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Preface

Welcome to the 2nd International Workshop on GPUs and Scientific Applications (GPUScA 2011) at Galveston
Island! The workshop takes place in conjunction with PACT 2011 - the annual International Conference on
Parallel Architectures and Compilation Techniques. The purpose of the workshop is to bring together GPU
experts with computational science experts.

GPUs are cost-effective platforms for computational intensive applications providing tremendous peak
performance. However, it is a major challenge to deliver the intrinsic performance of such architectures to end
applications. The workshop addresses programming approaches and key techniques to leverage the computing
power of GPUs.

Based on a double-blind peer review, 5 high-quality papers were selected for presentation and are included
in the workshop proceedings. The accepted papers reflect the multidisciplinary character and the broad
spectrum of the field. The presentation of the papers is arranged in two sessions.

The first technical paper session comprises two papers: ’Fast and Memory-Efficient Minimum Spanning
Tree on the GPU’ proposing a data-parallel implementation of Kruskal’s algorithm for GPUs; ’A GPU-based
Simulation for Stochastic Computing’ presenting an approach which can considerably speed up the simulation
time.

The second technical paper session comprises three papers: ’ForOpenCL: Transformations Exploiting
Array Syntax in Fortran for Accelerator Programming’ proposes a Fortran programming methodology which
supports emerging computer architectures; ’Optimizing OpenCL Kernels for Iterative Statistical Algorithms
on GPUs’ studies the performance behavior of three important kernels; ’A Scalable Hybrid Algorithm Based
on Domain Decomposition and Algebraic Multigrid for Solving Partial Differential Equations on a Cluster of
CPU/GPUs’ proposes a hybrid algorithm for PDEs that matches the architecture of the cluster.

It is our pleasure to announce Rudolf Eigenmann for the keynote address, whose talk is entitled ’Do
GPGPUs Need Specialized Programming Environments?’. An abstract of the keynote address opens the
proceedings.

After the keynote and at the beginning of the first technical paper session a round-table discussion about
the topic ’Fair Evaluation of GPU Performance’ shall emphasize the nature of a workshop and stimulate the
scientific discourse.

The preliminary workshop proceedings are published as technical report TR-11-1 of the Research Group
Scientific Computing, University of Vienna (URL http://www.par.univie.ac.at/publications/download/TR-
11-1). Extended versions of the best papers will be published after the event in the International Journal of
Computational Science and Engineering (IJCSE) as part of the Special Issue on: GPUs and Accelerators for
Scientific Applications.

We would like to thank the program committee members and the reviewers for their hard work and the
excellent cooperation. Also special thanks to all authors of submitted papers for their interest and their
contributions to the success of the workshop. Finally, we are grateful to the PACT chairs for their support of
the workshop.

Galveston Island, October 2011

Eduard Mehofer, Markus Schordan, Dan Quinlan, Beniamino Di Martino
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Keynote

Do GPGPUs Need Specialized Programming Environments?

Rudolf Eigenmann, Professor of Electrical and Computer Engineering, Purdue University

Abstract. The talk will present the results of a recent project that explored this question by developing a
translator and an automatic tuning system for OpenMP programs running on CUDA/GPGPU architectures.
The talk will discuss the transformation techniques that made the most performance difference, an overview
of the translator and tuning system, and the performance results of automatically translated/tuned programs
versus those hand-coded in CUDA.
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Fast and Memory-Efficient Minimum Spanning Tree
on the GPU

Scott Rostrup, Shweta Srivastava, and Kishore Singhal
Synopsys Inc.

700 East Middlefield Rd
Mountain View, CA

rostrup@synopsys.com, shwetas@synopsys.com

ABSTRACT
The GPU is an efficient accelerator for regular data-parallel
workloads, but GPU acceleration is more difficult for graph
algorithms and other applications with irregular memory
access patterns and large memory footprints. The Mini-
mum Spanning Tree (MST) problem arises in a variety of
applications and its solution exemplifies the difficulties of
mapping irregular algorithms to the GPU. In this paper, we
present a memory-efficient parallel algorithm for finding the
minimum spanning tree of very large graphs by introduc-
ing a data-parallel implementation of Kruskal’s algorithm.
We test scalability and performance on random and real-
world graphs with up to 25 million vertices and 240 million
edges on an Nvidia Tesla T10 GPU with 4GB of memory.
Our method can process graphs 4X larger and up to 10X
faster than was possible with the recently published imple-
mentation of Boruvka’s MST algorithm for the GPU. We
also demonstrate the performance advantage of the proposed
method against the multi-core Filter-Kruskal’s MST algo-
rithm on a dual quad-core CPU server with Nehalem X5550
processors.

1. INTRODUCTION
The graphics processing unit (GPU) is a computer archi-
tecture designed for high-throughput data-parallel applica-
tions. The massive data processing capability of the GPU is
attracting researchers to explore using the GPU for general-
purpose computing. Recent research has shown promising
speed-ups on the GPU even for algorithms with highly irreg-
ular memory access patterns, for instance (SpMV) [4] and
graph algorithms [12]. Designing efficient algorithms for the
GPU requires a thorough understanding of the hardware to
make most efficient use of the GPU’s limited capacity, but
high bandwidth graphics memory. It is especially challeng-
ing for irregular algorithms to take advantage of the GPU’s
high memory bandwidth since they require frequent, small
memory accesses with little locality or predictability.

These observations provide a few guidelines for efficient GPU

implementation of irregular algorithms, namely the algo-
rithm should exhibit fine-grained parallelism, minimize ir-
regular memory accesses, and keep total memory overhead
low. To this end, the generic data-parallel primitives [13,19]
being developed for the GPU greatly streamline the process.
The efficient implementations of sort, scan, and reduction
primitives let irregular graph algorithms be directly mapped
onto combinations of these data-parallel primitives [23].

The MST problem on an undirected weighted graph G =
(V,E), with n vertices and m edges, is to find a minimally
weighted subset of E that also forms a spanning tree of G.
The MST problem typically arises as an approximation step
to more difficult problems such as the travelling salesman
problem or the minimum Steiner tree problem. There is an
enormous amount of literature in the theoretical community
on MST [18], including expected linear time [15] and nearly
linear time algorithms [7].

Despite these results, in practice the older algorithms of
Kruskal [17], Jarnik-Prim [14, 21], and Boruvka [5] still see
widespread use. This is because the asymptotically more
favorable approaches are more complex algorithms and hide
large constants in the asymptotic analysis. Of the three
older algorithms only Boruvka’s algorithm is typically de-
scribed in parallel. It has been implemented for a variety of
parallel architectures [2,8], including the GPU in [23]. Boru-
vka’s algorithm as implemented in [23] exploits fine-grained
parallelism, but they run into memory constraints limiting
them to graph sizes of 5 million vertices and 30 million edges.

An alternative approach is taken in the Filter-Kruskal algo-
rithm [20]. It makes use of parallel edge filtering to locate
edges which can be excluded from the MST quickly in par-
allel. Since they target commodity server architectures it is
acceptable to use a sequential Union-Find data structure to
merge connected components, but this will not map well to
the fine-grained parallelism of the GPU.

To address these limitations we introduce the Data-Parallel
Kruskal (DPK) algorithm. In order to keep memory usage
low, each edge is stored once and no complex data structures
are used. We partition the full problem into subproblems so
that we can exploit optimal parallelism while keeping tem-
porary storage requirements low. We implement the algo-
rithm entirely in terms of data-parallel primitives [13] and
investigate the performance of DPK on an Nvidia Tesla T10
GPU. We compare performance with both previous GPU
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results and with the Filter-Kruskal’s algorithm on a com-
modity multi-core server. Despite the algorithm’s simplicity
we show that on both random and real world graph instances
we improve on previous work in terms of both memory usage
and performance.

1.1 Related Work
Boruvka’s algorithm has received a lot of attention in the lit-
erature and there are a number of different implementations
for different parallel architectures. Chung and Condon [8]
implement Boruvka’s algorithm for distributed memory ar-
chitectures and introduce a linear expected time pointer
jumping algorithm. Bader and Cong [2] target shared mem-
ory processors and develop several versions of Boruvka’s al-
gorithm as well as a hybrid algorithm that mixes Jarnik-
Prim’s and Boruvka’s algorithms. In [9], Cong, Varaswati,
and Saraswat implemented a variant of Boruvka’s algorithm
for the IBM BlueGene architecture. There are also two ex-
isting implementations of Boruvka’s algorithm for the GPU
[12, 23]. Vineet et al [23] introduce an implementation of
Boruvka’s algorithm in terms of data-parallel primitive op-
erations for the GPU.

Kruskal’s algorithm has also attracted interest for paral-
lel implementation for SMPs. The most straightforward
approach is to perform the sorting in parallel which, in
many cases, dominates runtime. Osipov, Sanders, and Sin-
gler [20] develop an alternative approach which they call
Filter-Kruskal’s. They make use of data-parallel primitives,
sort and partition, to filter out invalid MST edges but use a
sequential Union-Find data structure to merge connected
components. They show good experimental speed-up on
commodity servers but the sequential Union-Find makes
the algorithm unsuitable for direct implementation on the
GPU. Katriel, Sanders, Träff [16] provide a simplification
of the randomized linear time algorithm [15] and illustrate
an implementation using Jarnik-Prim on a vector machine.
In contrast to these, we make use of parallel filtering but
use Boruvka’s algorithm instead of sequential Union-Find
or Jarnik-Prim since it is best suited for massively-parallel
architectures.

2. DATA-PARALLEL KRUSKAL’S (DPK)
We consider undirected weighted graphs G = (V,E), with
n vertices and m edges. The MST problem is to find a
minimally weighted subset of E that also forms a spanning
tree of G. When G is not connected, it decomposes into
several MST problems, the solution to which will be a set of
disjoint trees called a Minimum Spanning Forest (MSF).

Kruskal’s algorithm [17] is sequential and examines one edge
at a time from the lightest to the heaviest. If the edge con-
nects two disjoint components, it is included in the MST and
the two components are merged, otherwise it is discarded.
Boruvka’s algorithm [5] exploits the same property of con-
sidering lighter edges first but finds, in parallel, the lightest
edge per vertex and connects it to a new component. Each
connected component found is then compressed into a super-
vertex and the algorithm recurses, finding the lightest edges
between supervertices. The problem with using Kruskal’s
algorithm on the GPU is that it is not a parallel algorithm.
The bottom-up parallelism of Boruvka’s algorithm is a good
fit for the GPU and previous work has shown how to map

the algorithm onto parallel architectures in terms of data-
parallel primitives [2, 23].

In [23], Boruvka’s algorithm is implemented using a directed
adjacency list data structure which stores each undirected
edge as two directed edges (see figure 1(b)). This data struc-
ture simplifies implementation but comes with a 2X cost in
storage requirements in comparison to an undirected storage
format. A second related issue is that building the directed
adjacency list itself requires sorting the edges with signifi-
cant associated computational cost. The directed adjacency
list must be built every time the graph is contracted in each
step of Boruvka’s algorithm and, as observed in [2], it is the
most costly part of the algorithm. Both of these problems
are exacerbated by a more fundamental issue with Boruvka’s
algorithm. It considers all edges at every iteration, whereas
it would be better to delay considering heavy edges until
later.

These issues motivate us to introduce a data-parallel adap-
tation of Kruskal’s MST algorithm that uses Boruvka’s al-
gorithm to solve subproblems in parallel on the GPU . The
DPK method addresses the issue of large memory consump-
tion by dividing the problem into subproblems with lower
memory requirements. This is done by high-level partition-
ing of the complete graph by edge weight into subgraphs.
Only these subgraphs are stored in a directed adjacency list
instead of the full complete graph, resulting in both compu-
tational and memory advantage. In this section, we estab-
lish the differences among Kruskal’s, Boruvka’s [23] and the
DPK method by giving the pseudocode for all three of them
and thus highlighting the algorithmic differences resulting in
memory and performance gain for the DPK method. Sec-
tion 3 gives the GPU implementation details of the DPK
method; performance characteristics of the algorithm are
discussed in section 4.

2.1 Data Structures
To develop the algorithm we define the following data-structures:

• G: The graph stored as an undirected edge list (refer
to figure 1(a)).

• G̃: The graph stored as a directed adjacency list (refer
to figure 1(b)).

• C: Array which stores for each vertex its supervertex
id.

• F : An undirected edge list that stores each MSF edge
found.

2.2 Graph Primitives
Kruskal’s [17], Boruvka’s [5, 23], and the DPK method can
be succinctly expressed in terms of a few graph primitive
operations:

• Sort(G): Sorts the edges of G into increasing order by
weight.

• Split(G, p): Splits G into p subgraphs G1, G2, ..., Gp

such that the maximum edge weight in Gk−1 is less
than or equal to the minimum edge weight in Gk.
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Figure 1: Two graph representations are used: (a)
the undirected edge list stores each edge by source
vertex id (S), weight (W), and target vertex id (T).
(b) The directed adjacency list representation stores
each undirected edge as two directed edges. The
edges are sorted into increasing order by source ver-
tex id and each vertex stores the index to the be-
ginning of its list of adjacent out edges (VP).

• BuildDirectedAdjacencyList(G): Builds a directed

adjacency list G̃ from an undirected edge list G.

• ContractGraph(G,C): Contracts G by compressing
the vertices in each connected component into one su-
pervertex. During contraction two types of edges may
be filtered out:

– Edges internal to a supervertex. In the contracted
graph these are be loop edges.

– Heavy parallel edges between supervertices. In
the contracted graph this is any edge with a lighter
parallel edge connecting the same two superver-
tices.

Throughout contraction, each contracted edge main-
tains 1-1 correspondence with an edge from the origi-
nal graph.

• ConnectComponents(F,C): For each vertex v, up-
date C[v] to the supervertex id of v’s current connected
component in F .

• FindMins(G): Finds for each vertex v in parallel, the
minimum weighted edge adjacent to it. All cycles are
broken by discarding edges and a set of cycle-free edges
is returned.

In algorithms 1, 2, and 3 each primitive has no side-effects,
as they do not alter the input arguments. The detailed im-
plementation of these primitives on the GPU in terms of
data-parallel primitives is left to section 3. The implemen-
tation may change depending on which algorithm and graph
format is being used.

2.3 Algorithm Descriptions
The fundamental difference between DPK, Kruskal’s and
Boruvka’s algorithms is the order in which edges are con-
sidered and how many edges are considered concurrently.

All three of them are generic greedy MST algorithms, that
is, they all consider lighter edges before heavier ones for in-
clusion into the MST. Kruskal’s algorithm exploits no edge
parallelism, it considers each edge one at a time from lightest
to heaviest. At the other extreme, Boruvka’s algorithm ex-
ploits maximal edge parallelism. At each iteration of Boru-
vka’s algorithm every remaining edge is considered and the
lightest edge for each supervertex is selected.

DPK resides in the middle; subgraph splitting balances be-
tween the maximal edge parallelism of Boruvka’s algorithm
and the sequential edge selection of Kruskal’s algorithm. For
instance, splitting G into m subgraphs of size 1 is Kruskal’s
algorithm and splitting G into 1 subgraph of size m is Boru-
vka’s algorithm. DPK uses the subgraph splitting to control
how many edges are considered concurrently and to enforce
the heuristic of considering light edges before heavy ones.

funct Kruskal(G)→ F
F = {}
C = [0, 1, 2, ..., n− 1]
G = Sort(G)
for i := 1 to m do

(s, w, t) = G.Edges[i]
if C[s] 6= C[t]
F = F ∪ {(s, w, t)}
C = ConnectComponents(F,C)

Algorithm 1: Kruskal’s algorithm [17].

funct Boruvka(G)→ F
F = {}
C = [0, 1, 2, ..., n− 1]

G̃ = BuildDirectedAdjacencyList(G)

while EdgesRemaining(G̃) do

F = F ∪ FindMins(G̃)
C = ConnectComponents(F,C)

G̃ = ContractGraph(G̃)

Algorithm 2: Boruvka’s algorithm [5].

funct DPK(G, p)→ F
F = {}
C = [0, 1, 2, ..., n− 1]
{G1, G2, ..., Gp} = Split(G, p)
for k := 1 to p do

G′k = ContractGraph(Gk, C)
F = F ∪ Boruvka(G′k)
C = ConnectComponents(F,C)

Algorithm 3: Data-Parallel Kruskal’s.

Pseudocode for Kruskal’s algorithm, Boruvka’s algorithm,
and DPK are given in algorithms 1, 2, and 3 respectively.
They are written using the same graph primitives for ease of
comparison, however, this belies significant implementation,
performance and memory usage differences.

2.3.1 Kruskal’s Algorithm
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(a) Select minimum 
weighted edges

(b) MSF computed from 
selected edges

(c) Connected components 
identified

(d) Select next minimum 
weighted edges

(e) Connected components 
merged

(f) Loop edges filtered, goto (b)

Figure 2: Schematic overview of the Data-Parallel
Kruskal’s algorithm. This differs from Boruvka’s ap-
proach since not every edge is considered in each it-
eration and not all vertices will be included in each
MSF.

Kruskal’s algorithm can operate on undirected or directed
edge lists. The initial edge list is sorted into increasing or-
der by weight and then edges are considered from lightest
to heaviest. Since each edge is considered on its own, no ad-
ditional storage is needed except for storing connected com-
ponent information. Maintaining and merging connected
components sequentially is implemented efficiently using a
Union-Find (disjoint-set) data-structure [10]. These would
be used in place of the array look-ups C[s] and C[t] and the
ConnectComponents primitive in our pseudocode (algo-
rithm 1).

2.3.2 Boruvka’s Algorithm
In algorithm 2 we clearly denote the transformation from
undirected to directed adjacency list. We emphasize this
implementation difference because its computational cost is
significant and since it immediately doubles memory usage.
The directed adjacency list data-structure is used because
the FindMins graph primitive and the heavy parallel edge
filtering in the ContractGraph step both become straight-
forward to implement (section 3.4) [2, 23]. The downside of
this is the significant storage cost of considering all possi-
ble edges concurrently. Boruvka’s algorithm requires unique
edge weights for correctness, this is addressed by breaking
edge weight ties with the lower target vertex id.

2.3.3 DPK
Algorithm 3 accepts an undirected edge list graph as input,
the graph is then partitioned into subgraphs by edge weight
using the Split primitive (section 3.2). Each subgraph Gk

is processed sequentially from lightest to heaviest. By con-
sidering subgraphs separately the temporary storage cost is
only proportional to the number of edges in the subgraph
instead of the full graph. The directed adjacency list data-
structure is created on the fly for each subgraph during the
Boruvka’s algorithm function call. The computational cost
associated with the initialization is reduced as the graph is
contracted before constructing the directed adjacency list.
The DPK algorithm does require some additional overhead
since it must maintain and merge two MSF data structures,

one global MSF and one MSF internal to the Boruvka’s sub-
routine for each subgraph.

2.4 Memory Usage
The two major factors contributing to DPK using signifi-
cantly less memory than Boruvka’s are the undirected edge
list and the subgraph splitting. The undirected edge list
stores the entire graph using 2X less memory than the di-
rected adjacency list format. The subgraph splitting is im-
portant since several of the graph primitives use tempo-
rary storage proportional to the number of edges in the
graph. Selecting the number of edges contained in a sub-
graph, therefore, specifies the temporary storage require-
ments. In section 4.2 we perform a detailed analysis of the
memory usage of DPK.

2.5 Performance
The DPK approach also shows performance improvements
in comparison to Boruvka’s algorithm for many of the graphs
tested (section 5). Graph structure and the relative compu-
tational cost of the different graph primitives are the key
factors. The most critical components are the Split and the
ContractGraph primitives.

The Split primitive is quite efficient in comparison to exe-
cuting all of the graph primitives involved in a single itera-
tion of Boruvka’s algorithm. Thus by using Split we obtain
an inexpensive heuristic able to set aside heavier edges for
later consideration.

To complement this, the ContractGraph primitive will
quickly filter out edges which become internal to an already
formed supervertex. Thus heavy edges are set aside for later
by Split, then when they are considered they are more likely
to be filtered out in the ContractGraph primitive, than to
get passed into the Boruvka’s subroutine. It is significant
to be able to filter out edges in the undirected edge list
graph format, since ContractGraph is faster on an undi-
rected edge list, than on a directed adjacency list. This is
because building the contracted directed adjacency list re-
quires sorting, but no sorting is required in the undirected
case.

The role of graph structure is also important and its effect
is discussed in more detail in section 4. We also investigate
performance empirically across a variety of graphs in section
5.

3. DPK ALGORITHM ON GPU
We adopt the approach taken in [23] and implement our
graph primitives for the GPU in terms of generic data-parallel
primitives. We use the thrust data-parallel primitive li-
brary [13] and the GPU radix sort implementation of Mer-
rill [19]. We describe how each step in algorithm 3 is
mapped onto the GPU in terms of the data-parallel primi-
tives.

3.1 Data Structures
We store the graph in an undirected edge list and denote it
by G(S, T,W ) or simply by the symbol G in short form. It
consists of three arrays S, T and W , each of length m. The
arrays S, T and W store the source vertex id, target vertex
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id and edge weights respectively for every edge in the graph
(see figure 1(a)).

In addition to the graph array we also need to store the
active subgraph Gk with mk edges. Associated with it we
keep an additional array ID of size mk which stores for
each edge in the subgraph its original position in the input
graph G. The ID array maintains a one-to-one mapping
between edges in the original graph and edges in contracted
subgraphs.

