortest distance between the source vertex s and
all the other vertices.

In our algorithm, each thread or processing unit has its own
q-structure with tasks to complete where each task symbol-
izes a specific vertex that needs to be explored. To explore a
vertex v means to check if the cumulative cost –coming from
the source vertex s– from vertex v to the other vertices is
lower or not. If a thread finds a lower cost in, let us say, ver-
tex w, the thread updates the cost of the vertex w, with the
lower cost previously found. Finally, if the thread updated
the cost, a new task that indicates that vertex w has to be
explored, is generated and put in the thread’s q-structure.
The execution ends when there are no more vertices to ex-
plore, i.e., when all the q-structures from all the threads are
empty.

Figure 4 shows our algorithm for solving the single-source
shortest-path problem. The output is the vector path with
N elements containing the shortest distance between the
source vertex and all the other vertices. The initial cost is
stored in the matrix cost with size N × N . The function
take(), takes tasks from the private or shared queues and
the function put(u), puts the tasks u in the in the per-thread
q-structure.

To avoid unnecessary calls to the atomicMin function, we
first check if the newpath cost is lower than the oldpath

cost, and if so, we atomically check it again and if we find
that in fact the cost was lower, we then generate a new task.

Our algorithm allows the same vertex to be put multiple
times in different queues and therefore we may end up do-
ing more work than in a sequential implementation. The
amount of work per thread is variable in our benchmark
and can not be predicted beforehand, which is what we were
looking for in our benchmark.

while(1){
  v = take();
  if (v != emptyQ){
    for(int u=0;u<N;u++){
      int newpath = path[v] + cost[u + v*N];
      int oldpath = path[u];
      int toPut = oldpath > newpath;
      if(toPut){
        oldpath = atomicMin( &path[u], newpath );
        toPut = oldpath > newpath;
      }
      if (toPut){
        put(u);
      }
    }
  }
  else
    break;
}

Figure 4: Parallel single-source shortest-path algo-
rithm. The input consists on a cost matrix and the
output is a vector with the shortest distance be-
tween the source vertex and all the other vertices.

It is important to note that in the GPU scheme, we assigned
one q-structure per warp, so all the threads that constitute
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the warp had the same task, i.e., the 32 threads that con-
stitute the warp, explore different neighbors of the same
vertex.

4.3 q -structure Configurations
Of all the possible configurations of q-structures that could
be obtained by combining the different layers of Section 3.1,
we present results for two that show the highest performance
for static and dynamic scheduling, as they allow us to com-
pare and evaluate the performance of the effectiveness of the
load balancing techniques. We utilize, as a baseline, a static
private q-structure which we will represent with privateQ.
For the dynamic case we utilize a partially shared potentially
stealable stealableQ. Their configurations are the following:

• privateQ: A private WQ in shared memory (WQSh)
and a large private WQ in global memory (WQGl).

• stealableQ: A private WQ in shared memory (WQSh)
and a large shared WSQ in global memory (WSQGl).

where in both cases, we set the queue in global memory to
be large enough to prevent the loss of tasks.

The private WQSh in shared memory in both q-structures
are used to reduce the number of accesses to global mem-
ory. However, due to memory size restrictions in the shared
memory, we limited our q-structures to have only one queue
in shared memory. A private WQSh was chosen against a
shared WSQSh since the latter has a reduced scope to steal
tasks and it is slower than the private WQSh.

Figure 5 shows one of the functions used to manipulate the
tasks of the q-structures. In this case a function to take
tasks from a shared WSQ in global memory is shown. The
additional functions such as take/put in global and shared
memory are straightforward modifications of Figure 5. The
ACQ_LOCK() and REL_LOCK() macros are used to acquire and
release the lock, respectively, and are only used in shared
WSQ structures.

__device__ int takeFromGmemWSQ(volatile int *gWSQ,
        int id, int qSize, 
        int totNumOfQueues ){
  int currentTask = EMPTY_QUEUE;
  ACQ_LOCK(gWSQ);
  int tail = gWSQ[qSize*totNumOfQueues + id];
  if( tail>0 ){
    tail--;
    currentTask = gWSQ[tail*totNumOfQueues + id];
    gWSQ[qSize*totNumOfQueues + id] = tail;
  }
  REL_LOCK(gWSQ);
  return currentTask;
}

Figure 5: Function to take tasks from a WSQ located
in global memory.

4.4 Experimental results
To evaluate the performance of the dynamic work scheduling
framework utilizing our benchmark, we measured the exe-
cution time of each one of the threads, which is equivalent

to measuring the execution time of the warps since threads
within a warp finish at the same time. Then, we compared
the results of the privateQ and the stealableQ. Additionally,
for statistical purposes, we included a series of counters to
monitor the state of the queues: the number of times they
get empty/full and the number of task stolen among others.
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Figure 6: Load balancing experiments using the con-
secutive stealing mode. The baseline privateQ per-
formance is shown in (a). The stealableQ perfor-
mance is shown in (b), (c) and (d) with 5, 30 and
240 SA, respectively. We included the privateQ av-
erage time as a reference. The execution time is
very sensitive to the number of steal attempts and
the optimal point occurs around 30 SA.
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4.4.1 Consecutive order:
In Figure 6 we show four plots with execution times per warp
of the privateQ and stealableQ using the consecutive order
steal method. The experiment was run using 30 blocks with
512 threads each which gives a total of 480 warps. Plot (a)
shows our baseline privateQ experiment while plots (b), (c)
and (d) are the experiments with the stealableQ utilizing 5,
30 and 240 steal attempts (SA) respectively.

