
CONTENTS 1

Contents

1 Introduction 3
1.1 About This Manual . 3
1.2 Characteristics of the Intel IPSC/860 . 3

1.2.1 Hardware . 4
1.3 Software . 4

1.3.1 Performance . 4
1.3.2 Programming Paradigm . 5

2 The Computing Environment 5
2.1 Getting Started on the Intel iPSC/860 5

2.1.1 Accounting and Validation . 6
2.1.2 Guidelines for System Use . 6

2.2 Using The Intel System . 6
2.2.1 Logging into the Local Network 7
2.2.2 Logging into the System Resource Manager (SRM) 7
2.2.3 Changing Your Password . 7
2.2.4 Your .login and .cshrc Files . 8

2.3 User Files . 9
2.3.1 UNIX File System . 9
2.3.2 The Concurrent File System . 9

2.4 X Window System on the Intel . 12

3 The Runtime Environment 13
3.1 System Commands . 13

3.1.1 Allocating and Releasing Cubes 13
3.1.2 Input/Output with the Host . 14
3.1.3 Loading and Executing a Program 14
3.1.4 Using A Script Shell . 15
3.1.5 NX Commands on the Nodes . 16
3.1.6 Troubleshooting the Remote Host Software 16

3.2 System Calls . 17
3.2.1 Cube Control . 17
3.2.2 Message Passing . 18
3.2.3 Byte Swapping . 20
3.2.4 Global Operations . 20

4 Using Fortran and C 21
4.1 FORTRAN on the Intel System . 22

4.1.1 FORTRAN Compilation on the Remote Host 22
4.1.2 FORTRAN Compilation on the SRM 25

4.2 C on the Intel system . 25
4.2.1 C Compilation on a Remote Host 26
4.2.2 C Compilation on the SRM . 28

2 CONTENTS

5 Mathematical Libraries 28
5.1 iPSC Basic Math Library . 29

5.1.1 Content and Characteristics . 29
5.1.2 Arguments . 30
5.1.3 Performance Hints . 30

5.2 iPSC Vector Library . 30
5.2.1 Content and Characteristics . 30

6 System Software Tools 31
6.1 Portable Instrumented Communication Library (PICL) 31
6.2 Paragraph . 31
6.3 Performance Analysis Tool (PAT) . 32

7 Running VFCS Code on the Intel 33

8 Debugging 34
8.1 Interactive Parallel Debugger (IPD) . 34

9 Intel Documentation 35
9.1 The iPSC/2 and iPSC/860 User’s Guide 35

3

1 Introduction

The 16-node Intel iPSC/860 is a prototype scalable parallel supercomputer, with 128
million bytes (megabytes or Mbytes) of distributed memory and a theoretical peak speed
of 0.96 billion floating point operations per second (gigaflops or GFLOPS), using 64-bit
arithmetic. The iPSC/860 at the Department of Computer Science of the University
of Vienna (hereafter referred to as UniVie) is a research tool which has been purchased
by the Austrian Center for Parallel Computer for experimental research in the field of
support tools for parallel programming. Hence access to the iPSC/860 is strictly limited.
See section 2.1 for details on obtaining an account on the iPSC/860 and guidelines for
utilizing it.

The iPSC/860 is managed by the System Administrator at the Department of Com-
puter Science.

1.1 About This Manual

Much of the contents of this INTEL iPSC/860 User’s Guide are based upon a prelimi-
nary manual prepared by the Central Scientific Computing Complex at NASA Langley
Research Center. We gratefully acknowledge their kind permission to reprint the relevant
sections.

This manual attempts to provide a concise description of relevant information that
is necessary for an individual to access and effectively utilize the iPSC/860. Since this
is a brief introduction, many topics are not covered in great detail. However, there is
a reference to more detailed information in most sections. Users of the iPSC/860 are
expected to have experience with UNIX, consequently only significant differences are
discussed.