The three global data structures G, C, and F (also defined
in section 2.1) store the undirected edge list input graph,
supervertex id array, and MSF respectively. We chose su-
pervertex ids such that each supervertex is represented by a
vertex number selected from one of the vertices contained in
it, the root vertex. This simple restriction allows us to use
pointer jumping [8] to update supervertex ids as new MSF
edges are found.

3.2 Step 1: Split
The Split primitive acts on the input graph G to impose
a partial order on the edge weights. We implement this by
sorting the edges into increasing order by edge weight and
then using subarrays of G as the subgraphs Gk. The sizes of
the subgraphs are chosen to be O(n) and increasing in size as
the edge weights increase. Alternatively, and perhaps more
typically, one would implement this by applying randomized
partitioning recursively. However, we found for integer and
floating point edge weights that the initial sorting was not
a performance bottleneck (Section 5). An additional benefit
of using full sorting is that once the edges are sorted, the
position of the edge in the array may be used as its edge
weight and its edge id. This saves memory and provides
unique edge weights as required for Boruvka’s algorithm to
give correct results.

3.3 Step 2: Contract Graph
The subgraph Gk is contracted into G′k, a graph between its
connected components. This is implemented in two steps,

• Relabel : For each edge in Gk, relabel each vertex v
with its supervertex id C[v].

• Filter : Remove any edges whose source vertex id is
equal to the target vertex id.

The relabeled and filtered edge list is stored in G′k and each
edge in G′k’s original position in G is stored in the array ID.

3.4 Step 3: Boruvka’s Algorithm
We implement Boruvka’s algorithm for the GPU using the
implementation described in [23] with a few modifications.
This implementation uses the directed adjacency list graph
storage format (figure 1(b)). We summarize briefly the Boru-
vka’s (algorithm 2) implementation details, but refer the
reader to [23] and [2] for detailed information.

The directed adjacency list is stored in three arrays S,T , and
W sorted by source vertex id. The directed edge list is then
augmented with the array Vp, which stores the index into G
pointing to the beginning of the local adjacency list for each

vertex (see figure 1(b)). Boruvka’s algorithm (algorithm 2)
requires three main graph primitives,

• FindMins: Find the minimum weighted edge per ver-
tex and add to the MST.

• ConnectComponents: Merge vertices connected in
the MST thus far into supervertices.

• ContractGraph: Contract vertices into supervertices
and rebuild the graph (Build Adjacency List).

The directed adjacency list format is well suited to the above
parallel implementation since FindMins becomes a seg-
mented scan. ContractGraph is computationally more
expensive on the directed adjacency list than on the undi-
rected edge list because of three factors. The first is that
the directed format involves twice as many edges. The sec-
ond is that an additional heavy parallel edge filtering phase
may be applied. The third factor is the cost of building the
directed adjacency list.

The most expensive part of ContractGraph involves sort-
ing the edges by vertex id. Parallel edge filtering requires
sorting the edges by source and target vertex id. If the par-
allel edge filtering is skipped then only source vertex id needs
to be sorted on to build the directed adjacency list.

On output, we represent the MSF as an array of indices Fk,
where each index corresponds to the edge’s position in G.
In addition to the edges found, we also store an array C′ for
each supervertex in G′k, its new root vertex after adding the
edges in Fk to F .

3.5 Step 4: Connect Components
Once new edges have been added to the MSF, the superver-
tex ids in C must be updated to reflect the new connections.
Using the array C′ computed in Boruvka’s algorithm, each
root vertex r updates C[r] to its new root vertex. Then
pointer jumping on C until the root is reached updates all
vertices to their current supervertex id.

4. ANALYSIS
We consider total compute work and memory bounds in
terms of n the number of vertices and m the number of
edges.

4.1 Work Bound
The only routine applied to the entire graph is the Split
primitive. Our split implementation performs Θ(m) work
since it it is implemented by sorting integer or floating point
edge weights using radix sort. In an edge-weight compar-
ison model, one could instead use randomized partitioning
to achieve the same result in expectation [20].

ContractGraph, Boruvka, and ConnectComponents
have work complexities of Θ(m), O(m lgn), and O(n lgn)
respectively. The advantage of contracting before apply-
ing Boruvka’s algorithm is that we reduce the number of
edges being considered by Boruvka’s algorithm by taking
advantage of fast parallel edge filtering in ContractGraph.
The amount of reduction is quantified for randomly weighted
graphs in section 4.3.
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Boruvka’s algorithm’s ability to reduce the number of edges
in a single iteration depends on graph structure. For in-
stance on random graphs it doesn’t reduce the number of
edges very quickly [2]. This is supported by our empirical
tests in section 5 for different varieties of random graphs.
The worst case scenario for DPK is when filtering is largely
ineffective (e.g. m ≈ n), in that case DPK should give worse
performance than Boruvka’s algorithm because it does all
of the same work plus the additional work of merging and
maintaining two levels of MSF’s.

4.2 Memory Bound
Memory usage of all three algorithms is linear in terms of
the number of edges and vertices. For generality we specify
the total memory usage of each in terms of implementa-
tion dependent constants α and γ which specify bytes per
edge and bytes per vertex respectively. This analysis is in-
tended to show where the memory reduction is coming from
as opposed to determining an exact implementation specific
bound.

The memory usages computed in equations 1, 2, and 3 do
not include memory usage during the initialization phase of
each algorithm. These are the Sort, BuildDirectedAd-
jacnecyList, and Split primitives for the Kruskal’s, Boru-
vka’s, and DPK algorithms respectively. This is valid under
the assumption that there is enough memory to sort all of
the edges.

Kruskal’s algorithm has the lowest memory usage of the
three,

MK(m,n) = αKm+ γKn. (1)

It requires only the storage of the undirected edge list plus
the space for the Union-Find data-structure.

The memory usage of Boruvka’s algorithm [23] using the
directed adjacency list (i.e 2m edges) may be written as,

MB(m,n) = 2αBm+ γBn. (2)

The αB constant includes storage of each edge plus tempo-
rary space used in the various graph primitives in Boruvka’s
algorithm [23].

The DPK approach limits the edge input size to the Boru-
vka’s bound (equation 2) by applying it only to subgraphs.
For simplicity we consider an even splitting of the graph
into p subgraphs, each with m/p edges. In that situation
the memory usage of DPK can be written,

MDPK(m,n, p) = αDm+ γDn+ MB(
m

p
, n). (3)

DPK requires only the storage of the undirected edge list
since no primitives act on all edges after the Split primitive.
The edge component of equation 2 is then reduced by the
factor p. The DPK approach does duplicate some storage in
the γ factors. However, only for very sparse graphs (m ≈ n),
would we expect the γ factors to be dominant.

Comparing α factors, we see that αK and αD are simply the
space used to store a single edge, while αB must account
for any temporary storage used within the graph primitives.
This can be very significant when using the data-parallel

primitive approach, but is dependent on the implementa-
tions used. Rather than examine each primitive implemen-
tation analytically, we use the same library [13] to implement
both and compare usage empirically in section 5.

4.3 Analysis for Random Graphs
To improve on the Boruvka’s algorithm upper bound of
O(m lgn), we adopt the approach taken in [20] and restrict
the graphs we consider to those with random edge weights.
The effect of considering only graphs with randomly assigned
edge weights is that we can now consider the algorithm as
a variant of the linear expected time algorithm [15] since
a random sample of r edges from a graph is equivalent to
taking the lightest r edges from a graph with randomly as-
signed edge weights. This will give us expected bounds on
the number of edges remaining after filtering.

Applying the sampling lemma from [6,15] to randomly weighted
graphs gives that, if we select the lightest r edges of a graph
with random edge weights, the probability that another edge
does not form a cycle when added to the MSF of those r
edges is n/r. This is equivalent to saying that the probability
that an edge will not be filtered out in the ContractGraph
step is equal to n/r.

In [20] they use this idea to count the number of comparisons
used in the quicksort algorithm to obtain an expected bound
on the work done. We can apply a simpler analysis to bound
the amount of work done in the Boruvka’s algorithm portion
of DPK on a randomly weighted graph. We assume our edge
list has been sorted and select p subgraphs with increasing
sizes of n, n, 2n, 4n, ...,m/2, where for simplicity, we assume
dummy edges are added to pad the graph out until m = 2pn,
thus p = dlg(m/n)e. By applying the sampling lemma we
know that given a sample of size m/2, if we apply the filter
to the next m/2 edges, then we expect n edges to survive
the filtering. We apply no filtering to the first subgraph,
and then apply the sampling lemma thereafter, thus each
subgraph is expected to contain n edges. If we bound the
maximum number of Boruvka iterations by lg n then we can
place an upper bound on the expected total work done inside
the p Boruvka’s iterations as,

WB(n,m) = O(pn lgn). (4)

Combining the Boruvka’s expected work bound with the
O(m) subgraph splitting bound and replacing p with lg(m/n)
gives an upper bound on the expected work,

W (n,m) = O(m+ n lgn lg
m

n
). (5)

We thus expect to see linear performance in the number
edges provided that the graph is sufficiently dense. One
missing link from this analysis is that inside each Boruvka
iteration, pointer jumping is used to merge vertices into su-
pervertices and it has worst case runtime of O(n lgn). There
is a known expected linear time randomized pointer jump-
ing algorithm [8]. However, we used straightforward pointer
jumping and found it to only be a small contributor to the
total runtime (see Boruvka’s algorithm in table 1).

5. EXPERIMENTS
We compare our implementation of DPK against the Boru-
vka’s algorithm implementation from [23] on the GPU. We
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also compare the DPK performance with that of a sequen-
tial implementation of Kruskal’s algorithm and a competi-
tive multi-core MST algorithm, Filter-Kruskal’s [20] on an
x86 server.

5.1 Setup
5.1.1 GPU

We investigate the performance of the DPK method on a
Tesla T10 GPU with 4GB of memory, from one quarter of an
S1070 GPU computing rack and compare it against Boru-
vka’s algorithm [23] on the same Tesla T10 GPU. We imple-
ment both algorithms using the data-parallel primitives of
the thrust (v 1.5) library [13]. We compile our CUDA code
using cuda 3.2 on optimization level -O3 targeting Nvidia
devices of compute capability 1.3.

5.1.2 Multi-core CPU
We implement the sequential Kruskal’s method [17] and
the multi-core Filter-Kruskal’s method [20] for a dual-socket
quad-core Intel Nehalem X5550 system (@2.67GHz). The
multi-core Filter-Kruskal method [20] is similar in design
to our algorithm 3. They use randomized recursive parti-
tioning instead of sorting to do the subgraph splitting and
use Kruskal’s algorithm to find MSF’s. Kruskal’s algorithm
uses a sequential Union-Find data structure for merging con-
nected components. We implement the Filter-Kruskal al-
gorithm using the same gnu libstdc++ parallel mode [22]
data-parallel primitive implementations as used in [20] and
use the boost (v 1.45) disjoint sets implementation for the
Union-Find data structure. We compile with gcc (v 4.3.4)
using the optimization flags -O3 -march=native on the na-
tive host machine.

5.1.3 Algorithm Parameters
The Boruvka’s [23], DPK and Filter-Kruskal’s [20] methods
contain a few parameters:

• b = 4: Number of Boruvka steps in [23] before parallel
edge filtering is applied.

• z = 2: Scaling Factor in the DPK method. The kth

subgraph size is taken to be the minimum of zk−1n
and the number of remaining edges (section 4.3).

• Recursive subproblems in Filter-Kruskal’s [20] are at
most of size 2n.

For the input graphs we use 32-bit floating point edge
weights and 32-bit unsigned integer vertex ids. The only ex-
ceptions are two optimized implementations that trade edge
weight accuracy for storage. The DPK 10-bit and Boruvka’s
10-bit [23] implementations map edge weights to 10-bit inte-
gers and pack source vertex, target vertex and edge weight
into one 64-bit word. One other comment is that we include
the time spent building an initial directed adjacency list in
the total runtimes reported for Boruvka’s algorithm [23] on
the GPU.

5.2 Random Graphs
We make use of three different sets of random graph dis-
tributions from the Georgia Tech Graph Generator suite
[3] to test the performance and scalability of the different

algorithms. The three distributions are the Erdosz-Renyi
random graph model (RAND), the RMAT power-law de-
gree distribution model, and the SSCA2 hierarchical clique
model. We create two types of random graphs scaling up to
240 million edges:

1. Fixed Vertex Degree (FVD): Keep the average vertex
degree fixed while scaling the number of vertices and
edges,

2. Fixed Vertex Number (FVN): Keep the number of ver-
tices fixed and scale the graph size by adding more
edges, thus increasing the average vertex degree.

5.2.1 Fixed Vertex Degree
In figure 3, we show the results for FVD graphs with average
vertex degree fixed at 6. The DPK method is compared
against Boruvka’s [23] in figure 3(a) and DPK 10-bit is
compared with Boruvka’s 10-bit [23] in figure 3(b). From
figure 3(a) and figure 3(b), it is clear that the DPK method
performs 1.2X-5X faster than the Boruvka’s [23] while also
being able to solve problems 2.5X-3X larger for the random
FVD graphs.

In figure 4, performance on the FVD graphs is shown for
the sequential CPU implementation of Kruskal’s [17] and
the 8-core Filter Kruskal’s [20]. They are compared against
the DPK 10-bit GPU implementation. Both CPU imple-
mentations seem to scale with the number of vertices. In
the plot, we see that on the smaller graphs the CPU imple-
mentation is faster, however on the larger problem sizes we
see the GPU implementations’ time per edge flatten out and
perform better than the 8-core CPU implementation. This
arises from the fact that the Union-Find data structure used
to keep track of connected components uses frequent scat-
tered memory accesses and is not cache friendly. Thus as
n increases the performance of this data structure degrades.
On the GPU, however, scattered memory accesses always
incur a fixed performance penalty regardless of the number
of vertices.

5.2.2 Fixed Vertex Number
In figure 5, we show the results for FVN graphs of increasing
number of edges and the number of vertices fixed at one mil-
lion. The DPK method is compared against Boruvka’s [23]
in figure 5(a) and the DPK 10-bit is compared against Boru-
vka’s 10-bit [23] in figure 5(b). From figure 5(a) and figure
5(b), we clearly see that the DPK method outperforms the
Boruvka’s [23] for all sizes of random FVN graphs both in
terms of timing and memory efficiency. The DPK method is
1.2X-10X faster and processes 4X larger graphs than is pos-
sible with Boruvka’s [23]. As the number of edges increases,
performance flattens out, showing that the algorithms per-
formance is scaling linearly in the number of edges.

In figure 6, performance of the FVN graphs is shown for
the sequential CPU implementation of Kruskal’s [17] and
8-core Filter-Kruskal’s [20]. They are compared with DPK
10-bit on the GPU. In this case, with the number of vertices
held constant, we see that both Filter-Kruskal’s [20] and
DPK scale linearly in the number of edges. Interestingly, the
performance between the DPK and the Filter-Kruskal’s [20]
becomes almost identical as graph density increases.
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(a) DPK vs Boruvka’s.
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(b) DPK vs Boruvka’s with packing optimization.

Figure 3: (FVD) Performance comparison on ran-
dom graphs with average vertex degree 6 and in-
creasingly many vertices and edges. Performance
is compared between DPK and Boruvka’s [23] on a
Tesla T10 GPU with 4GB of memory. (a) DPK and
Boruvka’s use 32-bit floating point edge weights. (b)
DPK and Boruvka’s use packed 10-bit integer edge
weights. The number of vertices and edges begins
at one million and six million and is increased until
memory capacity is exceeded on the GPU.

5.2.3 Detailed Runtimes
In table 1 we examine where each algorithm spends its run-
time. Examining Boruvka’s algorithm performance we see
that it is not competitive with the other two algorithms and
that the dominant component is the ContractGraph prim-
itive. This is because ContractGraph requires rebuilding a
directed adjacency list and on random graphs Boruvka’s [23]
does not decrease the number of edges per iteration very
quickly [2]. We also see that the BuildDirectedAdjacen-
cyList initialization cost alone forms roughly a sixth of
the runtime.

Number of edges (millions)

C
om

pu
te

 ti
m

e 
(n

s/
ed

ge
)

50

100

150

200

50 100 150

●
●●●●

● ● ●
●

RAND

50 100 150

●●
●●

● ●
●

●
●

RMAT

50 100 150

●
●

●●●
● ● ●

●

SSCA2

DPK 10−bit (GPU)
Filter−Kruskal's (8−cores)

Kruskal's (1−core)
●

Figure 4: (FVD) Performance comparison on ran-
dom graphs with average vertex degree 6 and in-
creasingly many vertices and edges. Performance is
compared between the DPK method with packing
optimization on a Tesla T10 GPU with 4GB of mem-
ory, a sequential CPU implementation of Kruskal’s
algorithm and Filter-Kruskal’s [20] on 8-cores. The
number of vertices and edges begins at one million
and six million and is increased until memory capac-
ity is exceeded on the GPU.

Both DPK and Filter-Kruskal’s take advantage of the fast
ContractGraph primitive on undirected edge lists to filter
out loop edges. However, the sequential Union-Find com-
ponent of Filter-Kruskal’s is a limitation to scalability, as
it already comprises 58% and 38% of the runtime in tables
1(a) and 1(b) respectively.

5.3 Real World Graphs
We selected sparse matrices from the Florida Sparse Ma-
trix Collection [11] that represent networks with different
graph properties and that arise from different application
domains (see table 2). We mapped directed graphs onto
undirected graphs and if edge weights were not provided
we used uniformly random floating point edge weights. In
figure 7 we arrange the graphs from top to bottom by in-
creasing average vertex degree. We compare the two 10-
bit edge weight optimized GPU implementations with the
Filter-Kruskal’s [20] 8-core implementation. All three al-
gorithms seem to show better performance as the average
vertex degree increases with DPK showing the best GPU
performance and Filter-Kruskal’s the best performance on
the majority of the graphs.

Comparing the two GPU implementations, only on the ex-
tremely sparse graphs (table 2) do we see Boruvka’s outper-
forming DPK. This is because for very sparse graphs DPK is
essentially Boruvka’s algorithm with some additional over-
head. The sparsest graphs are also some of the smaller net-
works investigated with less than 10 million edges each. On
all other graphs we see DPK outperforming Boruvka’s algo-
rithm.

6. CONCLUSION
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Figure 5: (FVN) Performance comparison on ran-
dom graphs with a fixed number of vertices and in-
creasingly many edges. Performance is compared
between DPK and Boruvka’s [23] on a Tesla T10
GPU with 4GB of memory. (a) DPK and Boruvka’s
use 32-bit floating point edge weights. (b) DPK and
Boruvka’s use packed 10-bit integer edge weights.
The number of vertices is fixed at one million and
the number of edges varies from one to 240 million.

In this paper we introduced the Data-Parallel Kruskal’s MST
algorithm. We illustrated how it can be implemented for
current GPU architectures using data-parallel primitives and
investigated its theoretic and memory advantages over us-
ing Boruvka’s algorithm. We also demonstrated these re-
sults experimentally by finding the MST of a variety of
large graph problems using 4X less memory and up to 10X
faster than possible with Boruvka’s algorithm on the GPU.
We also compared performance against a modern parallel
MST algorithm for multi-core commodity server architec-
tures and showed competitive performance ratios. As in-
creasingly many cores are placed onto a single die, it will be-
come difficult for algorithms with sequential bottlenecks to
keep up. The constrained parallelism of our approach gives
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Figure 6: (FVN) Performance comparison on ran-
dom graphs with a fixed number of vertices and in-
creasingly many edges. Performance is compared
between DPK with 10-bit edge weight packing opti-
mization on a Tesla T10 GPU with 4GB of memory,
a sequential CPU implementation of Kruskal’s al-
gorithm and Filter-Kruskal’s [20] on 8-cores. The
number of vertices is fixed at one million and the
number of edges varies from one to 240 million.

(a) Runtime in milliseconds on random graphs with 5
million vertices and 30 million edges.

Component Boru DPK FK8
Split/Partition - 99 116
FindMins/Sort 554 - 46
ContractGraph 2745 124 211
BuildDirectedAdjacencyList 482 171 -
ConnectComponents 120 83 -
Boruvka’s/Union-Find - 434 524
Total 3901 911 897

(b) Runtime in milliseconds on random graphs with 1
million vertices and 30 million edges.