We can see from Figure 6(a) that the privateQ experiment is
clearly unbalanced. As a reference we included an horizontal
line to indicate the execution time average, we would expect
to obtain this line if the work were perfectly balanced. We
also included a line to indicate the maximum, i.e., when all
warps have finished their execution. In this experiment we
found that there are warps that take 3 to 5 times more time
to finish than others, so there are warps that become idle
quickly and waste resources while there are others with more
work to do.

This contrast with the curves obtained when using the steal-
ableQ structure where the big variation in the execution time
is reduced. However, we can also see that the number of
steal attempts has an impact on the shape of the curves. In
Figure 6(b) with 5 SA, the overall execution time is lower
but we still had warps spending more time that others. The
best scenario occurs in Figure 6(c) with 30 SA, we obtained
a curve that is practically flat which gives speedups up to
1.5x compared to the privateQ structure.

In the last Figure, with of 240 SA, we obtained two sections
with a width of approximately 240 warps each and whose
variations are smaller compared to the privateQ, however,
the overall execution time is worse.

4.4.2 Random order:
In this second approach, we similarly executed several ex-
periments with different number of steal attempts. In Fig-
ure 7 we show the baseline privateQ experiment and the
stealableQ experiments with 5, 30 and 240 SA.

Compared with the consecutive order method, we note that
the warps are uniformly balanced, the random selection of
victims helps to distribute tasks evenly, which improves the
execution time. We also note that the execution time is
more stable at different numbers of steal attempts, it re-
mains flat with 30 and 240 SA. Measurements with 480
attempts (not shown) show a similar behavior as that of
Figures 7(c) and 7(d).

4.4.3 Number of steal attempts:
Figure 8 shows the impact of number of steal attempts on
execution-time at various parameters. Figure 8(a) is a com-
parison between the consecutive victim selection mode and
three different-sized LFSR random number generators with
8-, 11- and 14-bit sequences, respectively. We note an im-
provement in the execution time with larger random se-
quences and in general a better performance compared to
the consecutive mode.

In Figures 8(b) and 8(c), we show a comparison utilizing
30 blocks with 128, 256 and 512 threads each and selecting
victims with a 14-bit random number generator in (b) and in

0

2

4

6

8

C
lo

ck
 C

y
cl

es
 (
×

10
7 )

0

2

4

6

8

C
lo

ck
 C

y
cl

es
 (
×

10
7
) privateQ

privateQ mean
privateQ max

30 Blocks
512 Threads

(a)

0 100 200 300 400 500
Warp ID

0

2

4

6

8

C
lo

ck
 C

y
cl

es
 (
×

1
07

)

(d)

(b)

30 Blocks
512 Threads
Random

0

2

4

6

8

(c)

C
lo

ck
 C

y
cl

es
 (
×

10
7 )

stealableQ 5 SA
privateQ mean
privateQ max

stealableQ 30 SA
privateQ mean
privateQ max

30 Blocks
512 Threads
Random

stealableQ 30 SA
privateQ mean
privateQ max

30 Blocks
512 Threads
Random

Figure 7: Load balance experiment utilizing the ran-
dom stealing mode with a 14-bit LFSR random num-
ber generator. (a) is the baseline privateQ and (b),
(c) and (d) are the stealableQ experiments with 5,
30 and 240 SA respectively. The execution time is
more stable with the number of steal attempts and
tasks are better distributed.

consecutive order in (c). In both cases the best performance
is achieved when the GPU is saturated with 512 threads per
block.
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Figure 8: Effect of the number of steal attempts in the execution time of the benchmark. In (a) a comparison
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Figure 9: Execution times and speed-ups at different number of blocks. Utilizing a uniform random distribu-
tion in costs with 256 threads in (a) and 512 threads in (b). In (c) a geometric distribution was used instead.
In all cases 60 steal attempts were used.

4.4.4 Number of blocks:
The number of blocks also have an impact on the execu-
tion time. We show in Figure 9 that at least 30 blocks are
needed to saturate the GPU, this agrees with the number of
available multiprocessors. Figure 9(1a) compares the execu-
tion time of our baseline, the privateQ, and the stealableQ
at different number of blocks with 256 threads each. Fig-
ure 9(2a) shows the speed-up achieved, that goes up to 2×.
Figure 9(1b) and 9(2b) makes the same comparison but with
512 threads per block. In this case we observed a lower
speed-up of ≈ 1.7×.

All the previous experiments were calculated with a bench-
mark utilizing a uniform random distribution in the cost
of the vertex-paths. In Figure 9(1c) and 9(2c), to study the
behavior of our dynamic work scheduling framework in a dif-
ferent distribution, we utilized a geometric distribution and
found a speed-up of up to 3× with blocks of 256 threads each.
We also noted that the results from the dynamic scheduling
approach are more predictable and stable compared to the
results from the static approach, as shown in Figure 9(1c).

5. CONCLUSIONS
In this paper we presented a framework for efficient dynamic
work scheduling in graphics processing units. Our work ad-
dressed a limitation of current GPUs where work is assigned
statically to available multiprocessors. We built a bench-
mark that solves the single-source shortest-path problem to
expose such limitation and found that our dynamic work
scheduling framework outperforms the static scheduler by
a factor of up to 2× when using graphs with uniform ran-
dom distribution in cost and by a factor of up to 3× with a
geometric distribution.

We demonstrated that the random selection of victims gen-
erates a better distribution of the tasks among threads com-
pared to the consecutive selection and that it is more stable
at different number of steal attempts. Our experimental
results show that the length of the random sequence also
affect the effective selection of tasks, longer sequences gen-
erates a better random distribution and therefore a better
load balance is achieved.
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