This document is also being maintained on pixy in the directory /usr/info and in
/global/doc/ipsc on the SUN Workstations.

We welcome corrections and comments from users. Descriptions of commands are
necessarily brief; for a full description, please refer to the Intel vendor manuals. Section 9
of this manual contains a complete listing of Intel manuals that may be ordered directly
from Intel. Copies of these manuals are also available at UniVie.

1.2 Characteristics of the Intel IPSC/860

The Intel iPSC/860 is a multiple-instruction, multiple-data (MIMD) parallel computer.
Applications for the Intel iPSC/860 should be designed such that the major computa-
tional kernels of the program are executed simultaneously by each assigned processor.
Processors (and their associated memory) are allocated in groups by a power of two. Not
all programs may demonstrate improved performance from the iPSC/860’s novel archi-
tecture. Most applications are not completely parallelizable and may require the user
to consider load balancing, internodal communication strategy, as well as other parallel
optimization techniques before achieving improved performance. The following sections
give a brief overview of the iPSC/860’s hardware, software, performance and style of
programming.

4 1 INTRODUCTION

1.2.1 Hardware

The iPSC/860 at UniVie consists of 16 Intel 80860 (i860) RISC chips that run at 40 MHz.
They are connected via a hypercube communications network. Each of the i860 single
chip microprocessors contain approximately one million transistors, 8 Mbytes of local
memory, a vector 64-bit floating point unit, and an on-chip 3-D graphics processor. In
addition, each i860 has a 4 thousand byte (kilobyte or Kbyte) code cache and an 8 Kbyte
data cache, which is large enough to handle loops with up to 1000 instructions. The
i860 has 3 floating point vector pipelines for integer math, floating point addition, and
floating point multiplication. These vector pipes may operate concurrently. Chaining is
possible between the floating point adder and multiplier.

Processors communicate with each other by passing messages, circuit switched through
intermediate nodes. Each computational node has a separate communications coproces-
sor to coordinate message passing. Message passing is necessary because each node is
an independent processor with its own memory. Since the nodes do not share memory,
they must communicate with each other to pass the program’s data, which is done via
synchronous or asynchronous message passing calls. All nodes are fully connected with
a hypercube interconnect.

The i860-based processing nodes on Intel hypercubes are generally referred to as RX
nodes. We adhere to this convention in the manual.

The UniVie system also includes two I/O nodes, based on the Intel 386 chip. These
provide the computational nodes with access to the Concurrent File System (CFS) which
has 4 disks with a total capacity of approximately 2.3 Gbytes. A single CIO Ethernet
interface and its associated service node provide a back-end network connection for CFS
file transfer and iPSC/860-based networking applications.

1.3 Software

Each of the 16 Intel iPSC/860 computational nodes run a specialized operating system
called NX, which implements a subset of UNIX. NX provides message passing capability,
memory management and process management. The message passing calls range from
a simple, effective set of synchronous calls to advanced asynchronous calls that allow
message passing and process overlapping as well as interrupt-driven message handling.
A node has access to the host file system and the CFS. Management of the CFS takes
place outside of the NX kernel, and is handled by the I/O nodes which run additional
processes for this purpose.

1.3.1 Performance

The 40 MHz i860 chip has a theoretical peak 64-bit floating point performance of 60
MFLOPS when chaining is used. Thus the peak theoretical performance of a 16-node
system is 0.96 GFLOPS. In practice it is difficult to even approach this rate, even using
assembly code. A more realistic performance figure is the 17 MFLOPS per computational
node quoted by Intel for running an optimized LINPACK suite. However, the single node
performance rate for all FORTRAN application codes on the Intel system is usually not
more than 3-5 MFLOPS.

5

1.3.2 Programming Paradigm

In order to make effective use of the iPSC/860, an application has to be designed to
execute in a parallel fashion. An application may consist of a host and node program or
just a node program. A host program runs on a Sun workstation, such as edwin, or the
System Resource Manager (SRM), pixy. The node program runs on the iPSC/860.