Component Boru DPK FK8
Split/Partition - 99 84
FindMins/Sort 554 - 8
ContractGraph 2204 26 53
BuildDirectedAdjacencyList 448 39 -
ConnectComponents 30 15 -
Boruvka’s/Union-Find - 169 87
Total 3236 348 232

Table 1: Component-wise performance comparison
on two random graphs with the same number of
edges, but different number of vertices. Perfor-
mance is compared among Boruvka’s [23] (Boru)
on a Tesla T10 GPU, DPK on a Tesla T10 GPU,
and Filter-Kruskal’s [20] on 8-cores (FK8). The
component graph primitives are as listed in the
pseudocodes in algorithms 2 and 3. Each of the
split row titles: Split/Partition, FindMins/Sort,
Boruvka’s/Union-Find specify the first and second
entries in their row respectively.
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Name n (M) m (M) Avg. Deg.
roadNet-TX 1.39 1.9 1.4
roadNet-CA 1.97 2.8 1.4
roadNet-PA 1.09 1.5 1.4
Freescale1 3.43 8.5 2.5
atmosmodl 1.49 4.4 3.0
kkt power 2.06 6.5 3.1
wb-edu 9.85 46 4.7
circuit5M 5.56 27 4.9
thermomech dK 0.20 1.3 6.5
socLiveJournal1 4.85 43 8.8
bone010 M 0.99 11 12
wikipedia-20070206 3.57 42 12
nlpkkt120 3.54 47 13
af shell10 1.51 25 17
bone010 0.99 35 36
audikw 1 0.94 38 41
RM07R 0.38 20 52
mouse gene 0.05 14 320

Table 2: Graphs selected from the Florida Sparse
Matrix Collection [11]. Also listed is the number of
vertices n (in millions) and the number of undirected
edges m (in millions), and their average vertex de-
gree. The results of computing the MST on these
graphs is shown in figure 7.
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Figure 7: Runtime per edge is plotted for a vari-
ety of graphs from the Florida Sparse Matrix Col-
lection [11] (see table 2). The performance of the
Data-Parallel Kruskal’s algorithm with packed edge
weights is compared to the packed edge weight Boru-
vka’s algorithm on the GPU [23] and to Filter-
Kruskal’s [20] on an 8-core server machine. The
graphs are arranged from sparsest at the top to the
most dense at the bottom.

a practical approach to implementing an efficient MST al-
gorithm for GPU. An interesting avenue for further research
would be to add randomization to the algorithm and to use
a GPU implementation of ranged-minimum-queries, similar
to [16]. This would eliminate the upfront cost of sorting the
edges by weight and eliminate any weaknesses to particu-

lar worst-case graphs. To accommodate yet larger graphs
DPK could also be modified to stream data to one or multi-
ple GPUs, similar to the external memory MST formulation
in [1].
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ABSTRACT
Stochastic computing performs operations using streams of
bits that represent probability values instead of determinis-
tic values. An important benefit of stochastic computing is
that it can tolerate a large number of failures in a noisy sys-
tem. Additionally, for the VLSI implementation of a sophis-
ticated algorithm, a stochastic implementation can consume
much less hardware with lower power compared to a de-
terministic implementation with comparable performance.
However, the simulation of the stochastic implementation
is extremely time consuming when it is run on a conven-
tional processor. This is because a probabilistic value is
represented by a long bit stream (for example, 8192 bits) in
stochastic computing. The simulation time of the stochastic
implementation is normally hundreds or thousands of times
slower than the deterministic implementation for the same
algorithm. In this paper, we propose a GPU-based solu-
tion which can greatly speed up the simulation of stochastic
computing. To validate our GPU-based simulation, we use
the stochastic implementation of the frame difference-based
image segmentation algorithm as an example to conduct ex-
tensive experiments. Measured results show that our GPU-
based simulation can achieve up to 119 times performance
speedup compared to the CPU-based simulation.

1. INTRODUCTION
Stochastic computing, which has been known for a long
time [6], performs operations using probabilistic values in-
stead of deterministic values. The initial motivation for
researchers working on this technique was to take advan-
tage of its low hardware cost. For example, a multiplication
needs only an AND gate in stochastic computing, while an
addition and a subtraction can be performed using a mul-
tiplexer, and a division can be implemented using a J-K
Flip-Flop. Additionally, Brown and Card [3, 4] found that a
Finite State Machine (FSM) can be used to implement some
sophisticated functions (such as exponential and tanh func-
tions) in stochastic computing using less hardware than com-
binational logic. For example, their stochastic exponential

function needs only four D Flip-Flops. Furthermore, Qian et
al [15, 14] proposed a novel synthesis approach that utilizes
Bernstein basis functions to approximate polynomial func-
tions in stochastic computing. In addition to the low hard-
ware cost, another advantage of stochastic computing is its
high level of fault-tolerance. Because stochastic computing
performs operations using probabilities instead of determin-
istic values, it can gracefully tolerate a very large numbers of
errors compared to the Triple Modular Redundancy (TMR)
techniques while maintaining the equivalent performance.
Previous research has shown that stochastic computing can
tolerate much higher noise and soft errors for digital im-
age processing applications than conventional implementa-
tions [14, 9]. For instance, Qian et al [14] showed that the
stochastic implementation of an image gamma correction al-
gorithm can gracefully tolerate a very large number of errors
compared to a deterministic implementation. In our previ-
ous work [9], we showed that the stochastic implementation
of a KDE-based image segmentation algorithm [5] can still
have very good segmentation quality compared to a TMR
implementation when the soft error rate reaches up to 30%.

To take advantages of these benefits, a stochastic comput-
ing system must be implemented in hardware, such as an
FPGA or ASIC. A behavior level simulation performed on
a general purpose processor is a necessary procedure before
the hardware implementation. However, the simulation time
of a stochastic implementation is extremely long even for a
simple algorithm. In Table 1 we show the simulation times
of the deterministic implementations and the stochastic im-
plementations of the frame difference-based image segmen-
tation algorithm based on five different image resolutions.
Table 2 lists the detailed specification for the CPU we used
in our experiments. It can be seen that the simulation time
of the stochastic implementations is much longer. This is
mainly because stochastic computing uses a long bit stream
(8192 bits in this example) to represent a probability value.
Thus, the simulation time of the stochastic implementation
is normally hundreds or thousands of times slower than the
deterministic implementation for the same algorithm. For-
tunately, the rapid development of Graphic Processing Units
(GPUs) brings a new opportunity to solve the computa-
tion bottleneck of simulating stochastic computing elements.
Due to the low cost and parallel computing capability of
the GPUs, GPU computing has recently been used for a
wide range of high-performance computing applications [16,
13, 11, 8]. Benefiting from the GPU hardware, applications
can often achieve more than 100 times performance speedup
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Table 1: Simulation times of the two implementa-
tions of the frame difference-based image segmenta-
tion algorithm for five different image resolutions.

Run time of the Run time of the
Resolution deterministic stochastic

implementation implementation

176 × 144 0.0013s 9.45s
352 × 288 0.0055s 37.14s
640 × 480 0.0237s 112.55s
1280 × 720 0.0755s 337.82s
1920 × 1080 0.1701s 753.83s

Table 2: Main features of the CPU used for the
experiments.

CPU Model Intel Duo E8400

Number of multiprocessors (SM) 1
Number of cores 2
SM clock frequency 3.0 GHz
Memory Frequency 1.33 GHz
L1 Cache 2×32KB/2×32KB
L2 Cache 6MB

for digital signal processing, physical simulations, biomed-
ical imaging, geologic computation [12, 17, 2], and other
fields. In this paper, we investigate using the GPUs to re-
duce the simulation time of stochastic computing. Using
the frame difference-based image segmentation algorithm as
a case study, we have conducted extensive experiments to
check the potential computation capability of the GPUs for
simulating stochastic computing. Our experimental results
indicate that the GPU-based simulation approach can ob-
tain the results over 119 times faster than the CPU setting,
which shows great promise for using the GPUs to reduce the
simulation time of stochastic computing. To the best of our
knowledge, this is the first work to apply GPU technology
to stochastic computing.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces the background of stochastic com-
puting and the GPU hardware and software. We present the
basic Stochastic Computational Elements (SCEs) and the
corresponding CUDA implementations for the GPU-based
simulation in Section 3. Section 4 uses the frame difference-
based image segmentation algorithm as a case study to show
how to use the GPU to speed up the simulation time of a
stochastic computing system. Section 5 describes the exper-
imental methodology and measurement results with conclu-
sions drawn in Section 6.

2. STOCHASTIC COMPUTING AND THE
GPU HARDWARE AND SOFTWARE

2.1 Stochastic Computing
Stochastic computing performs operations using probabili-
ties instead of deterministic values, i.e., computations in the
deterministic boolean domain are transformed into prob-
abilistic computations in stochastic computing [6, 3]. In

this section, we briefly describe the background of stochas-
tic computing including the coding formats and conversion
approach between a deterministic value and a stochastic bit
stream.

2.1.1 Coding Formats
A stochastic computing system can have two possible coding
formats, a unipolar coding format and a bipolar coding for-
mat. In the unipolar coding format, a real number x in the
unit interval (i.e., 0 ≤ x ≤ 1) corresponds to a bit stream
X(t) of length L, where t = 1, 2, ..., L. The probability that
each bit in the stream is one is

P (X = 1) = x. (1)

For example, the value x = 0.3 would be represented by a
random stream of bits such as, 0100010100, where approxi-
mately 30% of the bits are “1” and the remainder are “0”.

In the bipolar coding format, the range of a real number x is
extended to −1 ≤ x ≤ 1, however, the probability that each
bit in the stream is one is

P (X = 1) =
x + 1

2
. (2)

These two coding formats are the same in essence, and can
coexist in a single system. The trade-off between these two
coding formats is that the bipolar format can deal with
negative numbers directly while, given the same bit stream
length, L, the precision of the unipolar format is twice that
of the bipolar format.

2.1.2 Conversion Approach
To convert a deterministic value xd (xd ∈ [a, b]) into a
stochastic bit stream X, we can generate a random num-
ber and compare it to xd. The pseudocode of this operation
is shown as follows,

1 for ( i = 0 ; i < L ; i++){
i f rand ( ) < ( xd − a ) / (b − a )

3 X( i )=1;
else

5 X( i )=0;}

where L is the length of the stochastic bit stream X. The
function rand() is used to generate a random number in the
range [0, 1] based on a uniform distribution. The stochastic
bit stream X generated by this code has the probability

P (X = 1) =
xd − a

b− a
. (3)

By counting the number of“1”bits in a stochastic bit stream,
we can convert the stochastic bit stream back to the corre-
sponding deterministic value as follows,

xd = a +
sum(X) · (b− a)

L
. (4)

2.2 The GPU Hardware and Software
In this paper, we leverage the high-performance capability of
the NVIDIA GPUs to speed up the simulation of a stochastic
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computing system. As we know, the performance improve-
ment for a single-threaded processor has almost come to an
end because we are hitting the memory and energy walls and
facing great challenges for increasing the clock frequency and
the transistor density. The performance of applications can
only be improved if parallelism can be utilized for them. To-
day’s GPUs with hundreds of parallel processor cores deliver
parallel performance much more efficiently than CPUs and
achieve significant performance speedup by executing tens
of thousands of parallel threads. For example, the NVIDIA
Geforce 8800GTX can achieve up to 518 Gflops peak per-
formance by running 12,288 total threads spread across 128
cores.

Table 3: Main Features of NVIDIA Tesla C2050
used for the experiments

GPU Model Tesla C2050

Number of multiprocessors (SM) 14
Number of cores 448
SM clock frequency 1.15 GHz
Single Precision peak GFLOPS 1030
Double Precision peak GFLOPS 515
Max number of thread per block 1024
Number of registers per SM 32768
Memory Frequency 1.5 GHz
Memory Bandwidth 144 GB/s
Memory ECC Yes
Memory Interface 384 bit
Shared Memory 16KB/48KB
L1 Cache 48KB/16KB
L2 Cache 768KB

The recently introduced Fermi, which is NVIDIA’s latest
GPU architecture, can provide much better performance and
memory bandwidth than previous-generation GPUs. The
Fermi architecture enables us to achieve higher performance
speedup and to solve larger problems than we have been
able to solve previously. It includes several new develop-
ments over the previous GPUs including more computing
units and a new memory hierarchy. The NVIDIA Fermi
GPU is composed of an array of streaming multiprocessors
(SM), each of which has 32 scalar processors housed in two
scalar processor clusters. Because each cluster works on an
individual warp and issues a new instruction every two cy-
cles, a SM needs at least 2x32 threads to be fully utilized and
maximally allows 1,536 threads to be active simultaneously.
All these threads in a kernel execute the same instructions
on different sets of data. A block of threads is mapped to
and executed on a SM. The threads within the block are
grouped by multiple warps for scheduling. In each warp, 32
threads will be executed in a lock step. For the memory
hierarchy, the Fermi GPUs introduced L1 and L2 caches.
For each SM, the 64KB on-chip memory can be split into a
48KB shared memory and a 16KB L1 cache or into a 16KB
shared memory and a 48KB L1 cache. Depending on differ-
ent data access patterns, users can dynamically choose using
either a big or a small L1 cache for performance optimiza-
tion. The L1 cache is distributed and associated with a SM
while the L2 is a unified cache to reduce the long latency
of accessing global memory. The size of the L2 cache for

the current Fermi GPUs is 768KB. Table 3 lists the detailed
specification of the Fermi-based Tesla C2050 GPU we used
in our experiments.

For the GPU programming, we use CUDA C to conduct our
experiments. CUDA embeds the GPU code inside C code,
using the language extensions to indicate whether a function
should be executed on the CPU (called host) or on the GPU
(called device). CUDA hides all architectural details (such
as threads, warps, SM, etc.) to users and instead exposes
the logical notions of blocks, grids, and threads to help the
decomposition of the problem domain.

3. CUDA IMPLEMENTATIONS OF THE
BASIC SCES

In order to simulate a stochastic computing system with
the GPU-based parallel computing, we need to implement
the basic stochastic computing operations with CUDA first.
In this section, we will introduce the basic SCEs in stochas-
tic computing, including both the combinational logic-based
SCEs and the FSM-based SCEs. Additionally, we demon-
strate the CUDA implementation of each of them. Our ob-
jective is to use these CUDA-based functions to develop a
general simulator for a stochastic computing system.

3.1 Initialization
In a stochastic computing system, we use a random bit
stream to represent a deterministic value. These random bit
streams must be independent of each other to ensure no cor-
relation between stochastic bit streams. In our CUDA im-
plementation, we use the CURAND library to generate ran-
dom bit streams. By assigning the same seed and the unique
sequence number for each of these streams, we can guarantee
that they are independent of each other [1]. The following
CUDA code shows the kernel function, setup kernel, for ini-
tialization.

1 g l o b a l void s e tup ke rn e l ( curandState ∗ s t a t e ) {
int idx ;

3

idx = threadIdx . x + blockIdx . x ∗ blockDim . x ;
5 i f ( idx < MAXSTREAMS)

curand int (1234 , idx , 0 , &s t a t e [ idx ] ) ; }

In this code, each thread handles a single random bit stream.
A global array state[] is allocated to record the random state
for each thread. MAXSTREAMS, which is the total num-
ber of streams, depends on the number of input data of a sys-
tem. For example, we need to generate 640 × 480 = 307,200
random bit streams for the stochastic implementation of the
image gamma correction algorithm if the resolution of the
input images is 640 × 480.

3.2 The Combinational Logic-Based SCEs
Three basic operations - scaled addition, scaled subtraction,
and multiplication - can be implemented using combina-
tional logic in stochastic computing [6, 3].

3.2.1 Scaled addition
Scaled addition can be implemented with a multiplexer (MUX)
for both bipolar and unipolar coding format. The function
of the MUX is,

C = S ·A + (1− S) ·B. (5)
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If we assume A, B, C, and S are stochastic bit streams, and
PA, PB , PC , and PS stand for their corresponding probabil-
ities, we will get

PC = PS · PA + (1− PS) · PB . (6)

In (6), we normally set PS = 0.5 to perform unbiased scaled
addition.

3.2.2 Scaled subtraction
Scaled subtraction can be implemented with a MUX and a
NOT gate It works only for the bipolar coding format. The
function of the circuit is,

C = S ·A + (1− S) · (1−B). (7)

If we assume A, B, C, and S are stochastic bit streams, and
PA, PB , PC , and PS stand for their corresponding probabil-
ities, we will get

PC = PS · PA + (1− PS) · (1− PB). (8)

We define a, b, and c as the corresponding bipolar coding
format of PA, PB , and PC , i.e., a = 2PA − 1, b = 2PB − 1,
c = 2PC − 1. If we set PS = 0.5, equation (8) can be
rewritten as follows,

c = 0.5 · (a− b). (9)

3.2.3 Multiplication

AND

A C

B
XNOR

A C

B

(a) (b)

Figure 1: Multiplication in stochastic computing.

Multiplication can be implemented with a two-input AND
gate as shown in Fig. 1(a) for the unipolar coding format,
and with a two-input XNOR gate as shown in Fig. 1(b) for
the bipolar coding format. Multiplication based on the AND
gate for the unipolar coding format is straightforward. We
will explain multiplication based on the XNOR gate for the
bipolar coding format as follows. In Fig. 1(b), we have

C = A ·B + (1−A) · (1−B). (10)

If we define PA, PB , and PC as the probabilities of the
streams A, B, and C, and a, b, and c as the corresponding
bipolar coding format of PA, PB , and PC (i.e., a = 2PA− 1,
b = 2PB − 1, and c = 2PC − 1), we can rewrite (10) as
follows,

c + 1

2
=

a + 1

2
· b + 1

2

+ (1− a + 1

2
) · (1− b + 1

2
). (11)

From (11), we have

c = a · b. (12)

3.3 The FSM-Based SCEs
In addition to the combinational logic-based SCEs, FSM-
based SCEs can be used to perform some sophisticated func-
tions more efficiently, such as exponential and tanh func-
tions [3, 9]. These FSM-based SCEs can be developed based
on the linear state transition diagram shown in Fig. 2. Al-
though several FSM-based SCEs have been developed so
far [3, 9], here we demonstrate the CUDA implementations
of only two FSM-based SCEs. The others can be imple-
mented in a similar way.

S0 S1 SN-2 SN-1

…… 

…… 

…… 

X

X
_

X
_

X

X
_

X

X
_

X

X
_

X

Figure 2: A linear state transition diagram (the out-
put Y , which is not shown in the figure, is deter-
mined only by the current state).

3.3.1 Compute absolute value stochastically
Based on the state transition diagram shown in Fig. 2, if we
set the output Y = 1 for the state Si which satisfies:

• (1) 0 ≤ i < N/2 and i is even,

• (2) N/2 ≤ i ≤ N − 1 and i is odd,

the FSM will perform the function to compute the absolute
value stochastically with the bipolar coding format for both
input and output (i.e., y = 2PY − 1 and x = 2PX − 1) [10]:

y = |x|. (13)

A straightforward way to implement the FSM in CUDA is to
use multiple branches, such as {switch · · · case · · · }. How-
ever, this approach will generate a lot of divergences, which
will cause the CUDA performance to suffer because all the
paths of a branch are executed in a single SM [1]. To get
better performance, we should avoid divergences as much
as we can. Our solution to the divergence issue is to syn-
thesize the FSM at the circuit level, which directly uses the
boolean expressions (instead of the multiple branches) to
implement the function of the FSM. For simplicity, our im-
plementation is based on a four-state FSM. Fig. 3 shows
the corresponding circuit diagram for the four-state FSM in-
cluding two D-flip-flops and two combinational circults with
input X and ouput Y. The boolean expressions for inputs of
two D-flip-flops and output Y are also described in the fig-
ure. By circuit-level synthesis of the FSM, we can simplify
the CUDA simulation code.

3.3.2 The stochastic tanh function
Based on the state transition diagram shown in Fig. 2, if
we set the output Y = 1 for the state Si which satisfies
N/2 ≤ i ≤ N − 1, the approximate transfer function will be

y =
e

N
2
x − e−

N
2
x

e
N
2
x + e−

N
2
x
, (14)
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Figure 3: The circuit digram based on a four-state
FSM for stochastic absolute value function.

where x is the bipolar coding of PX and y is the bipolar cod-
ing of PY . The details of this FSM-based SCEs can be found
in [3]. Similar to the stochastic absolute value function,
we use another four-state FSM to implement the stochastic
tanh function. The only difference is the boolean expression
for the output Y. The detailed description is omitted here
due to space restrictions.

3.4 CUDA Implementation and Device Func-
tions

In our GPU-based simulation, all SCEs have been imple-
mented as device functions. Each device function handles
one stochastic bit stream. All these device functions can be
easily customized to implement a stochastic algorithm. In
this sesction, we use the stochastic absolute value function as
an example to present the implementation of a device func-
tion for stochastic simulation and post the detailed code at
http://www.arctic.umn.edu/gpu-simulation.tgz.

As shown in Fig. 4, the device function SCAbs takes a bi-
ploar stochastic bit stream StreamIn as input and stores
a uniploar bit stream for the corresponding absolute value
back to StreamOut. Inside the device function, for each bit
in a stochastic stream, function FSMABS is called to get the
next state and a output bit is filled into the output stream.
The implementaion of function FSMABS is based on the
four-state FSM described in Section 3.3.1.

4. A CASE STUDY FOR GPU-BASED SIM-
ULATION

In this section, we use the stochastic implementation of the
frame difference-based image segmentation algorithm [7] as
a case study to demonstrate the GPU-based parallel simula-
tion approach for a stochastic computing system. Although
the frame difference-based image segmentation algorithm is
very simple, more complex stochastic computing systems
can be simulated on the GPU in a similar way.