Each node of the cube executes its own program. Usually each node executes the
same program on different sets of data, but sometimes there is conditional code that
causes special actions to be performed on one or more nodes. This corresponds roughly
to the Single Programming Multiple Data or SPMD style of programming.

Normally, the user interface is separated from the computational portion of the code
and is handled by the host program or a designated node via conditionally executed code.
Each node program can determine if it is running on the designated node by testing its
node number. The designated node number is usually node zero.

2 The Computing Environment

Users do not have direct login access to the Intel iPSC/860. The current operating
environment requires a separate host machine as front-end for the iPSC/860. Users of
the iPSC/860 at UniVie may have an account on the special front-end computer attached
to the iPSC/860, pixy, or on both a SUN SPARCstation in the local network and the
special front-end computer. pixy, an Intel SYP301, is also referred to as the System
Resource Manager (SRM). When we discuss usage of the Intel iPSC/860 in the sections
below, we will refer to the computers where a user may have an account by the names
pixy and edwin. edwin is to be understood as a generic name for the SPARCstations,
and should be implicitly replaced by the name of the SUN workstation in the local
network on which you are working. A SUN SPARCstation may be used as a remote host
for the iPSC/860.

pixy and edwin both run derivatives of the UNIX operating system. They are used
for functions such as compiling, loading and editing. The iPSC/860 is used solely as a
computational engine. Note that storage space for files is very limited on pixy.

Because the iPSC/860 is a research machine, access to the machine is limited. The
next section discusses account validation and guidelines for using it to insure an equitable
distribution of resources.

2.1 Getting Started on the Intel iPSC/860

The iPSC/860 is not intended for the novice programmer. Users are expected to be
well-versed in UNIX, FORTRAN and/or C. Many of the utilities and tools are in early
stages of development, so the programming environment is not as robust as that found
on mainframe computers. Intel provides considerable user documentation, as described
in Section 9. The machine is not a freely available computing center resource; each
application for an account will be decided upon at the discretion of the Department
of Computer Science, UniVie. Members of the ACPC will be given preference, as will
research projects involving experiments with the system. This system will not, in general,

6 2 THE COMPUTING ENVIRONMENT

be used to run large applications. You must justify your request for an account, giving an
outline of your proposed research area, as well as follow some basic guidelines for system
etiquette.

2.1.1 Accounting and Validation

At this time, no formal accounting is done for iPSC/860 usage. Usage is tracked, but there
is no charge-back mechanism. Also there are no quotas on CPU use or permanent file
storage. As utilization of the machine increases, it may become necessary to implement
one or the other of these quotas. Currently, the mechanism for controlling usage is peer
pressure.

Users must be validated to use the iPSC/860. This validation provides an account
on pixy; users may sometimes be granted an additional account on edwin. External
accounts other than those for the ACPC member groups are disabled at the beginning
of each academic year. To continue using the system, all users must be revalidated.

To become validated or revalidated for the iPSC/860, obtain the iPSC Account Ap-
plication form from the system administrator at martin@par.univie.ac.at. Complete
this and return it to the address listed on the the form. ACPC members performing
experimental system work are given accounts automatically on request. Other ACPC
members and those interested in doing research into parallel processing may be given
accounts, based on their description of anticipated use of the system. Users local to the
Department of Computer Science, UniVie, are expected to have a valid account in the
local network.

2.1.2 Guidelines for System Use

The guidelines for using the system are very basic: be a good neighbor, protect your
password and don’t share accounts. Rules for selecting a password are given in Sec-
tion 2.2.3. One common error that new users make frequently involves interactive use of
the iPSC/860. Interactively, you must explicitly release your processors or other users
are blocked from accessing the system. Section 3.1.1 describes the getcube and relcube
commands.

It is requested that you inform the system administrator well in advance if you require
the entire 16 nodes for a large block of time. Disk space is limited for the iPSC/860
system. Local users are encouraged to retain their programs on edwin. External users
with large storage requirements should indicate this in their request, and should apply
for an account on edwin as well.

2.2 Using The Intel System

The remote host and SRM are accessible only via the Internet. There are no directly
connected dial-in lines.

pixy has the Internet number 131.130.70.33. The iphost is called cube and has
the Internet number 131.130.70.34.

2.2 Using The Intel System 7

2.2.1 Logging into the Local Network

When you get connected to edwin the system responds with the login window. Type
your login name followed by a carriage return. Then enter your password at the next
prompt.

If you type either your login name or password incorrectly, the system prompts you
again. If you hit the backspace in an attempt to correct an error, your login attempt
fails. If you are not able to login, send e-mail to martin@par.univie.ac.at.

2.2.2 Logging into the System Resource Manager (SRM)

When you get connected to pixy, the system responds with

System V.3.2 UNIX (pixy)

and then prompts for your login name with

login:

Type your login name followed by a carriage return. The carriage return is followed by
a prompt for your password:

password:

If you type either your login name or password incorrectly, the system prompts you again.
If you hit the backspace in an attempt to correct an error, your login attempt fails. If
you are not able to login, send e-mail to martin@par.univie.ac.at.

2.2.3 Changing Your Password

If you haven’t been given a password by the System Administrator, you have to enter
one as your first action. Use the passwd command to do this.

Otherwise you must change your initial password when you first login to pixy or
edwin (or both, if you have home directories on both machines). You should also change
your password on both machines at least once a year. Your new password must meet the
following security requirements:

• It must be at least six characters long.

• It must have at least two alphabetic and one numeric or special character.

• It must not be any permutation of your login name.

• It must differ from your old password by at least three characters.

Also, words found in a dictionary with only a single digit appended to the end or added
at the beginning to form the password are highly susceptible to being compromised and

8 2 THE COMPUTING ENVIRONMENT

should not be used. The command to change your password is passwd. It prompts
you for your old password and twice for your new password. If the two entries for your
new password don’t match, the system does not change your password and prompts you
again to enter your new password. If you forget your password, contact the System
Administrator for assistance.

2.2.4 Your .login and .cshrc Files

This section has sample .login and .cshrc files that are similar but not identical to
the skeleton files that the system administrator gives you initially. If you modify the
default files or bring your .login and .cshrc files from another machine and discover
that something isn’t working, then you can copy the default .login and .cshrc files from
the directory /etc to your home directory.

The .login file is a file of commands and environment variables that is automatically
executed every time that you invoke the C-shell.

The default .login file can be found on pixy in the /etc directory. The System
Administrator keeps these files up to date, and announces any changes made. However,
users are still encouraged to check them periodically and make any necessary changes to
their setup files.

An example of a typical .login file in the Intel host environment is given below.
Everything to the right of the pound signs (#) is a comment to explain the various
entries.

#

Commands here are executed for a login shell only.

#

setenv SHELL /bin/sh # Use sh to run scripts

setenv TTY ‘tty‘

setenv HZ 100

setenv TERMCAP /etc/termcap # terminal data base

setenv TZ ‘grep TZ= /etc/TIMEZONE | sed s/TZ=/’ ’/‘

needed for csh to know TIMEZONE

if (‘tty‘ == "/dev/console") then

setenv TERM at386-m

else

setenv TERM vt100

endif

The .cshrc file is similar to .login but it is automatically executed every time that
you log into or spawn a new C-shell.

The default .cshrc file can be found on pixy in the /etc directory. The system
administrator keeps these files up to date. However, users are still encouraged to check
them periodically and make any necessary changes to their setup files.

An example of a typical .cshrc file in the iPSC/860 host environment is given below.
Everything to the right of the pound signs (#) is a comment to explain the various
entries.