The frame difference-based image segmentation algorithm
uses a pixel’s value at the current frame minus the pixel’s
value in the same location of the last frame to check if the
absolute value of the difference is greater than a threshold.
If yes, we say the pixel at the current frame belongs to the
foreground, otherwise, it belongs to the background.

d e v i c e void FSMABS(char array [ 2 ] , int x ,
2 char cu r r en t s t a t e ) {

char curQ1 , curQ0 , newQ1 , newQ0 ;
4

// array [ 1 ] stands f o r the next s t a t e
6 // array [ 0 ] stands f o r the output

8 curQ1 = cu r r en t s t a t e / 2 ;
curQ0 = cu r r en t s t a t e % 2 ;

10

newQ1 = ( ( ! curQ1 ) && curQ0 && x) | |
12 ( ( curQ1 ) && ( ! curQ0 ) && x) | |

( ( curQ1 ) && ( curQ0 ) && ( ! x ) ) | |
14 ( ( curQ1 ) && ( curQ0 ) && x ) ;

16 newQ0 = ( ( ! curQ1 ) && ( ! curQ0 ) && x) | |
( ( curQ1 ) && ( ! curQ0 ) && ( ! x ) ) | |

18 ( ( curQ1 ) && ( ! curQ0 ) && (x ) ) | |
( ( curQ1 ) && ( curQ0 ) && x ) ;

20

array [ 0 ] = ! ( newQ1 ˆ newQ0 ) ;
22 array [ 1 ] = 2 ∗ newQ1 + newQ0 ; }

24 /∗==============================================∗/

26 d e v i c e void SCAbs(char StreamOut [ ] ,
char StreamIn [ ] ) {

28 int i ;
char tempArray [ 2 ] ;

30 char cu r r en t s t a t e ;

32 FSMABS( tempArray , StreamIn [ 0 ] , 0 ) ;
StreamOut [ 0 ] = tempArray [ 0 ] ;

34 char next s ta t e = tempArray [ 1 ] ;

36 for ( i = 1 ; i < BITLENGTH; i++) {
cu r r en t s t a t e = next s ta t e ;

38

FSMABS( tempArray , StreamIn [ i ] ,
40 cu r r en t s t a t e ) ;

42 StreamOut [ i ] = tempArray [ 0 ] ;
n ex t s ta t e = tempArray [ 1 ] ; } }

Figure 4: CUDA implementation of the stochastic
absolute value function.

Based on the CUDA implmentations of the basic SCEs, we
develop a CUDA kernel function SCfdKernel for the frame
difference-based image segmentation algorithm. In the ker-
nel function, the segmentation result of each pixel is per-
formed by a single CUDA thread, which includes the follow-
ing steps:

• Convert a pixel value at the current frame (i.e., Xt)
into a stochastic bit stream by calling the D2S device
function.

• Convert a pixel value in the same location of the last
frame (i.e., Xt−1) into a stochastic bit stream by call-
ing the D2S device function again.

• Compute (Xt − Xt−1) stochastically by calling the
scaled subtraction function. PS is a predefined stochas-
tic bit stream with probability 0.5.

• Compute |Xt−Xt−1| by calling the stochastic absolute
value function.

• Compute (|Xt −Xt−1| − Th) stochastically by calling
the scaled subtraction function again. Threshold is a
predefined stochastic bit stream with probability Th

256
.
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• Convert the result of (|Xt − Xt−1| − Th) to either 0
(foreground) or 1 (background) by calling the stochas-
tic tanh function.

• Convert the processed stream into a deterministic value
to be displayed.

5. EXPERIMENTAL RESULTS
To validate the GPU-based simulation for stochastic com-
puting, we have conducted three experiments. These exper-
iments are run on a Linux machine with the CPU specifi-
cation shown in Table 2 and the GPU specification shown
in Table 3. Each of the three experiments has a CPU-based
C code version and a GPU-based CUDA C code version.
Both versions of the codes are well optimized and perform
exactly the same functions. The first experiment evaluates
the execution time of each of the basic functions introduced
in Section 3 based on the two different simulation platforms.
The second and the third experiments use the stochastic im-
plementation of the frame difference-based image segmenta-
tion algorithm introduced in Section 4 as a baseline system
of stochastic computing. The second experiment evaluates
the execution time of the entire system based on six different
lengths of the stochastic bit streams. The third experiment
evaluates the execution time of the entire system based on
five different image resolutions.

5.1 Simulation Performance Comparison
of the SCEs

In this experiment, we measure the execution time for each
of the basic functions in stochastic computing based on six
different lengths of the stochastic bit stream on both the
GPU and the CPU, and compare the performance. We re-
peat each test 1000 times. Since there was only the sin-
gle application running on the systems being measured, the
measurement variance in all of our experiments was less than
1%. Consequently, we show only the average values in our
performance results.

Table 4 shows the results for the D2S function, from which
the GPU-based simulation achieves up to 165 times per-
formance speedup compared to the CPU-based simulation.
Table 5 shows the results for the combinational logic-based
SCEs, from which the GPU-based simulation achieves up to
90 times performance speedup compared to the CPU-based
simulation. Table 6 shows the results for the FSM-based
SCEs, from which the GPU-based simulation achieves up to
27 times performance speedup compared to the CPU-based
simulation.

These results are below our expectations given by the high
performance parallel computing capability of the GPUs. An-
other observation from the measured results is that the per-
formance speedup increases as the bit length of a stochastic
stream increases except for the case of the FSM-based SCEs.
This is not a surprise because GPU computing will show sig-
nificant benefits to solve a large-scale problem in contrast to
the multicore CPU. For the FSM-based SCEs, the speedup
does not change too much when the bit length increases.
The possible reason is that four-state FSM in our imple-
mentation is not sensitive to the changes of the bit length.

It should be noted here that our CPU implementation is a

Table 4: Simulation performance comparison for the
D2S function.

Bit Length GPU Run CPU Run Speedup
Time (s) Time (s)

256 0.001 0.1 100
512 0.002 0.2 100
1024 0.003 0.41 136.67
2048 0.005 0.82 164
4096 0.01 1.65 165
8192 0.02 3.29 150

Table 5: Simulation performance comparison for the
combinational logic-based SCEs.

Bit Length GPU Run CPU Run Speedup
Time (s) Time (s)

256 0.003 0.03 10
512 0.005 0.07 14
1024 0.007 0.14 20
2048 0.01 0.29 36.3
4096 0.01 0.59 59
8192 0.01 1.18 90.8

single-threaded application on the host. If we develop a mul-
tithreaded program to implement the basic SCEs, the CPU
implementation could have much better performance than
our current implementation. Multicore and multithreaded
CPUs could also be helpful for stochastic computing. How-
ever, the number of cores of a typical CPU is much less
than the number of cores in a GPU. We expect the GPUs
can still have good performance speedups compared to mul-
tithreaded CPU implementations because the GPUs can
acheive massive parallelism for the applications without any
data dependency. For stochastic simulation, each of bit
stream is indepedent of the other streams, which fits GPU
computing very well. It would be very interesting to com-
pare openMP/MPI implementations with CUDA implemen-
tations for stochastic simulation. We leave this comparison
for our future work.

Table 6: Simulation performance comparison for the
FSM-based SCEs

Bit Length GPU Run CPU Run Speedup
Time (s) Time (s)

256 0.004 0.11 27.5
512 0.008 0.22 27.5
1024 0.017 0.45 26.47
2048 0.03 0.91 26.8
4096 0.07 1.84 27.1
8192 0.14 3.69 26.9

5.2 Simulation Performance Comparison
of the Entire System

We conduct the second experiment to measure the over-
all simulation times of the stochastic implementation of the
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frame difference-based image segmentation algorithm using
six different lengths of the stochastic bit streams. As shown
in Table 7, the simulations using the GPU have much shorter
simulation times than the ones based on the CPU, with up to
98 times performance speedup. It should be noted here that
our current CUDA code only implements pixel-level paral-
lelism. To further reduce the simulation time, we can exploit
the parallelism at the bit-level, i.e., use multiple threads to
perform the function of a single SCE simultaneously.

In the last experiment, we measure the execution time for
five different image resolutions as shown in Table 8. The
GPU-based simulation still has significant performance speedup.
When the image resolution is increased, we have more threads
available in the system. Thus, a higher thread level paral-
lelism can further improve the performance. It can be seen
that the speedups in Table 8 are much higher than the re-
sults in Table 7.

Table 7: Simulation performance comparison of the
stochastic implementation of the frame difference-
based image segmentation algorithm for six different
lengths of stochastic bit streams (image resolution:
176 × 144).

Bit Length GPU Run CPU Run Speedup
Time (s) Time (s)

256 0.01673 0.3 17.63
512 0.01909 1.59 31.01
1024 0.02431 1.17 48.21
2048 0.03447 2.35 68.06
4096 0.0553 4.72 85.37
8192 0.09609 9.45 98.37

Table 8: Performance comparison of the stochastic
implementation of the frame difference-based image
segmentation algorithm for five different image res-
olutions (bit length: 8192).

Resolution GPU Run CPU Run Speedup
Time (s) Time (s)

176 × 144 0.09609 9.45 98.37
352 × 288 0.3509 37.14 105.84
640 × 480 1.012 112.55 111.22
1280 × 720 2.880 337.82 117.42
1920 × 1080 6.33 753.83 119.13

5.3 Performance Considerations and CUDA Op-
timizations

Proper thread block size and kernel configuration are very
important for achieving high performance for a CUDA ap-
plication. In our experiments, we measured the results for
three different thread block size: 8x8,16x16,and 32x32. Ta-
ble 9 shows the results for six different lengths of stochastic
bit streams when image resolution is 176x144. It can be seen
from the table that 16x16 thread block has the best perfor-
mance for the frame difference algorithm. These results are
consistent with our analysis and profiling. When the thread
block size is 8x8, totally only 512 threads is assigned in a SM

for scheduling. The occupany is 0.333 and thread-level par-
allelism is lost because there are not enough threads in the
SM for scheduling and memory latency cannot be hidden by
overlapping. On the other hand, when the thread block is
32x32, one SM allows only one thread block to be scheduled.
The occupancy is 0.667 because the block size is too large
and some blocks have been lost. The best configuration is
16x16, in which 5 blocks are brought into a SM and occu-
pancy is 0.833. In general, the higher occupancy a kernel
has, the better performance it achieves if we do not consider
the limitations of register and shared memory usage. For
our GPU-based simulation, we do not use any shared mem-
ory and register usage is not a bottlebeck. Therefore, 16x16
is the optimum thread block size for the best performance.

Table 9: Performance comparison of the stochastic
implementation of the frame difference-based image
segmentation algorithm for three thread block sizes
(image resoluation: 176x144).

Bit Length GPU Run GPU Run GPU Run
Time with Time with Time with

8x8(s) 16x16(s) 32x32(s)

256 0.01738 0.01673 0.0169
512 0.02042 0.01909 0.01953

1024 0.02717 0.02431 0.02555
2048 0.04009 0.03447 0.03688
4096 0.06714 0.0553 0.06003
8192 0.12037 0.09609 0.10539

Occupancy 0.333 0.833 0.667

In addition to proper kernel configurartion, another perfor-
mance consideration for CUDA optimization is the L1 cache
size configuration. For Fermi GPUs, both the shared mem-
ory and the L1 data cache share the same on-chip mem-
ory. The total size is 64KB. CUDA programmer can use
either 16KB or 48KB L1 cache. The default L1 cache size
is 16KB. This size of L1 cache can be changed to 48KB
by calling function cudaFuncSetCacheConfig. In our ker-
nel function ScfdKernel, each CUDA thread processes one
image pixel as described in Section 4, we define two local
arrays to store stochastic bit streams: one is for the input,
the other for output. These two arrays are allocated in local
memory. According to the CUDA programming guide, both
global and local memories are cached for Fermi GPUs. If
the size of the L1 data cache can be increased, we expect
to get a higher cache hit ratio for the L1 cache, which can
improve the performance of a CUDA program. In our GPU-
based simulation, we do not use shared memory for CUDA
implementations. By adjusting the size of the L1 cache to
48KB, we tested the system performance for six different
bit lengths. As shown in Table 10, the 48KB L1 cache can
have much better performance than the 16KB L1 cache up to
32% speedup. These results are expected because the large
L1 cache size will increase the hit ratio for local memory
accesses, which benefits the system performance.

6. CONCLUSIONS
In this paper, we propose a GPU-based parallel computing
approach to speed up the simulation of a stochastic comput-
ing system. We demonstrate the GPU (CUDA) implementa-
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Table 10: Performance comparison of the stochastic
implementation of the frame difference-based image
segmentation algorithm for two different L1 cache
sizes (image resoluation: 176x144).

Bit Length GPU Run GPU Run Speedup
Time with Time with

48KB L1(s) 16KB L1(s) (ptg)

256 0.01132 0.01673 32.34%
512 0.01383 0.01909 27.55%

1024 0.01961 0.02431 19.33%
2048 0.03072 0.03447 10.88%
4096 0.05298 0.0553 4.20%
8192 0.09608 0.09609 0.01%

tions of the basic computational elements in stochastic com-
puting, and use the frame difference-based image segmen-
tation algorithm as a case study to validate our approach.
Measured results show that our GPU-based simulation can
achieve up to 119 times performance speedup compared to
the CPU-based simulation for large images.

We note that currently the parallel computing is performed
at the pixel level, i.e., multiple pixels are processed simulta-
neously. In fact, we can further speed up the simulation of
stochastic computing by performing the parallel computing
at the bit level, i.e., we can use multiple threads to simulate
a single SCE simultaneously. Although the combinational
logic-based SCEs can be easily simulated in parallel at the
bit level, the FSM-based SCEs and the D2S function are
hard to simulate in parallel at the bit level. Future work
will focus on how to simulate each SCE in parallel at the
bit level, especially for the FSM-based SCEs and the D2S
function.
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ABSTRACT
Emerging GPU architectures for high performance comput-
ing are well suited to a data-parallel programming model.
This paper presents preliminary work examining a program-
ming methodology that provides Fortran programmers with
access to these emerging systems. We use array constructs
in Fortran to show how this infrequently exploited, stan-
dardized language feature is easily transformed to lower-level
accelerator code. The transformations in ForOpenCL are
based on a simple mapping from Fortran to OpenCL. We
demonstrate, using a stencil code solving the shallow-water
fluid equations, that the performance of the ForOpenCL
compiler-generated transformations is comparable with that
of hand-optimized OpenCL code.

1. INTRODUCTION
This paper presents a compiler-level approach for targeting
a single program to multiple, and possibly fundamentally
different, processor architectures. This technique allows the
application programmer to adopt a single, high-level pro-
gramming model without sacrificing performance. We sug-
gest that existing data-parallel features in Fortran are well-
suited to applying automatic transformations that generate
code specifically tuned for different hardware architectures
using low-level programming models such as OpenCL. For
algorithms that can be easily expressed in terms of whole
array, data-parallel operations, writing code in Fortran and
transforming it automatically to specific low-level implemen-
tations removes the burden of creating and maintaining mul-
tiple versions of architecture specific code.

The peak performance of these newer accelerator architec-
tures can be substantial. Intel expects a teraflop for the
SGEMM benchmark with their Knights Ferry processor while

the performance of the M2090 NVIDIA Tesla processor is in
the same neighborhood [7]. Unfortunately the performance
that many of the new accelerator architectures offer comes
at a cost. Architectural changes are trending toward multi-
ple heterogeneous cores and less of a reliance on superscalar
instruction level parallelism and hardware managed memory
hierarchies (such as traditional caches).

These changes place a heavy burden on application program-
mers as they work to adapt to these new systems. An es-
pecially challenging problem is not only how to program to
these new architectures — considering the massive scale of
concurrency available — but also how to design programs
that are portable across the changing landscape of com-
puter architectures. How does a programmer write one pro-
gram that can perform well on both a conventional multicore
CPU and a GPU (or any other emerging many-core archi-
tectures)?

A directive-based approach, such as OpenMP or the Accel-
erator programming model from the Portland Group [14], is
one solution to this problem. However, in this paper we take
a somewhat different approach. A common theme amongst
the new processors is the emphasis on data-parallel program-
ming. This model is well-suited to architectures that are
based on either vector processing or massively parallel col-
lections of simple cores. The recent CUDA and OpenCL
programming languages are intended to support this pro-
gramming model.

The problem with OpenCL and CUDA is that they expose
too much detail about the machine architecture to the pro-
grammer [15]. The programmer is responsible for explic-
itly managing memory (including the staging of data back
and forth between the host CPU and the accelerator de-
vice) and specifically taking into account architectural dif-
ferences (such as whether the architecture contains vector
units). While these languages have been attractive as a
method for early adopters to utilize these new architectures,
they are less attractive to programmers who do not have the
time or resources to manually port their code to every new
architecture and programming model that emerges.
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1.1 Approach
We demonstrate that a subset of Fortran map surprisingly
well onto GPUs when transformed to OpenCL kernels. This
data-parallel subset includes: array syntax using assign-
ment statements and binary operators, array constructs like
WHERE, and the use of pure and elemental functions. In addi-
tion, we provide new functions that explicitly take advantage
of the stencil geometry of the problem domain we consider.
Note that this subset of the Fortran language is implicitly
parallel. This programming model does not require explicit
declaration of parallelism within the program. In addition,
programs are expressed using entirely standard Fortran so
it can be compiled for and executed on a single core without
concurrency.

Transformations are supplied that provide a mechanism for
converting Fortran procedures written in the Fortran sub-
set described in this paper to OpenCL kernels. We use the
ROSE compiler infrastructure1 to develop these transforma-
tions. ROSE uses the Open Fortran Parser2 to parse For-
tran 2008 syntax and can generate C-based OpenCL. Since
ROSE’s intermediate representation (IR) was constructed
to represent multiple languages, it is relatively straightfor-
ward to transform high-level Fortran IR nodes to C OpenCL
nodes. This work is also applicable to transformations to
vendor-specific languages, similar to OpenCL, such as the
NVIDIA CUDA language.

Transformations for arbitrary Fortran procedures are not at-
tempted. Furthermore, a mechanism to transform the call-
ing site to automatically invoke OpenCL kernels is not pro-
vided at this time. While it is possible to accomplish this
task within ROSE, it is considered outside the scope of this
paper. However, ForOpenCL provides via Fortran interfaces
a mechanism to call the C OpenCL runtime and enable For-
tran programmers to access OpenCL kernels generated by
the supplied transformations.

We study the automatic transformations for an application
example that is typical of stencil codes that update array el-
ements according to a fixed pattern. Stencil codes are often
employed in applications based on finite-difference or finite-
volume methods in computational fluid dynamics (CFD).
The example described later in this paper is a simple shallow-
water model in two dimensions using finite volume methods.
Stencil-like patterns appear in a number of other contexts
as well. In image processing, they appear in convolution-
based algorithms in which small kernels are convolved with
an image to implement denoising, edge detection, and other
common operators. Similar stencil operators appear in gen-
eral signal processing applications as well.

Finally, we examine the performance of the Fortran data-
parallel abstraction when transformed to OpenCL to run
on GPU architectures. The performance of automatically
transformed code is compared with a hand-optimized OpenCL
version of the shallow-water code.

We do not perform any additional analysis of the code to
identify parallelism beyond that present in the data parallel

1http://www.rosecompiler.org/
2http://fortran-parser.sf.net/

operations that we focus on in this paper. Additional pro-
gram analysis methods may be investigated to study their
applicability in future versions of this work.

2. PROGRAMMING MODEL
A question that one may pose is “Why choose Fortran and
not a more modern language like X for programming accel-
erator architectures?” The recent rise in interest in concur-
rency and parallelism at the language level due to multicore
CPUs and many-core accelerators has driven a number of
new language developments, both as novel languages and ex-
tensions on existing ones. However, for many scientific users
with existing codes written in Fortran, new languages and
language extensions to use novel new architectures present
a challenge: how do programmers effectively use them while
avoiding rewriting code and potentially growing dependent
on a transient technology that will vanish tomorrow? In this
paper we explore the constructs in Fortran that are partic-
ularly relevant to GPU architectures.

In this section we present the Fortran subset employed in
this paper. This sub-setting language will allow scientific
programmers to stay within the Fortran language and yet
have direct access to GPU hardware. We start by examin-
ing how this programming model relates to developments in
other languages.

2.1 Comparison to Prior Fortran Work
A number of previous efforts have exploited data-parallel
programming at the language level to utilize novel architec-
tures. The origin of the array syntax adopted by Fortran in
the 1990 standard can be found in the APL language [6].
These additions to Fortran allowed parallelism to be ex-
pressed with whole-array operations at the expression level,
instead of via parallelism within explicit DO-loops, as im-
plemented in earlier variants of the language (e.g., IVTRAN
for the Illiac IV).

The High Performance Fortran (HPF) extension of Fortran
was proposed to add features to the language that would en-
hance the ability of compilers to emit fast parallel code for
distributed and shared memory parallel computers [10]. One
of the notable additions to the language in HPF was syntax
to specify the distribution of data structures amongst a set
of parallel processors. HPF also introduced an alternative
looping construct to the traditional DO-loop called FORALL

that was better suited for parallel compilation. An addi-
tional keyword, INDEPENDENT, was added to allow the pro-
grammer to indicate when the loop contained no loop-order
dependencies that allowed for parallel execution. These con-
structs are similar to DO CONCURRENT, an addition to Fortran
in 2008.

Interestingly, the parallelism features introduced in HPF did
not exploit the new array features introduced in 1990 in
any significant way, relying instead on explicit loop-based
parallelism. This restriction allowed the language to sup-
port parallel programming that wasn’t easily mapped onto
a pure data-parallel model. The SHADOW directive introduced
in HPF-2, and the HALO in HPF+ [1] bear some similarity
to the halo region concept that we discuss in this paper.