2.3 User Files 9

BMC 11/91

Default .cshrc file for C-Shell accounts.

Commands here are executed each time csh starts up.

#

set prompt="‘hostname‘[‘logname‘]: "

set ignoreeof # don’t let control-d logout

set LOGNAME=‘logname‘ # get login name for mail boxes

set history=50 # save last 50 commands

setenv IPSC_XDEV /usr/ipsc/XDEV # for man pages on SRM

setenv IPSC_UTIL /usr/superb/ipsc_util

setenv VFCS_UTIL /usr/superb/vfcs_util

setenv MANPATH "$IPSC_XDEV/i860/man"

set path=(. /bin /usr/bin $home/bin /usr/i860/bin $IPSC_XDEV/i860/bin \

$VFCS_UTIL/new_bin) # search path

set cdpath=". .. ~"

alias declarations

alias x chmod +x

alias +w chmod go+w

alias -w chmod go-w

alias l ls -lsai

set mail=(30 /usr/mail/$LOGNAME) # mailbox location for csh

setenv MAIL /usr/mail/$LOGNAME # mailbox location for environment

2.3 User Files

User files are NFS mounted between pixy and edwin. Users’ home directories may reside
on either pixy or or edwin or both of these. Users may also read/write CFS files; they
may be accessed by node programs. Node programs read/write standard FORTRAN
files from/to pixy or edwin.

2.3.1 UNIX File System

pixy runs UNIX System V, Release 3.2 operating system and contains the standard file
system associated with this particular version of UNIX. edwin runs the latest SUN OS
(currently 4.1.3) and includes the standard file system associated with this particular
version of UNIX.

2.3.2 The Concurrent File System

The Concurrent File System (CFS) provides fast simultaneous access to secondary storage
for the nodes. Large data files can be written to or read from the CFS. The sytem installed

10 2 THE COMPUTING ENVIRONMENT

at UniVie includes two I/O nodes to access these. It also includes a tape drive which
may be mounted onto the CFS to enable high speed transfer of data between the tapes
and the computational nodes via the I/O nodes. The following example illustrates the
use of the CFS.

PROGRAM CFSTEST

C

C Program to illustrate the use of the CFS

C

CHARACTER*16 MSG

CHARACTER*20 MSGBUFFER

PARAMETER (MSG=’Hello from node ’)

MODE = 1

IUNIT = 10

C

C ME is the node number

C

ME = MYNODE()

C

C Open unit 10 on CFS

C

OPEN(UNIT=IUNIT, FILE=’/cfs/yourname/cfs0’, STATUS=’UNKNOWN’,

1 FORM=’UNFORMATTED’)

CALL SETIOMODE(IUNIT, MODE)

C

C Construct the message (CHAR(10) is Line Feed)

C

WRITE(MSGBUFFER, 5) MSG, ME, CHAR(10)

5 FORMAT(A16, I3, A1)

MSGLEN = LEN(MSGBUFFER)

DO 20 I=1,3

CALL CWRITE(IUNIT, MSGBUFFER, MSGLEN)

20 CONTINUE

CLOSE(IUNIT)

STOP

END

The first thing to notice in the example is the file name for the CFS file. The file
name begins with /cfs to distinguish it from ordinary files which reside on the SRM.
The second feature from this example is the use of the routine SETIOMODE to set the
I/O mode. The parameters for SETIOMODE are unit number and mode. CFS provides
four I/O modes.

Mode 0: Each node has an individual file pointer, and each may write to any part of
a file at any time. If two nodes write to the same place in the file, the data from the
second node overwrites the data from the first.

2.3 User Files 11

Mode 1: There is a common file pointer for all nodes, and all file operations are
performed on a first-come, first-serve basis. This file may not have a consistent order
from run to run.

Mode 2: There is a common file pointer with file operations done in order by node
number. Buffers may be of variable length.