In some instances though, a purely data-parallel model is ap-
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propriate for part or all of the major computations within
a program. One of the systems where programmers relied
heavily on higher level operations instead of explicit looping
constructs was the Thinking Machines Connection Machine
5 (CM-5). A common programming pattern used on the
CM-5 (that we exploit in this paper) was to write whole-
array operations from a global perspective in which compu-
tations are expressed in terms of operations over the entire
array instead of a single local index. The use of the ar-
ray shift intrinsic functions (like CSHIFT) were used to build
computations in which arrays were combined by shifting the
entire arrays instead of working on local offsets based on sin-
gle indices. A simple 1D example is one in which an element
is replaced with the average of its own value and that of its
two direct neighbors. Ignoring boundary indices that wrap
around, explicit indexing will result in a loop such as:

do i = 2,(n-1)
Xnew(i) = (X(i-1) + X(i) + X(i+1)) / 3

end do
PTR_SWAP(Xnew, X, tmp_ptr)

In this loop, it is necessary to manually implement a double
buffering scheme in order to avoid mixing values computed
in the current execution of the loop with values from a prior
execution of the loop. When shifts are employed, this can
be expressed as:

X = (cshift(X,-1) + X + cshift(X,1)) / 3

The semantics of the shift intrinsic and operators like + ap-
plied to the whole array make it unnecessary to manually
implement the double buffering scheme found in the loop
above. Similar whole array shifting was used in higher di-
mensions for finite difference codes within the computational
physics community for codes targeting the CM-5 system.
Research in compilation of stencil-based codes that use shift
operators targeting these systems is related to the work pre-
sented here [3].

The whole-array model was attractive because it deferred
responsibility for optimally implementing the computations
to the compiler. Instead of relying on a compiler to infer
parallelism from a set of explicit loops, the choice for how
to implement loops was left entirely up to the tool.

Unfortunately, this had two side effects that have limited
broad acceptance of the whole-array programming model in
Fortran. First, programmers must translate their algorithms
into a set of global operations. Finite difference stencils and
similar computations are traditionally defined in terms of
offsets from some central index. Shifting, while conceptually
analogous, can be awkward to think about for high dimen-
sional stencils with many points. Second, the semantics of
these operations are such that all elements of an array opera-
tion are updated as if they were updated simultaneously. In
a program where the programmer explicitly manages arrays
and loops, double buffering techniques and user managed
temporaries are used to maintain these semantics. Limited
attention to optimizing memory usage due to this interme-
diate storage by compilers has led to these constructs seeing
little adoption by programmers.

An interesting line of language research that grew out of
HPF was that associated with the ZPL language at the Uni-
versity of Washington [5] and Chapel, an HPCS language
developed by Cray [4]. In ZPL, programmers adopt a simi-
lar global view of computation over arrays, but define their
computations based on regions, which provide a local view of
the set of indices that participate in the update of each ele-
ment of an array. A similar line of research in the functional
language community has investigated array abstractions for
expressing whole-array operations in the Haskell language
in the REPA (regular, shape-polymorphic, parallel array)
library [8].

2.2 Fortran Language Subset
The static analysis and source-to-source transformations used
in this work require the programmer to use a language subset
that employs a data-parallel programming model. In partic-
ular, it encourages the use of array notation, pure elemental
functions, and pure procedures. From these language con-
structs, we are able to easily transform Fortran procedures
to a lower-level OpenCL kernel implementation.

Array notation
Fortran has a rich array syntax that allows programmers to
write statements in terms of whole arrays or subarrays, with
data-parallel operators to compute on the arrays. Array
variables can be used in expressions based on whole-array
operations. For example, if A, B, and C are all arrays of the
same rank and shape and s is a scalar, then the statement

C = A + s*B

results in the element-wise sum of A and the product of s

times the elements of B being stored in the corresponding
elements of C. The first element of C will contain the value of
the first element of A added to the first element of c*B. Note
that no explicit iteration over array indices is needed and
that the individual operators, plus, times, and assignment
are applied by the compiler to individual elements of the
arrays independently. Thus the compiler is able to spread
the computation in the example across any hardware threads
under its control.

Pure elemental functions
An elemental function consumes and produces scalar val-
ues, but can be applied to variables of array type such that
the function is applied to each and every element of the ar-
ray. This allows programmers to avoid explicit looping and
instead simply state that they intend a function to be ap-
plied to every element of an array in parallel, deferring the
choice of implementation technique to the compiler. Pure el-
emental functions are intended to be used for data-parallel
programming, and as a result must be side effect free and
mandate an intent(in) attribute for all arguments.

For example, the basic array operation shown above could
be refactored into a pure elemental function,

pure elemental real function foo(a, b, s)
real, intent(in) :: a, b, s
foo = a + s*b

end function
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and called with

C = foo(A, B, s)

Note that while foo is defined in terms of purely scalar quan-
tities, it can be applied to arrays as shown. While this may
seem like a trivial example, such simple functions may be
composed with other elemental functions to perform pow-
erful computations, especially when applied to arrays. Our
prototype tool transforms pure elemental functions to in-
line OpenCL functions. Thus there is no penalty for usage
of pure elemental functions and they provide a convenient
mechanism to express algorithms in simpler segments.

It should be noted that in Fortran 2008, the concept of im-
pure elemental functions was introduced. This requires that
elemental functions now need to be explicitly labeled as pure
to indicate that they are side effect free.

Pure procedures
Pure procedures, like pure elemental functions, must be free
of side effects. Unlike pure elemental functions that re-
quire arguments to have an intent(in) attribute, they may
change the contents of array arguments that are passed to
them. The absence of side effects removes ordering con-
straints that could restrict the freedom of the compiler to
invoke pure functions out of order and possibly in parallel.
Procedures and functions of this sort are also common in
pure functional languages like Haskell, and are exploited by
compilers in order to emit parallel code automatically due
to their suitability for compiler-level analysis.

Since pure procedures don’t have side effects they are candi-
dates for running on accelerators in OpenCL. Currently our
prototype tool only transforms pure procedures to OpenCL
kernels that do not call other procedures, except for pure
elemental functions, either defined by the user or intrinsic
to Fortran.

2.3 New Procedures
Borrowing ideas from ZPL, we introduce a concept of a re-
gion to Fortran with a set of functions that allow program-
mers to work with subarrays in expressions. In Fortran,
these functions return a copy of or a pointer to an existing
array or array section. This is unlike ZPL, where regions are
analogous to index sets and are used primarily for address
resolution within an array without dictating storage related
behavior. The functions that we propose are similar in that
they allow a programmer to deal with index regions that are
meaningful to their algorithm, and automatically induce a
halo (or ghost) cell pattern as needed in the implementa-
tion generated by the compiler, where the size of an array
is implicitly increased to provide extra array elements sur-
rounding the interior portion of the array. It is important to
note, however, that all memory allocated by the program-
mer must explicitly contain the extra array elements in the
halo.

Region functions are similar to the shift operator as they can
be used to reference portions of the array that are shifted
with respect to the interior portion. However, unlike the

shift operator, regions are not expressed in terms of bound-
ary conditions and thus don’t explicitly require a knowl-
edge of, nor the application of, boundary conditions locally
(global boundary conditions must be explicitly provided by
the programmer outside of calls to kernel procedures). Thus,
as will be shown below, regions are more suitable for usage
by OpenCL thread groups which access only local subsec-
tions of an array stored in global memory.

ForOpenCL provides two new functions that are defined in
Fortran and are used in array-syntax operations. Each func-
tion takes an integer array halo argument that specifies the
number of ghost cells on either side of a region, for each di-
mension. For example halo = [left, right, down, up]

specifies a halo for a two-dimensional region. These func-
tions are:

• region_cpy(array, halo): a pure function that re-
turns a copy of the interior portion of the array speci-
fied by halo.

• region_ptr(array, halo): an impure function that
returns a pointer to the portion of the array specified
by halo.

It should be noted that the function region_cpy is pure and
thus can be called from within a pure kernel procedure, and
region_ptr is impure because it aliases the array parameter.
However as will be shown below, the usage of region_ptr is
constrained so that it does not introduce side effects in the
functions that call it. These two functions are part of the
language recognized by the compiler and though region_cpy

returns a copy of a portion of an array semantically, the
compiler is not forced to actually make a copy and is free to
enforce copy semantics through other means. In addition to
these two new functions, ForOpenCL provides the compiler
directive, $OFP PURE, KERNEL, which specifies that a pure
subroutine can be transformed to an OpenCL kernel and
that the subroutine is pure except for calls to region_ptr.
These directives are not strictly necessary for the technique
described in this paper, but aid in automated identification
of specific kernels to be transformed to OpenCL. A directive-
free implementation would require the transformation tool
be provided the set of kernels to work via a user defined list.

2.4 Advantages
There are several advantages to this style of programming
using array syntax, regions, and pure and elemental func-
tions:

• There are no loops or index variables to keep track of.
Off by one index errors and improper handling of array
boundaries are a common programming mistake.

• The written code is closer to the algorithm, easier to
understand, and is usually substantially shorter.

• Semantically the intrinsic function region_cpy returns
an array by value. This is usually what the algorithm
requires.
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• Pure elemental functions are free from side effects, so
it is easier for a compiler to schedule the work to be
done in parallel.

Data parallelism has been called collection-oriented program-
ming by Blelloch [2]. As the cshift function and the array-
valued expressions all semantically return a value, this style
of programming is also similar to functional programming
(or value-oriented programming). It should be noted that
the sub-setting language we employ goes beyond pure data
parallelism by the use of pure (other than calls to region_ptr)
subroutines and not just elemental functions.

Unfortunately, this style of programming has never really
caught on because when array syntax was first introduced
in Fortran, performance of codes using these features was
relatively poor and thus programmers shied away from us-
ing array syntax (even recently, some are actively counseling
against its usage because of performance issues [12]). Thus
the Fortran community was caught in a classic“chicken-and-
egg” conundrum: (1) programmers didn’t use it because it
was slow; and (2) compilers vendors didn’t improve it be-
cause programmers didn’t use it. A goal of this paper is to
demonstrate that parallel programs written in this style of
Fortran can achieve good performance on accelerator archi-
tectures.

2.5 Restrictions
Only pure Fortran procedures are transformed into OpenCL
kernels. This restriction is lifted slightly to allow calls to re-

gion_ptr from within a kernel procedure. The programmer
must explicitly call these kernels using Fortran interfaces in
the ForOpenCL library (described below). It is also possible,
using ROSE, to modify the calling site so that the entire pro-
gram can be transformed, but this functionality is outside
the scope of this paper. Here we specifically examine trans-
forming Fortran procedures to OpenCL kernels. Because
OpenCL support is relatively new to ROSE, some gener-
ated code must be modified. For example, the __global

attribute for kernel arguments was added by hand.

It is assumed that memory for all arrays reside on the device.
The programmer must copy memory to and from the device.
In addition, array size (neglecting ghost cell regions) must
be multiples of the global OpenCL kernel size.

Array variables within a kernel procedure (specified by the
$OFP PURE, KERNEL directive) must be declared as contigu-
ous. A kernel procedure may not call other procedures ex-
cept for limited intrinsic functions (primarily math), user-
defined elemental functions, and the region_cpy and re-

gion_ptr functions. Future work will address non-contiguous
arrays (such as those that result from strided access) by
mapping array strides to gather/scatter-style memory ac-
cessors.

Array parameters to a kernel procedure must be declared as
either intent(in) or intent(out); they cannot be intent(inout).
A thread may read from an extended region about its local
element (using the region_cpy function), but can only write
to the single array element it owns. If a variable were in-
tent(inout), a thread could update its array element before

another thread had read from that element. This restriction
requires double buffering techniques.

3. SHALLOW WATER MODEL
The numerical code used for this work is from a presenta-
tion at the NM Supercomputing Challenge [13]. The al-
gorithm solves the standard 2D shallow water equations.
This algorithm is typical of a wide range of modeling equa-
tions based on conservation laws such as compressible fluid
dynamics (CFD), elastic material waves, acoustics, electro-
magnetic waves and even traffic flow [11]. For the shallow
water problem there are three equations with one based on
conservation of mass and the other two on conservation of
momentum.

ht + (hu)x + (hv)y = 0 (mass)

(hu)t + (hu2 + 1
2
gh2)x + (huv)y = 0 (x-momentum)

(hv)t + (huv)x + (hv2 + 1
2
gh2)y = 0 (y-momentum)

where h = height of water column (mass), u = x velocity,
v = y velocity, and g = gravity. The height h can be used
for mass because of the simplification of a unit cell size and
a uniform water density. Another simplifying assumption is
that the water depth is small in comparison to length and
width and so velocities in the z-direction can be ignored. A
fixed time step is used for simplicity though it must be less
than dt 5 dx/(

√
gh + |u|) to fulfill the CFL condition.

The numerical method is a two-step Lax-Wendroff scheme.
The method has some numerical oscillations with sharp gra-
dients but is adequate for simulating smooth shallow-water
flows. In the following explanation, U is the conserved state
variable at the center of the cell. This state variable, U
= (h, hu, hv) in the first term in the equations below. F is
the flux quantity that crosses the boundary of the cell and
is subtracted from one cell and added to the other. The re-
maining terms after the first term are the flux terms in the
equations above with one term for the flux in the x-direction
and the next term for the flux in the y-direction. The first
step estimates the values a half-step advanced in time and
space on each face, using loops on the faces.
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The second step uses the estimated values from step 1 to
compute the values at the next time step in a dimensionally
unsplit loop.
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3.1 Fortran implementation
Selected portions of the data-parallel implementation of the
shallow water model are now shown. This code serves as
input to the ForOpenCL transformations described in the
next section. The interface for the Fortran kernel procedure
wave_advance is declared as:
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subroutine wave_advance(dx,dy,dt,H,U,V,oH,oU,oV)
!$OFP PURE, KERNEL :: wave_advance
real, intent(in) :: dx,dy,dt
real, dimension(:,:) :: H,U,V,oH,oU,oV
contiguous :: H,U,V,oH,oU,oV
intent(in) :: H,U,V
intent(out) :: oH,oU,oV
target :: oH,oU,oV

end subroutine

where dx, dy, dt are differential quantities in space x, y
and time t, H, U, and V are state variables for the height
and x and y momentum respectively, and oH, oU, oV are
corresponding output arrays used in the double buffering
scheme. The OFP compiler-directive attributes PURE and
KERNEL indicate that the procedure wave_advance is to be
transformed as an OpenCL kernel and that it must be pure,
other than for any pointers used to reference interior regions
of the output arrays.

Temporary arrays are required for the quantities Hx, Hy,

Ux, Vx, and Vy, that are defined on cell faces. Also, the
pointer variables, pH, pU, and pV, are needed to access and
update interior regions of the output arrays. As these point-
ers are assigned to the arrays oH, oU, oV, these output ar-
rays must have the target attribute, as shown in the inter-
face above. The temporary arrays and array pointers are
declared as,

real, allocatable, dimension(:,:) :: Hx, Hy, Ux
real, allocatable, dimension(:,:) :: Uy, Vx, Vy
real, pointer, dimension(:,:) :: pH, pU, pV

Halo variables for the interior and the cell faces are declared
and defined as

integer, dimension(4) :: face_lt, face_rt, halo
integer, dimension(4) :: face_up, face_dn

halo = [1,1,1,1]
face_lt = [0,1,1,1]; face_rt = [1,0,1,1]
face_dn = [1,1,0,1]; face_up = [1,1,1,0]

Note that the halo definitions for the four faces each have
a 0 in the initialization. Thus the returned array copy will
have a size that is larger than any interior region that uses
the full halo [1,1,1,1]. This is because there is one more
cell face quantity than there are cells in a given direction.

The first Lax-Wendroff step updates state variables on the
cell faces. Assignment statements like the following,

Hx = 0.5*( region_cpy(H,face_lt) + &
region_cpy(H,face_rt) ) &

+ (0.5*dt/dx) &
* (region_cpy(U,face_lt) - region_cpy(U,face_rt))

are used to calculate these quantities. This equation updates
the array for the height in the x-direction. The second step
then uses these face quantities to update the interior region,
for example,

face_lt = [0,1,0,0]; face_rt = [1,0,0,0]
face_dn = [0,0,0,1]; face_up = [0,0,1,0]

pH = region_ptr(oH, halo)

pH = region_cpy(H, halo)
+ (dt/dx) * ( region_cpy(Ux, face_lt) - &

region_cpy(Ux, face_rt) ) &
+ (dt/dy) * ( region_cpy(Vy, face_dn) - &

region_cpy(Vy, face_up) )

Note that face halos have been redefined so that the array
copy returned has the same size as the interior region.

These simple code segments show how the shallow water
model is implemented in standard Fortran using the data-
parallel programming model described above. The resulting
code is simple, concise, and easy to understand. However
it does not necessarily perform well when compiled for a
traditional sequential system because of suboptimal use of
temporary array variables, especially those produced by the
function region_cpy. This is generally true of algorithms
that use Fortran shift functions as well, as some Fortran
compilers (e.g., gfortran) do not generate optimal code for
shifts. We note (as shown below) that these temporary ar-
ray copies are replaced by scalars in the transformed For-
tran code so there are no performance penalties for using
data-parallel statements as outlined. However, there is an
increased memory cost due to the double buffering required
by the kernel execution semantics.

4. SOURCE-TO-SOURCE TRANSFORMA-
TIONS

This section provides an brief overview of the ForOpenCL
transformations that take Fortran elemental and pure pro-
cedures as input and generate OpenCL code. Elemental
functions are transformed to inline OpenCL functions and
subroutines with the PURE and KERNEL compiler directive at-
tributes are transformed to OpenCL kernels.

4.1 OpenCL
OpenCL [9] is an open-language standard for developing ap-
plications targeted for GPUs, as well as for multi-threaded
applications targeted for multi-core CPUs. The kernels are
run by calling a C runtime library from the OpenCL host
(normally the CPU). Efforts to standardize a C++ runtime
are underway and Fortran interfaces to the C runtime are
distributed in the ForOpenCL library.

An important concept in OpenCL is that of a thread and a
thread group. Thread groups are used to run an OpenCL
kernel concurrently on several processor elements on the
OpenCL device (often a GPU). Consider a data-parallel
statement written in terms of an elemental function as dis-
cussed above. The act of running an OpenCL kernel can
be thought of as having a particular thread assigned to each
instance of the call to the elemental function as it is mapped
across the arrays in the data-parallel statement. In practice,
these threads are packaged into thread groups when they are
run on the device hardware.

Device memory is separated hierarchically. A thread in-
stance has access to its own thread memory (normally a
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Figure 1: A schematic of global memory for an array
and its copy stored in local memory for four thread
groups.

set of registers), threads in a thread group to OpenCL lo-
cal memory, and all thread groups have access to OpenCL
global memory. When multiple members of a thread group
access the same memory elements (for example in the use of
the region_cpy function in the calculation of face variable
quantities shown above), for performance reasons it is often
best that global memory accessed and shared by a thread
group be copied into local memory.

The region and halo constructs easily map onto the OpenCL
memory hierarchy. A schematic of this mapping is shown in
Figure 1 for a two-dimensional array with a 2x2 array of 4
thread groups. The memory for the array and its halo are
stored in global memory on the device as shown in the back-
ground layer of the figure. The array copy in local memory
is shown in the foreground divided into 4 local tiles that par-
tition the array. Halo regions in global memory are shown
in dark gray and halo regions in local memory are shown in
light gray.

We point out that the hierarchical distribution of memory
used on the OpenCL device shown in Figure 1 is similar
to the distribution of memory across MPI nodes in an MPI
application. In the case of MPI, the virtual global array
is represented by the background layer (with its halo) and
partitions of the global array are stored in the 4 MPI nodes
shown in the foreground. Our current and future work on
this effort includes source-to-source transformations to gen-
erate MPI code in addition to OpenCL in order to deal with
clusters of nodes containing accelerators. This work is out-
side the scope of this paper.

Halo regions obtained via the region_cpy function (used
with intent(in) arrays) are constrained semantically so that
they can not be written to by an OpenCL kernel. The re-

gion_cpy function returns a copy of the region of the ar-
ray stored in global memory and places it in local memory
shared by threads in a thread group. Thus once memory for
an array has been transferred into global device memory by
the host (before the OpenCL kernel is run), memory is in
a consistent state so that all kernel threads are free to read
from global device memory. Because the local memory is a
copy, it functions as a software cache for the local thread
group. Thus the compiler must insert OpenCL barriers at
proper locations in the code to insure that all threads have
written to the local memory cache before any thread can
start to read from the cache. On exit from a kernel, any
local memory explicitly stored in register variables by the
compiler (memory accessed via the region_cpy function)

is copied back to global memory for all intent(out) arrays.
Recall that a thread may only write to its own intent(out)
array element, thus there are no race conditions when up-
dating intent(out) arrays.

4.2 Transformation examples
This section outlines the OpenCL equivalent syntax for por-
tions of the Fortran shallow-water code described in Sec-
tion 3. The notation uses uppercase for arrays and low-
ercase for scalar quantities. Variables temporarily storing
quantities for updated output arrays (declared as pointers
in Fortran) are denoted by a p preceding the array name.
For example, the Fortran statement pH = region_ptr(oH,

halo) is transformed as a scalar variable declaration repre-
senting a single element in the output array oH.

4.2.1 Region function
While the Fortran version of the region_cpy function se-
mantically returns an array copy, in OpenCL this function
returns a scalar quantity based on the location of a thread
in a thread group and the relationship of its location to the
array copy transferred to local memory. Because we assume
there is a thread for every element in the interior, the array
index is just the thread index adjusted for the size of the
halo. Thus region_cpy is just an inline OpenCL function
and is provided by the ForOpenCL library.

4.2.2 Function and variable declarations
Fortran kernel procedures have direct correspondence with
OpenCL equivalents. For example, the wave_advance inter-
face declaration is transformed as

__kernel void
wave_advance(float dx, ..., __global float * H, ...);

The intent(in) arrays have local equivalents that are stored
in local memory and are declared by, for example,

__local float H_local[LOCAL_SIZE];

These local arrays are declared with the appropriate size
and are copied to local memory by the compiler with an in-
lined library function. The array temporaries defined on cell
faces are declared similarly while interior pointer variables
are simple scalars, e.g., float pH. Intent(in) array variables
cannot be scalar objects because regions may be shifted and
thus shared by threads within a thread group.

4.2.3 Array syntax
Array syntax transforms nearly directly to OpenCL code.
For example, interior pointer variables are particularly straight-
forward as they are scalar quantities in OpenCL,

pH = region_cpy(H, halo)
+ (dt/dx) * ( region_cpy(Ux, face_lt) -

region_cpy(Ux, face_rt) )
+ (dt/dy) * ( region_cpy(Vy, face_dn) -

region_cpy(Vy, face_up) );
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Array width F90 GPU (16x8) Speedup

16 0.025 ms 0.017 ms 1.5
32 0.086 0.02 4.3
64 0.20 0.02 10.0
128 0.76 0.036 21.1
256 3.02 0.092 32.8
512 12.1 0.32 37.8
1024 49.5 1.22 40.6
1280 77.7 1.89 41.1
2048 199.1 4.82 41.3
4096 794.7 19.29 41.2

Table 1: Performance measurements for the shallow-
water code. All times reported in milliseconds.

Allocated variables are more complicated because they are
arrays.

Hx[i] = 0.5 * (region(H_local, face_lt)+ ...);

where i = LX + LY*(NLX+halo(0)+halo(1))) is a local in-
dex variable, LX = get_local_id(0) is the local thread id in
the x dimension, LY = get_local_id(1) is the local thread
id in the y dimension, NLX = get_local_size(0) is the size
of the thread group in the x dimension, and the get_local_id
and get_local_size functions are defined by the OpenCL
language standard.

5. PERFORMANCE MEASUREMENTS
Performance measurements were made comparing the trans-
formed code with different versions of the serial shallow-
water code. The serial versions included two separate For-
tran versions: one using data-parallel notation and the other
using explicit looping constructs. We also compared with a
hand-written OpenCL implementation that was optimized
for local memory usage (no array temporaries). The ac-
celerated measurements were made using an NVIDIA Tesla
C2050 (Fermi) cGPU with 2.625 GB GDDR5 memory, and
448 processor cores. The serial measurements were made us-
ing an Intel Xeon X5650 hexacore CPU with 96 GB of RAM
running at 2.67 GHz. The compilers were gfortran and gcc
version 4.4.3 with an optimization level of -O3.

Several timing measurements were made by varying the size
of the array state variables. The performance measurements
are shown in Table 1. An average time was obtained by
executing 100 iterations of the outer time-advance loop that
called the OpenCL kernel. This tight loop kept the OpenCL
kernel supplied with threads to take advantage of potential
latency hiding by the NVIDIA GPU. Any serial code within
this loop (not present in this study) would have reduced the
measured values.

The transformed code achieved very good results. In all in-
stances, the performance of the transformed code was within
25% of the hand-optimized OpenCL kernel. Most of the
extra performance of the hand-optimized code can be at-
tributed to the absence of array temporaries and to packing
the three state variables H, U, and V into a single vector
datatype.

While we did not have an OpenMP code for multicore com-
parisons, the transformed OpenCL code on the NVIDIA
C2050 was up to 40 times faster than the best serial For-
tran code executing on the host CPU.

6. CONCLUSIONS
The sheer complexity of programming for clusters of many
or multi-core processors with tens of millions threads of ex-
ecution makes the simplicity of the data-parallel model at-
tractive. The increasing complexity of today’s applications
(especially in light of the increasing complexity of the hard-
ware) and the need for portability across architectures make
a higher-level and simpler programming model like data-
parallel attractive.

The goal of this work has been to exploit source-to-source
transformations that allow programmers to develop and main-
tain programs at a high-level of abstraction, without cod-
ing to a specific hardware architecture. Furthermore these
transformations allow multiple hardware architectures to be
targeted without changing the high-level source. It also
removes the necessity for application programmers to un-
derstand details of the accelerator architecture or to know
OpenCL.
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ABSTRACT
We present a study of three important kernels that occur fre-
quently in iterative statistical applications: K-Means, Multi-
Dimensional Scaling (MDS), and PageRank. We imple-
mented each kernel using OpenCL and evaluated their per-
formance on an NVIDIA Tesla GPGPU card. By exam-
ining the underlying algorithms and empirically measuring
the performance of various components of the kernel we ex-
plored the optimization of these kernels by four main tech-
niques: (1) caching invariant data in GPU memory across
iterations, (2) selectively placing data in different memory
levels, (3) rearranging data in memory, and (4) dividing the
work between the GPU and the CPU. The optimizations re-
sulted in performance improvements of up to 5X, compared
to näıve OpenCL implementations. We believe that these
categories of optimizations are also applicable to other sim-
ilar kernels. Finally, we draw several lessons that would be
useful in not only implementing other similar kernels with
OpenCL, but also in devising code generation strategies in
compilers that target GPGPUs through OpenCL.

1. INTRODUCTION
Iterative algorithms are at the core of the vast majority of
scientific applications, which have traditionally been paral-
lelized and optimized for large multi-processors, either based
on shared memory or clusters of interconnected nodes. As
GPUs have gained popularity for scientific applications, com-
putational kernels used in those applications need to be
performance-tuned for GPUs in order to utilize the hard-
ware as effectively as possible.

Often, when iterative scientific applications are parallelized
they are naturally expressed in a bulk synchronous parallel
(BSP) style, where local computation steps alternate with
collective communication steps [26]. An important class of

such iterative applications are statistical applications that
process large amounts of data. A crucial aspect of large data
processing applications is that they can often be fruitfully
run in large-scale distributed computing environments, such
as clouds.

In this paper, we study three algorithms, which we refer to
as kernels, that find use in such iterative statistical applica-
tions. The intended environment to run these applications is
loosely-connected and distributed, which could be leveraged
using a cloud computing framework, such as MapReduce.
In this paper, we focus on characterizing and optimizing the
kernel performance on a single GPU node. The three kernels
are:

1. K-Means, which is a clustering algorithm used in many
machine learning applications;

2. MDS, which is a set of statistical techniques to visualize
higher dimensional data in three dimensions; and

3. PageRank, which is an iterative link analysis algorithm
relying on sparse matrix-vector multiplication.

These kernels are characterized by high ratio of memory ac-
cesses to floating point operations, thus necessitating care-
ful latency hiding and memory hierarchy optimizations to
achieve high performance. We conducted our study in the
context of OpenCL, which would let us extend our results
across hardware platforms. We studied each kernel for its
potential for optimization by:

1. Caching invariant data in GPU memory to be used across
kernel invocations (i.e., algorithm iterations);

2. Utilizing OpenCL local memory, by software-controlled
caching of selected data;

3. Reorganizing data in memory, to encourage hardware-
driven memory access coalescing or to avoid bank con-
flicts; and

4. Dividing the computation between CPUs and GPUs, to
establish a software pipeline across iterations.
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We present detailed experimental evaluation for each ker-
nel by varying different algorithmic parameters. Finally, we
draw some lessons linking algorithm characteristics to the
optimizations that are most likely to result in performance
improvements. This has important implications not only for
kernel developers, but also for compiler developers who wish
to leverage GPUs within a higher level language by compil-
ing it to OpenCL.

2. BACKGROUND
Boosted by the growing demand for gaming power, the tradi-
tional fixed function graphics pipeline of GPUs have evolved
into a full-fledged programmable hardware chain [14].

In this paper we use NVIDIA Tesla C1060 GPGPU card
for our experiments. Tesla C1060 consists of 240 proces-
sor cores and 4 GB global memory with 102 GB/sec peak
memory bandwidth. It has a theoretical peak performance
of 933 GFLOPS for single precision and 78 GFLOPS for
double precision.

It is the general purpose relatively higher level programming
interfaces, such as OpenCL, that have paved the way for
leveraging GPUs for general purpose computing. OpenCL
is a cross-platform, vendor-neutral, open programming stan-
dard that supports parallel programming in heterogeneous
computational environments, including multi-core CPUs and
GPUs [10]. It provides efficient parallel programming capa-
bilities on both data parallel and task parallel architectures.

A compute kernel is the basic execution unit in OpenCL.
Kernels are queued up for execution and OpenCL API pro-
vides a set of events to handle the queued up kernels. The
data parallel execution of a kernel is defined by a multi-
dimensional domain and each individual execution unit of
the domain is referred to as a work item, which may be
grouped together into several work-groups, executing in par-
allel. Work items in a group can communicate with each
other and synchronize execution. The task parallel compute
kernels are executed as single work items.

OpenCL defines a multi level memory model with four mem-
ory spaces: private, local, constant. and global as depicted

Local Memory

Work 
Item 1

Work 
Item 2

Private Private

Compute Unit 1

Local Memory

Work 
Item 1

Work 
Item 2

Private Private

Compute Unit 2

Global GPU Memory

Constant Memory

C
P
U

Figure 1: OpenCL memory hierarchy. In the
current NVIDIA OpenCL implementation, private
memory is physically located in global memory.

in Figure 1. Private memory can only be used by single
compute units, while global memory can be used by all the
compute units on the device. Local memory (called shared
memory in CUDA) is accessible in all the work items in
a work group. Constant memory may be used by all the
compute units to store read-only data.

3. ITERATIVE STATISTICAL APPS
Many important scientific applications and algorithms can
be implemented as iterative computation and communica-
tion steps, where computations inside an iteration are inde-
pendent and are synchronized at the end of each iteration
through reduce and communication steps. Often, each iter-
ation is also amenable to parallelization. Many statistical
applications fall in this category. Examples include cluster-
ing algorithms, data mining applications, machine learning
algorithms, data visualization algorithms, and most of the
expectation maximization algorithms. The growth of such
iterative statistical applications, in importance and number,
is driven partly by the need to process massive amounts of
data, for which scientists rely on clustering, mining, and
dimension-reduction to interpret the data. Emergence of
computational fields, such as bioinformatics, and machine
learning, have also contributed to an increased interest in
this class of applications.

Advanced frameworks, such as Twister [9], can support opti-
mized execution of iterative MapReduce applications, mak-
ing them well-suited to support iterative applications in a
large scale distributed environment, such as clouds. Within
such frameworks, GPGPUs can be utilized for execution of
single steps or single computational components. This gives
the applications the best of both worlds by utilizing the
GPGPU computing power and supporting large amounts
of data. One goal of our current study is to evaluate the
feasibility of GPGPUs for this class of applications and to
determine the potential of combining GPGPU computing to-
gether with distributed cloud-computing frameworks. Some
cloud-computing providers, such as Amazon EC2, are al-
ready moving to provide GPGPU resources for their users.
Frameworks that combine GPGPU computing with the dis-
tributed cloud programming would be good candidates for
implementing such environments.

Two main types of data can be identified in these statisti-
cal iterative applications, the loop-invariant input data and
the loop-variant delta values. Most of the time, the loop-
invariant input data, which remains unchanged across the
iterations, are orders of magnitude larger than the loop-
variant delta values. These loop-invariant data can be parti-
tioned to process independently by ifferent worker threads.
These loop-invariant data can be copied from CPU memory
to GPU global memory at the beginning of the computation
and can be reused from the GPU global memory across iter-
ations, giving significant advantages in terms of the CPU to
GPU data transfer cost. To this end, we restrict ourselves
to scenarios where the loop-invariant computational data fit
within the GPU memory, which are likely to be the com-
mon case in large-scale distributed execution environments
consisting of a large number of GPU nodes. Loop-variant
delta values typically capture the result of a single iteration
and will be used in processing of the next iteration by all
the threads, hence necessitating a broadcast type operation
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Figure 2: Software pipelining to leverage GPUs for
loop-level parallelism.

of loop-variant delta values to all the worker threads at the
beginning of each iteration. Currently we use global mem-
ory for this broadcast. Even though constant memory could
potentially result in better performance, it is often too small
to hold the loop-variant delta for the MDS and PageRank
kernels we studied.

It is possible to use software pipelining for exploiting par-
allelism across iterations. Assuming that only one kernel
can execute on the GPU at one time, Figure 2 shows a
scheme for exploiting loop-level parallelism. This assumes
that there are no dependencies across iterations. However,
if the loop-carried dependence pattern is dynamic, i.e., it
may or may not exist based on specific iterations or input
data, then it is still possible to use a software pipelining
approach to speculatively execute subsequent iterations con-
currently and quashing the results if the dependencies are
detected. Clearly, this sacrifices some parallel efficiency. An-
other scenario where such pipelining may be useful is when
the loop-carried dependence is caused by a convergence test.
In such a case, software pipelining would end up executing
portions of iterations that were not going to be executed in
the original program. However, that would have no impact
on the converged result.

Note that if multiple kernels can be executed concurrently
and efficiently on the GPU then the pipelining can be repli-
cated to leverage that capability.

A characteristic feature of data processing iterative statis-
tical applications is their high ratio of memory accesses to
floating point operations, making them memory-bound. As
a result, achieving high performance, measured in GFLOPS,
is challenging. However, software-controlled memory hierar-
chy and the relatively high memory bandwidth of GPGPUs
also offer an opportunity to optimize such applications. In
the rest of the paper, we describe and study the optimiza-
tion on GPUs of three representative kernels that are heavily
used in iterative statistical applications. It should be noted
that even though software pipelining served as a motivating
factor in designing our algorithms, we did not use software
pipelining for the kernels used in this study.

4. K-MEANS CLUSTERING
Clustering is the process of partitioning a given data set
into disjoint clusters. Use of clustering and other data min-
ing techniques to interpret very large data sets has become

increasingly popular with petabytes of data becoming com-
monplace. Each partitioned cluster includes a set of data
points that are similar by some clustering metric and dif-
fer from the set of data points in another cluster. K-Means
clustering algorithm has been widely used in many scientific
as well as industrial application areas due to its simplicity
and the applicability to large data sets [20].

K-Means clustering algorithm works by defining k centroids,
i.e., cluster means, one for each cluster, and associating the
data points to the nearest centroid. It is often implemented
using an iterative refinement technique, where each iteration
performs two main steps:

1. In the cluster assignment step, each data point is assigned
to the nearest centroid. The distance to the centroid is
often calculated as Euclidean distance.

2. In the update step, new cluster centroids are calculated
based on the data points assigned to the clusters in the
previous step.

At the end of iteration n, the new centroids are compared
with the centroids in iteration n− 1. The algorithm iterates
until the difference, called the error, falls below a predeter-
mined threshold. Figure 3 shows an outline of our OpenCL
implementation of the K-Means algorithm.

The number of floating-point operations, F , in OpenCL K-

k e r n e l KMeans( g l o b a l matrix ,
g l o b a l c ent ro id s , g l o b a l assignment ,
l o c a l l o ca lPo in t s , l o c a l l oca lData ){

g id = g e t g l o b a l i d ( 0 ) ;
l i d = g e t l o c a l i d ( 0 ) ;
l z = g e t l o c a l s i z e ( 0 ) ;

// Copying c en t r o i d s to shared memory
i f ( l i d < cente r sHe ight ){

f o r ( i n t i =0; i < WIDTH ; i++){
l o c a lPo i n t s [ ( l i d ∗WIDTH)+ i ] =

c en t r o i d s [ ( l i d ∗WIDTH)+ i ] ;
}

}

// Copying data po in t s to shared memory
f o r ( i n t i =0; i < WIDTH ; i++){

l o ca lData [ l i d +( l z ∗ i ) ] =
matrix [ ( g id )+( i ∗ he ight ) ] ;

}
f o r ( i n t j = 0 ; j < cente r sHe ight ; j++){

f o r ( i n t i = 0 ; i < width ; i++){
d i s t ance = ( l o c a lPo i n t s [ ( j ∗width)+ i ]

− l o ca lData [ l i d +( l z ∗ i ) ] ) ;
euDistance += d i s t ance ∗ d i s t ance ;

}
i f ( j == 0) {min = euDistance ;}
e l s e i f ( euDistance < min) {

min = euDistance ; minCentroid = j ;
}

}
assignment [ g id ]=minCentroid ;
}

Figure 3: Outline of K-Means in OpenCL.
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Figure 4: K-Means performance with the different optimizations steps, using 2D data points and 300 cen-
troids.

Means per iteration per thread is given by F = (3DM +M),
resulting in a total of F ∗N ∗ I floating-point operations per
calculation, where I is the number of iterations, N is the
number of data points, M is the number of centers, and D
is the dimensionality of the data points.

Figure 4 summarizes the performance of our K-Means imple-
mentation using OpenCL, showing successive improvements
with optimizations. We describe these optimizations in de-
tail in the remainder of this section.

4.1 Caching Invariant Data
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Figure 5: Performance improvement in K-Means
due to caching of invariant data in GPU memory.

Transferring input data from CPU memory to GPU mem-
ory incurs major cost in performing data intensive statistical
computations on GPUs. The speedup on GPU over CPU
should be large enough to compensate for this initial data
transfer cost. However, statistical iterative algorithms have
loop-invariant data that could be reused across iterations.
Figure 5 depicts the significant performance improvements
gained by reusing of loop-invariant data in K-Means com-
pared with no data reuse (copying the loop-invariant data
from CPU to GPU in every iteration).

4.2 Leveraging Local Memory
In the näıve implementation, both the centroid values as
well as the data points are accessed directly from the GPU
global memory, resulting in a global memory read for each

data and centroid data point access. With this approach, we
were able to achieve performance in the range of 20 GFLOPs
and speedups in the range of 13 compared to single core
CPU1.

The distance from a data point to each cluster centroid gets
calculated in the assignment step of K-Means, resulting in
reuse of the data point many times within a single thread.
This observation motivated us to modify the kernel to copy
the data points belonging to a local work group to the local
memory, at the beginning of the computation. This resulted
in approximately 75% performance increase over the näıve
implementation, as the next line, marked “B”, shows.

Each thread iterates through the centroids to calculate the
distance to the data point assigned to that particular thread.
This results in several accesses (equal to the local work group
size) to each centroid per local work group. To avoid that,
we copied the centroid point to the local memory before the
computation. Caching of centroids values in local memory
resulted in about 160% further performance increase, illus-
trated in the line marked “C” in Figure 4.

The performance curves changes at 8192 data point in Fig-
ure 4. We believe that this is due to the GPU getting sat-
urated with threads at 8192 data points and above, since
we spawn one thread for each data point. For data sizes
smaller than 8192, the GPU kernel computation took a con-
stant amount of time, indicating that GPU might have been
underutilized for smaller data sizes. Finally, the flattening
of the curve for large data sizes is likely because of reaching
memory bandwidth limits.

4.3 Optimizing Memory Access
As the next step, we stored the multi-dimensional data points
in column-major format in global memory to take advantage
of the hardware coalescing of memory accesses. However,
this did not result in any measurable performance improve-
ment as the completely overlapped lines “C” and “D” show,

1We use a 3 GHz Intel Core 2 Duo Xeon processor, with
4 MB L2 cache and 8 GB RAM, in all our experiments.
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Figure 6: K-Means with varying algorithmic parameters.

in Figure 4.

However, storing the data points in local memory in column-
major format resulted in about 140% performance improve-
ment, relative to the näıve implementation, represented by
the line marked “D + shared data points . . . ” in Figure 4.
We believe that this is due to reduced bank conflicts when
different threads in a local work group access local mem-
ory concurrently. Performing the same transformation for
centroids in local memory did not result in any significant
change to the performance (not shown in the figure). We
believe this is because all the threads in a local work group
access the same centroid point at a given step of the com-
putation, resulting in a bank-conflict free broadcast from
the local memory. All experiments for these results were
obtained on a two-dimensional data set with 300 centroids.

Next, we characterized our most optimized K-Means algo-
rithm by varying the different algorithmic parameters. Fig-
ure 6(a) presents the performance variation with different
number of centroids, as the number of data points increases.
Figure 6(b) shows the performance variation with 2D and 4D
data sets, each plotted for 100 and 300 centroids. The mea-
surements indicate that K-Means is able to achieve higher
performance with higher dimensional data. Finally, Fig-
ures 6(c) and 6(d) show that there is no measurable change
in performance with the number of iterations.

4.4 Sharing Work between CPU and GPU
In the OpenCL K-Means implementation, we follow a hybrid
approach where cluster assignment step is performed in the

GPU and the centroid update step is performed in the CPU.
A single kernel thread calculates the centroid assignment for
one data point. These assignments are then transfered back
to the CPU to calculate the new centroid values. While some
recent efforts have found that performing all the computa-
tion on the GPU can be beneficial, especially, when data
sets are large [8], that approach forgoes the opportunity to
make use of the powerful CPU cores that might also be
available in a distributed environment. Performing partial
computation on the CPU allows our approach to implement
software pipelining within iteration by interleaving the work
partitions and across several iterations through speculation.

4.5 Overhead Estimation
We used a simple performance model in order to isolate
the overheads caused by data communication and kernel
scheduling. Suppose that cs is the time to perform K-Means
computation and os is the total overheads (including data
transfer to and from GPU and thread scheduling), for s data
points. Then, the total running time of the algorithm, Ts is
given by:

Ts = cs + os (1)

Suppose that we double the computation that each kernel
thread performs. Since the overheads remain more or less
unchanged, the total running time, T ′

s, with double the com-
putation is given by:

T ′
s = 2·cs + os (2)

By empirically measuring Ts and T ′
s and using Equations 1

and 2, we can estimate the overheads. Figure 7 shows T ′
s
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Figure 7: Overheads in OpenCL KMeans.

(“double compute”), Ts (“regular”), c (“compute only”) and o
(“overhead”). The running times are in seconds (left vertical
axis) and overhead is plotted as a percentage of the compute
time, c (right vertical axis). Clearly, for small data sets the
overheads are prohibitively high. This indicates that, in
general, a viable strategy to get the best performance would
be to offload the computation on the GPU only when data
sets are sufficiently large. Empirically measured parameters
can guide the decision process at run time.

5. MDS
The objective of multi-dimensional scaling (MDS) is to map
a data set in high-dimensional space to a user-defined lower
dimensional space with respect to pairwise proximity of the
data points [16, 5]. Dimensional scaling is used mainly in
visualization of high-dimensional data by mapping them to
two or three dimensional space. MDS has been used to vi-
sualize data in diverse domains, including, but not limited
to, bio-informatics, geology, information sciences, and mar-
keting.

One of the popular algorithms to perform MDS is Scal-
ing by MAjorizing a COmplicated Function (SMACOF) [7].
SMACOF is an iterative majorization algorithm to solve
MDS problem with STRESS criterion, which is similar to
expectation-maximization. In this paper, we implement the
parallel SMACOF algorithm described by Bae et al [1].

The input for MDS is an N×N matrix of pairwise prox-
imity values, where N is the number of data points in the
high-dimensional space. The resultant lower dimensional
mapping in D dimensions, called the X values, is an N×D
matrix. For the purposes of this paper, we performed an
unweighted mapping resulting in two main steps in the al-
gorithm: (a) calculating new X values, and (b) calculating
the stress of the new X values. There needs to be a global
barrier between the two steps as stress value calculation re-
quires all of the new X values. However the reduction step
for X values in MDS is much simpler than in K-Means. Since
each data point, k, independently produces the value X[k],
the reduction step reduces to simple aggregation in memory.
Figure 8 outlines our OpenCL implementation of MDS.

k e r n e l MDS( g l o b a l f l o a t ∗ data ,
g l o b a l f l o a t ∗ x , g l o b a l f l o a t ∗ newX){

g id = g e t g l o b a l i d ( 0 ) ;

f o r ( i n t j = 0 ; j < WIDTH ; j++)
{

d i s t ance = d i s t ( x [ g id ] [ ] , x [ j ] [ ] ) ;
bofZ = k ∗ ( data [ g id ] [ j ] / d i s t ance ) ;
rowSum += bofZ ;
newX [ g id ] [ ] += bofz ∗ x [ j ] [ ] ;

}

newX [ g id ] [ ] += k ∗ rowSum ∗ x [ g id ] [ ] ;
newX [ g id ] [ ] = newX [ g id ] [ ] /WIDTH;

b a r r i e r (CLK GLOBALMEM FENCE) ;

l o c a l f l o a t sigma [ ] ;
f o r ( i n t j = 0 ; j < WIDTH; j++)
{

d i s t ance = d i s t (newX [ g id ] [ ] , newX [ j ] [ ] )
sigma [ l i d ] += ( data [ g id ] [ j ]− d i s t ance ) ˆ 2 ;

}

s t r e s s = h i e ra ch i ca lReduc t i on ( sigma [ ] ) ;
}

Figure 8: Outline of MDS in OpenCL.

The number of floating pointer operations, F , per iteration
per thread is given by F = (8DN+7N+3D+1), resulting in
a total of F×N×I floating point operations per calculation,
where I is the number of iterations, N is the number of data
points, and D is the dimensionality of the lower dimensional
space.

5.1 Caching Invariant Data
Similar to K-Means, MDS also has loop-invariant data that
can fit in available global memory and that can be reused
across iterations. Figure 9 summarizes the benefits of doing
that for MDS.
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Figure 9: Performance improvement in MDS due to
caching of invariant data in GPU memory.

5.2 Leveraging Local Memory
In a näıve implementation all the data points, X values, and
result (new X values) are stored in global memory. SMA-
COF MDS algorithm uses a significant number of temporary
runtime matrices for intermediate data storage. We restruc-
tured the algorithm to eliminate the larger temporary run
time matrices, as they proved to be very costly in terms of
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Figure 10: MDS with varying algorithmic parameters.

space as well as performance. The kernel was redesigned to
process a single row at a time.

After eliminating the run time data structures, X’[k][] ma-
trix points were used in several locations of the algorithm to
store intermediate results, which were stored in local mem-
ory and copied to global memory only at barrier synchro-
nization. As an added advantage, we were able to reuse the
intermediate values in local memory when calculating the
stress values. This resulted in a significant performance im-
provement (up to about 45%) for intermediate size inputs as
depicted in “Results in Shared Mem” curve of Figure 10(a).

X[k] values for each thread k were copied to local memory
before the computation. X values belonging to the row that
is being processed by the thread gets accessed many more
times compared to the other X values. Hence, copying these
X values to local memory turns out to be worthwhile. “X(k)
in shared mem” curve of Figure 10(a) quantifies the gains.

5.3 Optimizing Memory Access
All data points belonging to the data row that a thread is
processing are iterated through twice inside the kernel. We
encourage hardware coalescing of these accesses by storing
the data in global memory in column-major format, which
causes contiguous memory access from threads inside a lo-
cal work group. Figure 10(a) shows that data placement to
encourage hardware coalescing results in a significant per-

formance improvement.

We also experimented with storing the X values in column-
major format, but it resulted in a slight performance degra-
dation. The access pattern for the X values is different from
that for the data points. All the threads in a local work
group access the same X value at a given step. As we noted
in Section 4.3, we observe a similar behavior with the K-
Means clustering algorithm.

Performance improvements resulting from each of the above
optimizations are summarized in Figure 10(a). Unfortu-
nately, we do not yet understand why the performance drops
suddenly after a certain large number of data points (peaks
at 900 MB data size and drops at 1225 MB data size) and
then begins to improve again. Possible explanations could
include increased data bus contention, or memory bank con-
flicts. However, we would need more investigation to deter-
mine the exact cause. Figures 10(b) and 10(c) show per-
formance numbers with varying number of iterations, which
show similar trends.

5.4 Sharing Work between CPU and GPU
In the case of MDS, there is not a good case for dividing the
work between CPU and GPU. In our experiments, the entire
computation was done on the GPU. On the other hand, as
the measured overheads show below, certain problem sizes
might be better done on the CPU.
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5.5 Overhead Estimation
Following the model that was used for K-Means in Sec-
tion 4.5, we performed similar experiments for estimating
kernel scheduling and data transfer overheads in MDS. Fig-
ure 11 shows the results. As in K-Means, we note that the
overheads change with the input data size. In the case of
MDS, however, there are two useful cutoffs, one for small
data sizes and another for large data sizes—on either ends
overheads become high and the computation might achieve
higher performance on the CPU if the data have to be trans-
ferred from the CPU memory, which is what we have as-
sumed in the overhead computations.
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Figure 11: Overheads in OpenCL MDS.

6. PAGERANK
PageRank algorithm, developed by Page and Brin [6], an-
alyzes linkage information of a set of linked documents to
measure the relative importance of each document whithin
the set. PageRank of a certain document depends on the
number and the PageRank of other documents linked to it.

PR(pi) =
1− d

N
+ d

∑

pj∈M(pi)

PR(pj)

L(pj)
(3)

k e r n e l PageRankCSR( g l o b a l f l o a t ∗ po inte r s ,
g l o b a l f l o a t ∗ i nd i c e s , g l o b a l f l o a t ∗ x ,
g l o b a l f l o a t ∗ newX){

g id = g e t g l o b a l i d ( 0 ) ;

s t a r t = po in t e r s [ ( g id ) ] ;
end = po in t e r s [ ( g id )+1 ] ;

f o r ( i n t i=s t a r t ; i < end ; i++)
{

newRank += ranks [ i n d i c e s [ i ] ] ;
}

newRank = ((1−d)/numPages ) + (d ∗ newRank ) ;
// To avoid s t o r i n g 1/L( pj ) in the matrix .
newRanks [ g id ] = newRank/numPages ;

}

Figure 12: Outline of PageRank (CSR) in OpenCL.

Equation 3 defines PageRank, where {p1, . . ., pN} is the set
of documents, M(pi) is the set of documents that link to
pi, L(pj) is the number of outbound links on pj , and N is
the total number of pages. PageRank calculation can be
performed using an iterative power method, resulting in the
multiplication of a sparse matrix and a vector. The link-
age graph for the web is very sparse and follows a power
law distribution [2], presenting unique implementation chal-
lenges for PageRank.

For our OpenCL PageRank implementation we used a modi-
fied compressed sparse row (CSR) format and modified ELL-
PACK format [4] to store the matrix representing the link
graph. Typically the sparse matrix used for PageRank stores
1/L(pj) in an additional data array. We eliminated the
data array by storing the intermediate page rank values as
PR(pj)/L(pj), significantly reducing memory usage and ac-
cesses. We made a similar modification to ELLPACK for-
mat. We preprocessed and used the Stanford web data set
from the Stanford Large Network Dataset [25] for our ex-
periments. Our implementation is outlined in Figure 12.

6.1 Leveraging Local Memory
We were not able to utilize local memory to store all the
data in the GPU kernel due to the variable sizes of matrix
rows and the large size of the PageRank vector. However, we
used local memory for data points in the ELLPACK kernel.

6.2 Optimizing Memory Access
Due to the irregular memory access pattern arising out of
indirect array accesses, sparse matrix vector computation is
not amenable to memory access optimizations. However, the
index array, especially in the ELLPACK format, is stored in
appropriate order to enable contiguous memory accesses.

6.3 Sharing Work between CPU and GPU
Due to the power law distribution of non-zero elements, a
small number of rows contains a large number of elements,
but a large number of rows are very sparse. In a prepro-
cessing step, the rows are partitioned into two or more sets
of those containing a small number of elements and the re-
mainder containing higher number of elements. The more
dense rows could be computed either on the CPU or the
GPU using the CSR format directly. The rows with smaller
number of non-zero elements are reformatted into the ELL-
PACK format and computed on the GPU. We evaluated
several partitioning alternatives, shown in Figure 13.

The leftmost bars represent the running times on CPU. The
next three bars represents computing all rows with greater
than or equal to k elements on the CPU, where k is 4, 7,
and 16, respectively. The rows with fewer than k elements
are transformed into ELLPACK format and computed on
the GPU. Moreover, when k = 7, two distinct GPU kernels
are used, one for computing rows with up to 3 elements and
another for computing rows with 4 to 7 elements. Similarly,
for k = 16, an additional third kernel is used to process
rows with 8 to 15 elements. Splitting the kernels not only
improves the GPU occupancy, but also allows those kernels
to be executed concurrently.

In Figure 13 we do not include the overheads of the linear
time preprocessing step and of host-device data transfers,
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Figure 13: Potential implementations of PageRank.

both of which are relatively easy to estimate. However, we
also do not assume any parallelism between the multiple
kernels processing the rows in ELLPACK format. Our main
observation from these experiments is that sharing work be-
tween CPU and GPU for sparse matrix-vector multiplication
is a fruitful strategy. Moreover, unlike previous attempts
recommending hybrid matrix representation that used a sin-
gle kernel for the part of the matrix in ELLPACK format [4],
our experiments indicate that it is beneficial to use multiple
kernels to handle rows with different numbers of non-zero
elements. The problem of deciding the exact partitioning
and the exact number of kernels is outside the scope of this
paper and we leave that as part of future work.

Instead of computing the matrix partition with denser rows
on the CPU, it could also be computed on the GPU. We
also implemented a sparse matrix-vector product algorithm
using CSR representation on the GPU (not shown in the fig-
ure). Our experiments indicate that GPU can take an order
of magnitude more time for that computation than CPU,
underlining the role of CPU for certain algorithm classes.

7. LESSONS
In this study we set out to determine if we could characterize
some core data processing statistical kernels for commonly
used optimization techniques on GPUs. We focused on three
widely used kernels and four important optimizations. We
chose to use OpenCL, since there are fewer experimental
studies on OpenCL, compared to CUDA, and the multi-
platform availability of OpenCL would allow us to extend
our research to other diverse hardware platforms. Our find-
ings can be summarized as follows:

1. Since parts of the algorithms tend to employ sparse data
structures or irregular memory accesses it is useful to
carry out portions of computation on the CPU.

2. In the context of clusters of GPUs, inter-node communi-
cation needs to go through CPU memory (as of the writ-
ing of this paper in mid-2011). This makes computing on
the CPUs a compelling alternative on data received from
remote nodes, when the CPU-memory to device-memory

data transfer times would more than offset any gains to
be had running the algorithms on the GPUs.

3. Whenever possible, caching invariant data on GPU for
use across kernel invocations significantly impacts per-
formance.

4. While carefully optimizing the algorithms using special-
ized memory is important, as past studies have found,
iterative statistical kernels cause complex trade-offs to
arise due to irregular data access patterns (e.g., in use of
texture memory) and size of invariant data (e.g., in use
of constant memory).

5. Encoding algorithms directly in OpenCL turns out to
be error-prone and difficult to debug. We believe that
OpenCL might be better suited as a compilation target
than a user programming environment.

In the rest of this section we elaborate on these findings.

Sharing work between CPU and GPU. One major issue
in sharing work between CPU and GPU is the host-device
data transfers. Clearly, this has to be balanced against the
improved parallelism across GPUs and multi-core CPUs.
Moreover, within the context of our study, there is also
the issue of how data across nodes get transferred. If the
data must move through CPU memory then in certain cases
it might be beneficial to perform the computation on the
CPU. Through our simple performance model and the over-
head graphs the trade-offs are apparent. These graphs could
also help in determining the cutoffs where offloading com-
putation on the GPU is worthwhile. Finally, in iterative
algorithms, where kernels are invoked repeatedly, offload-
ing part of the computation on the GPUs can also enable
software pipelining between CPU and GPU interleaving dif-
ferent work partitions.

Another factor in determining the division of work is the
complexity of control flow. For instance, a reduction oper-
ation in K-Means, or a sparse matrix-vector multiply with
relatively high density of non-zero values that might involve
a reduction operation, may be better suited for computing

GPUScA 2011 Galveston Island

41



on the CPU. This would be especially attractive if there is
sufficient other work to overlap with GPU computations.

Finally, the differences in precision between CPU and GPU
can sometimes cause an iterative algorithm to require differ-
ent number of iterations on the two. A decision strategy for
scheduling an iterative algorithm between CPU and GPU
may also need to account for these differences.

Unlike other optimizations, the value of this one is deter-
mined largely by the nature of input data. As a result, a
dynamic mechanism to schedule computation just-in-time
based on the category of input could be a more useful strat-
egy than a static one.

GPU caching of loop-invariant data. There turns out to
be a significant amount of data that are invariant and used
across multiple kernel calls. Such data can be cached in GPU
memory to avoid repeated transfers from the CPU memory
in each iteration. However, in order to harness this benefit,
the loop-invariant data should fit in the GPU global memory
and should be retained throughout the computation. When
the size of loop-invariant data is larger than the available
GPU global memory, it is more advantageous to distribute
the work across compute nodes rather than swapping the
data in and out of the GPU memory.

Leveraging Local Memory. It is not surprising that mak-
ing use of faster local memory turns out to be one of the most
important optimizations within OpenCL kernels. In many
cases, decision about which data to keep in local memory is
straightforward based on reuse pattern and data size. For
example, in K-Means and MDS it is not possible to keep the
entire data set in local memory, since it is too big. However,
the centroids in K-Means and intermediate values in MDS
can be fruitfully stored there. Unfortunately, in some cases,
such as portions of MDS, leveraging local memory requires
making algorithmic changes in the code, which could be a
challenge for automatic translators.

Leveraging Texture Memory. Texture memory provides
a way to improved memory access of read-only data that
has regular access pattern in a two-dimensional mapping
of threads when the threads access contiguous chunks of a
two-dimensional array. In the kernels we studied we found
that the best performance was achieved when threads were
mapped in one dimension, even when the array was two-
dimensional. Each thread operated on an entire row of the
array. As a result, our implementation was not conducive
to utilizing texture memory.

Leveraging Constant Memory. As the name suggests, con-
stant memory is useful for keeping the data that is invariant
through the lifetime of a kernel. Unfortunately, the size
of the constant memory was too small to keep the loop-
invariant data, which do not change across kernel calls, for
the kernels that we studied. However, since the data are re-
quired to be invariant only through one invocation of the ker-

nel, it is possible to use constant memory to store data that
might change across kernel calls as long as there is no change
within one call of the kernel. The potential benefit comes
when such data exhibit temporal locality, since the GPU has
a hardware cache to store values read from constant memory
so that hits in the cache are served much faster than misses.
This gives us the possiblity to use constant memory for the
broadcasting of loop-variant data, which are relatively small
and do not change within a single iteration. Still the loop-
variant data for larger MDS and PageRank test cases were
larger than the constant memory size.

Optimizing Data Layout. Laying out data in memory is
a known useful technique on CPUs. On GPUs, we observed
mixed results. While data layout in local memory turned out
to be useful for K-Means and not for MDS, layout in global
memory had significant impact on MDS and no observable
impact on K-Means. This behavior is likely a result of differ-
ent memory access patterns. In general, contiguous global
memory accesses encourage hardware coalescing, whereas on
local memory bank conflicts play a more critical role. Thus,
the two levels of memories require different layout manage-
ment strategies. However, as long as the memory access
patterns are known the benefits are predictable, thus mak-
ing this optimization amenable to automatic translation.

OpenCL experience. OpenCL provides a flexible program-
ing environment and supports simple synchronization prim-
itives, which helps in writing substantial kernels. However,
details such as the absence of debugging support and lack
of dynamic memory allocation still make it a challenge writ-
ing code in OpenCL. One possible way to make OpenCL-
based GPU computing accessible to more users is to develop
compilers for higher level languages that target OpenCL. In-
sights gained through targeted application studies, such as
this, could be a useful input to such compiler developers.

8. RELATED WORK
Emergence of accessible programming interfaces and indus-
try standard languages has tremendously increased the in-
terest in using GPUs for general purpose computing. CUDA,
by NVIDIA, has been the most popular framework for this
purpose [21]. In addition to directly studying application im-
plementations in CUDA [11, 23, 30], there have been recent
research projects exploring CUDA in hybrid CUDA/MPI
environment [22], and using CUDA as a target in automatic
translation [18, 17, 3].

There have been several past attempts at implementing the
K-Means clustering algorithm on GPUs, mostly using CUDA
or OpenGL [24, 12, 27, 19, 15]. Recently, Dhanasekaran et
al. have used OpenCL to impelement the K-Means algo-
rithm [8]. In contrast to the approach of Dhanasekaran et
al., who implemented the reduction step on GPUs in order
to handle very large data sets, we chose to mirror the ear-
lier efforts with CUDA and perform the reduction step on
the CPU. Even though that involves transferring the reduc-
tion data to CPU, we found that the amount of data that
needed to be transferred was relatively small. In optimizing
K-Means, we used the device shared memory to store the
map data. As a result, when dealing with very large data
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sets, which motivated Dhanasekaran et al.’s research, our
optimized kernel would run out of shared memory before
the reduction data becomes too large to become a bottle-
neck. Further research is needed to determine the trade-offs
of giving up the optimization of device shared-memory and
performing the reduction on the GPU.

We implemented the MDS kernel based on an SMACOF
implementation by Bae et al. [1]. Glimmer is another multi-
level MDS implementation [13]. While Glimmer implements
multilevel MDS using OpenGL Shading Language (GLSL)
for large data sets, Bae used an interpolated approach for
large data sizes, which has been found to be useful in cer-
tain contexts. This allowed us to experiment with optimiz-
ing the algorithm for realistic contexts, without worrying
about dealing with data sets that do not fit in memory. Our
MDS implementation uses the SMACOF iterative majoriza-
tion algorithm. SMACOF is expected to give better qual-
ity results than Glimmer, even though Glimmer can pro-
cess much larger data sets than SMACOF [13]. Since our
study is in the context of GPU clusters, with potentially
vast amounts of distributed memory, we traded off in favor
of a more accurate algorithm.

The computationally intensive part of PageRank is sparse
matrix-vector multiplication. We followed the guidelines
from an NVIDIA study for implementing the sparse matrix-
vector multiplication [4]. The sparse matrix in PageRank
algorithm usually results from graphs following power law.
Recent efforts to optimize PageRank include using a low-
level API to optimize sparse matrix-vector product by using
the power law characteristics of the sparse matrix [28]. More
recently, Yang et al. leveraged this property to auto-tune
sparse matrix-vector multiplication on GPUs [29]. They
built an analytical model of CUDA kernels and estimated
parameters, such as tile size, for optimal execution.

9. CONCLUSION AND FUTURE WORK
We have presented an experimental evaluation of three im-
portant kernels used in iterative statistical applications for
large scale data processing, using OpenCL. We evaluated
three optimization techniques for each, based on leveraging
fast local memory, laying out data for faster memory ac-
cess, and dividing the work between CPU and GPU. We
conclude that leveraging local memory is critical to perfor-
mance in almost all the cases. Data layout is important in
certain cases, but when it is, it has significant impact. In
contrast to other optimizations, sharing work between CPU
and GPU may be input data dependent, as in the case of
K-Means, which points to the importance of dynamic just-
in-time scheduling decisions.

Our planned future work includes extending the kernels to a
distributed environment, which is the context that has moti-
vated our study. Other possible directions include compar-
ing the OpenCL performance with CUDA, studying more
kernels from, possibly, other domains, and exploring more
aggressive CPU/GPU sharing on more recent hardware that
has improved memory bandwidth.
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ABSTRACT
Several of the top ranked supercomputers are based on the
hybrid architecture consisting of a large number of CPUs
and GPUs. Very high performance has been obtained for
problems with special structures, such as FFT-based im-
age processing or N-body based particle calculations. How-
ever, for the class of problems described by partial differen-
tial equations discretized by finite difference (or other mesh
based methods such as finite element) methods, obtaining
even reasonably good performance on a CPU/GPU cluster
is challenging. In this paper, we propose and test a hybrid
algorithm that matches the architecture of the cluster. The
scalability of the approach is realized by a domain decompo-
sition method, and the high performance on GPU is realized
by using a smoothed aggregation based algebraic multigrid
method. Incomplete factorization, which performs beauti-
fully on CPU but poorly on GPU, is completely avoided in
the approach. We report some numerical results obtained by
using up to 32 CPU/GPU pairs for solving a PDE problem
with up to 32 millions unknowns.

1. INTRODUCTION
Many scientific and engineering problems can be studied by
solving partial differential equations (PDEs) discretized by a
mesh based method such as finite element or finite difference.
Mature and general purpose computational algorithms and
high performance software are available for CPU-based large
scale supercomputers, for example, PETSc [1]. In the past
few years, several of the top ranked supercomputers have
moved to hybrid architectures consisting of a large number
of CPUs and GPUs. Tremendous speedup has been ob-

served, in comparison with CPU-only calculations, for some
computational problems with special structures, for exam-
ple, Fast Fourier Transforms (FFT) on a single GPU card
[13] and GPU clusters [3], Fast Multipole Method (FMM)
based particle simulations [7, 9, 10]. Although success has
been made in solving dense linear algebra problems using
GPUs (see, e.g., [18]), most of the general sparse matrix
based parallel solvers don’t work well on GPUs, because of
the unstructured and irregular nature of the problems and,
in particular, the poor performance of incomplete factoriza-
tion algorithms that are often in the inner-most loop of a
preconditioned iterative solver. Efforts have been made in
exploiting GPU for sparse matrix calculations. For exam-
ple, the development version [12] of PETSc begins recently
to have GPU support via the Cusp [4] and Thrust [17] li-
braries from NVIDIA. Rocha et. al. [14] implemented a
Jacobi-preconditioned conjugate gradient method to solve
sparse linear systems arising in cardiac electrophysiology,
where both CSR and ELLPACK matrix formats are inves-
tigated. More advanced GPU-based preconditioning tech-
niques such as the algebraic multigrid method is employed
in [5] and about 100 times speedup is observed on an eight-
GPU configuration than a typical server CPU core.

In this paper, in order to avoid the use of incomplete factor-
ization based components in a preconditioner, we propose
and test a hybrid algorithm based on a domain decompo-
sition method and an algebraic multigrid method. The ba-
sic assumption required by the proposed algorithms is that
equal number of CPUs and GPUs are used on each of the
computing node in the cluster. The extension of the algo-
rithm to the case of more GPU cards attached to a CPU
is straightforward, but has not been studied in this paper.
In the algorithm, the partial differential equation is first di-
vided by a partition of the underlying mesh into a number
of overlapping submeshes, each is mapped onto a pair of
CPU and GPU. Within a computing node, we perform the
subdomain preconditioning operation on the GPU and all
the other operations on the CPU. To take architectural ad-
vantage of the GPU card, we use a smoothed aggregation
(SA) based multigrid method which further partitions the
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submesh into several much smaller aggregates and the basis
of each aggregate gives rise to a set of degrees of freedom
on the coarse level. The coarsest level of the SA subdomain
preconditioner is solved by a dense LU solver.

The rest of the paper is organized as follows. In Section 2,
a hybrid algorithm based on an additive Schwarz precondi-
tioner and an SA subdomain solver is introduced. Numerical
results on a NVIDIA Tesla S1070 cluster are then provided
in Section 3 to show the efficiency of the proposed method.
The paper is concluded in Section 4.

2. A HYBRID ALGORITHM
In many applications, the discretization of a PDE with finite
element or finite difference method results in a linear system
of equations

Ax = b, (1)

where A is a large sparse matrix and b a given vector. In this
paper, we assume that A is also symmetric positive definite,
which is true if, for example, the PDE is a self-adjoint elliptic
problem. There are several software packages offering effi-
cient parallel solvers for such problems on supercomputers
made of CPUs [1, 6, 8, 19], but algorithms and software that
are efficient on a cluster of CPU/GPUs are still lacking. We
consider the class of preconditioned iterative methods that
solves the preconditioned system

M−1Ax = M−1b,

where the preconditioner M is an approximation of A−1.
We first make two observations:

• The performance of this approach depends heavily on
how M−1 is defined and implemented, because the
computation of M−1v is usually much more expensive
than the computation of Av in terms of the compute
time, the communication time, and the memory re-
quirement.

• The accuracy of the solution of (1) has (almost) noth-
ing to do with M−1. This means that we have lots of
flexibilities about how M−1 is computed, and some-
times, we don’t have to compute it too accurately in
order to obtain higher level of efficiency.

Base on the above observations, we propose to allocate all
calculations related to M−1 to the GPUs and keep all other
calculations on the CPUs. On the GPUs, we approximately
compute M−1 using a suitable algorithm. Such an approach
may not be the best in terms of the total number of floating
point operations, but offers much better results in terms of
the total compute time.

Because our algorithm is based on domain decomposition
and multigrid methods, we further assume that associated
with the matrix A, there is a computational domain Ω, with
which we obtain mesh based partitions of A. This assump-
tion can be replaced by any graph-based algorithm if the
mesh information is not available.

For the model problem studied in this paper, we employ an
additive Schwarz preconditioned Conjugate Gradient (CG)

algorithm ([15]) to solve (1). The procedure of the precon-
ditioned CG algorithm is provided in Algorithm 1, where
M−1 is a Schwarz preconditioner.

Algorithm 1 Preconditioned CG for Ax = b

1. r0 = b−Ax0, z0 = M−1r0, p0 = z0
2. do j = 0, 1, ... until convergence

3. αj = (rj , zj)/(Apj , pj)
4. xj+1 = xj + αjpj
5. rj+1 = rj − αjApj
6. zj+1 = M−1rj+1

7. βj = (rj+1, zj+1)/(rj , zj)
8. pj+1 = zj+1 + βjpj

9. end do

Denote np as the number of CPU/GPU pairs. We partition
the computational domain Ω into np non-overlapping sub-
domains. An overlapping decomposition can be obtained by
extending each subdomain with δ mesh layers. Each overlap-
ping subdomain Ωk is managed by an MPI process assigned
to a CPU/GPU pair. The procedure of the additive Schwarz
(AS) preconditioner is provided in Algorithm 2, where RT

k

and Rk serve as a restriction operator and an interpolation
operator respectively; their detailed definitions can be found
in, e.g., [16].

Algorithm 2 Additive Schwarz: z ← AS(r)

1. For k = 1, 2, ..., np
Restriction: rk = Rkr
Solve the subdomain problem zk = B−1

k rk
End for

2. Interpolation: z ←
np∑

k=1

RT
k rk

For each CPU/GPU pair, the subdomain matrix C = Bk

and the right-hand side vector d = rk are both copied to
the local memory of the GPU card before solving the sub-
domain problem on GPU using a SA algorithm described
later. Then the solution vector x = zk on the GPU side is
copied back to the local memory of the CPU, which requires
synchronization to make sure the global vector is completely
assembled. Note that the subdomain matrix is copied to
GPU only once and does not need to be copied back. The
data between CPU and GPU within each MPI process is
typically transfered through the PCI-Express path between
the host CPU memory and the GPU memory. A sketch
of the additive Schwarz preconditioned CG algorithm is il-
lustrated in Figure 1. We implement the additive Schwarz
preconditioned CG algorithm on a cluster of CPU/GPUs,
where SA is allocated and executed on the GPUs and all
other operations are performed on the CPUs.

We employ a smoothed aggregation (SA) based algebraic
multigrid method to solve the subdomain problems B−1

k in
the AS preconditioner. The SA algorithm [2] is defined re-
cursively by using several operators. Let P be the prolonga-
tion operator which is a full rank matrix whose range con-
tains the algebraically smoothed components of the residual
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Figure 1: Sketch of the additive Schwarz precon-
ditioned CG algorithm. Left: overlapping domain
decomposition of a two-dimensional rectangular do-
main. Right: Each subdomain is assigned to a MPI
process that is further assigned to a CPU/GPU pair.

corresponding to an approximate solution of Cx = d, where
C and d are the subdomain matrix and the right-hand side
for a subdomain problem. With the prolongator, we can de-
fine a coarse version of C, as Cc = PTCP , and an iterative
method is defined as

x← x− Py,
where y is obtained by solving a coarse grid problem

Ccy = PT (Cx− d).

Let n = n1 be the dimension of C, and denote the fine level
linear system Cx = d as C1x = d1. We introduce a sequence
of coarse matrices as

Cl+1 = (Ill+1)TClI
l
l+1,

where the prolongator Ill+1 is defined as the product of a
given prolongation smoother, Sl, and a tentative prolonga-
tor, P l

l+1

Ill+1 = SlP
l
l+1

for l = 1, ..., L− 1. One popular choice for the prolongation
smoother is Richardson’s method:

Sl = I − 4

3λl
Cl

where λl is an upper bound on the spectral radius of the
matrix on level l. At each level, for the system Clx = dl, we
need a smoother

x← (ITlCl)x+ Tldl,

where Tl is an approximate inverse of Cl for l = 1, ..., L− 1.
Then, SA can be defined as in Algorithm 3.

Since SA is only used as part of a preconditioner, as observed
earlier in the paper, the convergence of SA is not neces-
sary. In our implementation, we only apply the smoother
for a small number (µ) of sweeps for the best performance
in terms of the total compute time. Increasing the number
of smoothing steps helps in reducing the total number of
outer iterations, but may increase the overall compute time
according to our experiments. Between levels, we use either
a Jacobi or a polynomial smoother. When the later is used,
the basis functions we choose are the Chebyshev polynomials
of the first kind. The polynomial of matrices can be com-
puted by a sequence of sparse matrix-vector multiplication
(SpMV) that can be applied in a very efficient way.

Algorithm 3 Smoothed Aggregation: xl = AMGl(xl, dl)

0. If on the coarsest level, then:
Solve Clxl = dl by direct LU, else:

1. Apply µ steps of smoothing to Clx = dl
2. Coarse grid correction:

(a). Set dl+1 = (Ill+1)T (dl − Cxl) and xl+1 = 0
(b). Solve the coarse problem Bl+1xl+1 = dl+1

by γ applications of xl+1 = AMGl+1(xl+1, dl+1)
(c). Then correct the solution on the level l

by xl ← xl + Ill+1xl+1

3. Apply µ steps of smoothing to Clx = dl.

Figure 2: Some possible aggregate candidates on a
regular rectangular mesh.

In the SA algorithm, a hierarchy of coarse problems is con-
structed based on the linear system itself and on certain
assumptions about the smooth components of the error. At
each level, the prolongation matrix is defined by a decom-
position of the set of degrees of freedom associated with the
matrix Cl into an aggregate partition, {C1

l , ....C
Nl
l } where

each aggregate Ci
l is formed based on the connectivity and

strength of connection between the elements of Cl, without
the need for explicit knowledge of the problem geometry.
Figure 2 shows a few possible aggregate candidates on a
regular rectangular mesh. The level hierarchy in the SA al-
gorithm is extended until the number of rows in the matrix
of the coarsest level is less than 500, which usually results
in 4 ∼ 5 levels. Then the matrix on the coarsest level is
factorized using a dense LU factorization and is solved by
an triangular solver. We employ the MAGMA library[11]
which is a dense linear algebra library similar to LAPACK
but for heterogeneous/hybrid architectures.

The performance of SA on a GPU depends mainly on three
operations: BLAS-axpy (in 2.(a), 2.(c)), SpMV (in 1., 3.),
and the dense triangular solver (0.). On a GPU, thread
blocks are assigned to handle rows of the vector associated
with some unknowns and the corresponding rows of matrix.

3. NUMERICAL EXPERIMENTS
The experiments were carried out on a NVIDIA S1070 GPU
cluster with 14 nodes. Each node is equipped with two quad-
core 2.26 GHz Intel Xeon E5520 CPU processors and four
1.3 GHz NVIDIA Tesla C1060 GPU cards. Nodes are in-
terconnected by a 20Gb InfiniBand DDR network. CUDA
Toolkit 3.2 are used for programming and the CUDA ker-
nels in the code are compiled by NVIDIA CUDA Compiler
with flag -arch_sm 13 in order to enable double precision.
The CPU code is compiled by Intel MPI compiler using -O3
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optimization level.

In this paper, we study the numerical solution of the Poisson
equation with homogeneous Dirichlet boundary conditions
on the computational domain Ω = [0, 1]2. A 5-point finite
difference scheme is employed to discretize the problem on a
uniform N ×N rectangular mesh. The resulting sparse ma-
trix is symmetric positive definite. The stopping condition
for the iterative solver is when the relative residual is smaller
than 10−6. Even though not tested, we expect the code to
work for other second or forth order elliptic problems with
variable coefficients.

In the rest of the section, “Iter” is the number of CG iter-
ations, “TSolve” is the total compute time, “TData” is the
data transfer time between CPU and GPU, “Eff” is the par-
allel efficiency as compared with the run using the smallest
number of processors in the same table.

First we discuss the parameters of this algorithm and dis-
tinguish the optimal. Both the Jacobi and the Chebyshev
polynomial smoothers are tested in the experiments. Table 1
shows the impact on the number of iterations and total com-
pute time by using different numbers of sweeps in Jacobi or
different degrees of the Chebyshev polynomial. The number
of MPI processes is fixed to 32 and the mesh is 8193× 4097.
The overlap of the additive Schwarz preconditioner is fixed
to 1 here. We observe that the number of iterations can be
reduced by increasing the number of sweeps of Jacobi or the
degree of polynomial of the Chebyshev smoother, however,
if the interest is the compute time, 1 sweep of Jacobi is the
clear winner.

Table 1: Performance comparison between the
Jacobi smoother and the Chebyshev polynomial
smoother, with mesh size 8193 × 4097 and np = 32,
time is shown in seconds.

Jacobi smoother Polynomial smoother
Sweeps Iter TSolve Degree Iter TSolve

1 249 26.687 - - -
2 242 28.175 2 306 36.719
3 241 29.579 3 316 39.557
4 240 31.631 4 304 39.489
5 236 33.267 5 285 39.517
6 230 34.093 6 283 40.399

Multiple cycles of SA solves the subdomain problem more
accurately, thus results in less iteration count of the outer
CG. Table 2 reveals how the iteration count is influenced
by the cycles of SA. All cycles are executed on GPU so as
to avoid multiple data copies between CPU and GPU. In
this test, the Jacobi smoother is used. From the table we
see that, as expected, the number of iterations is reduced
significantly, and the solving time does not increase until
cycles= 3.

We next investigate the optimal size of overlap in the ad-
ditive Schwarz preconditioner. Generally speaking, a larger
overlap usually results in fewer number of iterations due to
more communications between subdomains. But the overall
compute time may not decrease since the size of the sub-

Table 2: Influence by the number of cycles of SA,
with mesh size 8193×4097 and np = 32, time is shown
in seconds.

Cycles Iter TSolve
1 249 26.687
2 209 26.277
3 188 26.919
4 182 29.497
5 178 31.586

domain system, as well as the communication time between
the CPUs grow relatively. Table 3 shows the impact of the
overlapping size, where the sweeps of Jacobi is 1 and the
SA cycles is 3. As shown, it is a little strange that both
the number of iterations and the compute time first grow to
some extent, then quickly reduce as the overlap increases.

Table 3: Impact of overlapping size in the additive
Schwarz preconditioner, with mesh size 8193 × 4097
and np = 32, time is shown in seconds.

Overlap Iter TSolve
0 185 25.85
1 188 26.92
2 191 27.71
3 177 26.53
4 161 24.46
5 153 23.78

We then examine the mesh scalability of the hybrid solver
by fixing the number of MPI processes to 32 and increasing
the mesh size. The results are provided in Table 4, where
results using a CPU-based sparse LU factorization (instead
of the GPU-based SA method) as subdomain solvers are also
included for comparison. The optimal parameters discussed
above are used for all tests from now on. The overlap is
fixed to 1 since the CPU-based LU approach requires too
much memory when the mesh is very fine. It can be seen
from Table 4 that when the mesh is small, the hybrid ver-
sion costs more time than the pure CPU version, but this
situation quickly changes when the mesh size grows up to
2049 × 2049. It is also observed that the number of itera-
tions of the hybrid solver is greater than that of the pure
CPU version, due to the fact that SA is unable to solve the
subdomain problems as exactly as direct LU. Table 4 also
indicates that the time spent on the data transfer (TData)
between the CPU and GPU within the same MPI process is
almost negligible compared to the total solution time.

Table 4: Performance comparison on the mesh scal-
abilities between the CPU-based and the hybrid ap-
proaches, np = 32, time is shown in seconds.

CPU approach Hybrid approach
Mesh Iter TSolve Iter TData TSolve

513× 513 63 0.29 73 0.01 0.67
1025× 1025 77 0.77 94 0.04 2.54
2049× 2049 98 4.52 126 0.16 3.64
4097× 4097 101 24.78 159 0.66 12.68
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In the strong scaling test, we use a fixed 2049× 2049 mesh
and increase the number of MPI processes. In the ideal situ-
ation, the compute time should be reduced proportionally as
more MPI processes are deployed. Strong scaling results us-
ing both the CPU-based and the hybrid one-level approaches
are provided in Table 5, from which we see that the hybrid
approach is always faster than the CPU-based approach.
Superlinear speedup is observed for the CPU-based imple-
mentation, but the speedup for the hybrid implementation
is not as good.

Table 5: Performance comparison on the strong scal-
abilities between the CPU-based and the hybrid ap-
proaches, mesh size is 2049 × 2049, time is shown in
seconds.

CPU approach Hybrid approach
np Iter TSolve Eff Iter TSolve Eff
2 12 87.37 n/a 62 16.28 n/a
4 55 51.96 84.1% 75 11.77 69.2%
8 79 21.74 100.4% 96 7.88 51.7%
16 75 9.73 112.2% 104 6.79 30.0%
32 98 4.49 121.7% 126 3.57 28.5%

In the weak scaling test, starting from a relatively small
2049× 2049 mesh with 4 processes, we increase the number
of MPI processes and the mesh size at the same time, so that
the mesh size per MPI process is fixed. In the ideal situa-
tion, the compute time should remain unchanged which is in
fact hard to achieve due to the increasing cost of communi-
cation between MPI processes. Table 6 again indicates that
the hybrid approach is superior to the CPU-based approach
although the parallel efficiency is poor.

Table 6: Performance comparison on the weak scal-
abilities between the CPU-based and the hybrid
approaches, starting from a 2049 × 2049 mesh with
np = 4, time is shown in seconds.

CPU approach Hybrid approach
np Iter TSolve Eff Iter TSolve Eff
4 55 51.97 n/a 98 12.09 n/a
8 85 60.09 86% 159 18.40 66%
16 84 60.24 86% 177 20.56 59%
32 114 68.66 76% 188 26.92 45%

4. CONCLUDING REMARKS
In this paper, we proposed and tested a hybrid algorithm
based on domain decomposition and smooth aggregation
multigrid method for solving elliptic partial differential equa-
tions on a cluster of CPUs and GPUs. In the preconditioned
Krylov subspace framework, we allocate and execute all pre-
conditioner related operations on the GPUs and all other
operations are performed of the CPUs. We carefully in-
vestigated the impact of several important parameters that
determine the performance of the algorithms. In terms of
the number of iterations, the CPU-only approach is clearly
better, but for large meshes the hybrid CPU/GPU approach
is better in terms of the overall compute time. On the GPU,
the mathematically simple Jacobi based smoother performs
much better than the more sophisticated Chebyshev poly-
nomial smoother. Our numerical experiments were obtained

on a CPU/GPU cluster using up to 32 CPU/GPU pairs, and
for a problem with up to 32 millions unknowns.

In this paper, we only considered the case when the num-
ber of CPU/GPU pairs in the cluster is relatively small.
Multilevel domain decomposition will be necessary for larger
clusters. To deal with the additional communication among
GPU cards, in multilevel methods, the new feature, GPUDi-
rect, offered in CUDA 4.0 that supports peer-to-peer com-
munication between GPUs over PCIe in the same system,
will be very useful. This feature benefits the communication
between subdomains in the overlapping Schwarz method,
where the input right-hand side and the solution can be
sent to the neighboring processors without the aid of CPU
memory.
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