Mode 3: There is a common file pointer with file operations done in order by node
number. Unlike mode 2, which allows variable length buffers, the mode 3 buffers are of
fixed length. For fixed length buffers, all nodes can read and write at once.

The last feature included in the example is the use of the CWRITE routine. CWRITE
is used for high speed synchronous output to a CFS file. Since the output is synchronous,
the program waits until the write operation is complete. Other routines for reading and
writing to a CFS file include:

CALL CREAD(UNIT, BUF, LEN)

ID = IREAD(UNIT, BUF, LEN)

ID = IWRITE(UNIT, BUF, LEN)

The CREAD routine is the companion to CWRITE for synchronous writing, and the
IREAD and IWRITE functions are the read and write routines for asynchronous I/O.
For all these routines, UNIT is the unit number, BUF is the buffer where the data read
or written is stored, and LEN is the size of the buffer in bytes. The return value for
the asynchronous operations is an id used by the routines IOWAIT and IODONE. The
IOWAIT routine is used to wait for completion of an asynchronous operation with the
syntax:

CALL IOWAIT(ID)

The IODONE routine returns the status of an asynchronous I/O operation. The syntax
of IODONE is:

IR = IODONE(ID)

where IR is zero if the read or write operation is not finished. The return value is 1 if
the operation is complete.

Output from the example might look like this in mode 0, corresponding to the case
where node 1 happened to finish first, with the output from node 0 overwriting the node
1 output:

Hello from node 0

Hello from node 0

Hello from node 0

In mode 1, there is no synchronization between the nodes while performing the writes
and the output might look like this:

12 2 THE COMPUTING ENVIRONMENT

Hello from node 1

Hello from node 0

Hello from node 1

Hello from node 1

Hello from node 0

Hello from node 0

The output from modes 2 and 3 look alike, but mode 3 offers greater performance
since in mode 2 each node must wait for the other node to complete its operation:

Hello from node 0

Hello from node 1

Hello from node 0

Hello from node 1

Hello from node 0

Hello from node 1

The Concurrent File System is also available for C programs and is described in the
iPSC/2 and iPSC/860 User’s Guide.

2.4 X Window System on the Intel

A set of X Window System client libraries (Version 11 Release 4.0) is available for the
iPSC/860 system. The X Window System is also referred to as X or X11. Your work-
station must have the X server software to be able to use the client libraries. The name
or Internet address for which you want to give access to your workstation is the name
or Internet address of the iphost, not the SRM (see Section 2.2). Applications using X
must be written in C. In order to compile an X application, you must include certain
switches on the cc command line.

-i860 compiles the code to run on RX nodes
-I/usr/include/ipsc specifies the correct path for X11 include files
-node compiles the code to be executed on iPSC nodes

To link the X applications, you must link in the client libraries of your choice with one
or more link switches as shown in the iPSC/2 and iPSC/860 User’s Guide. The preferred
method of defining resources is to use the command xrdb to download resources to the X
server. This method is documented in the X server documentation for your workstation.
If not downloaded, X primarily looks for resource information in the following directory:

/usr/ipsc/lib/X11/app-defaults

User specific resource definitions should be located in the file:

$HOME/.Xdefaults

13

Only the node calling XOpenDisplay has a connection to the server. Since there is
no default X Window System server running on the iPSC/860 system, ensure that the
environment variable DISPLAY is set on your workstation via

setenv DISPLAY edwin:0.0

where edwin stands for the name of your workstation.

3 The Runtime Environment

The runtime environment consists of a set of system commands issued from the operating
system and a set of system calls available to host and node programs. This environment
provides utilities for running a concurrent application on the Intel: allocating a cube,
loading one or more programs on the nodes, running the node processes, and then deal-
locating the cube. This section introduces both the system commands and system calls
and provides examples using both sets.

3.1 System Commands

The iPSC/860 system commands provide cube allocation, manage node processes, redi-
rect node output, and log host output. The iPSC system commands belong to the iPSC
system UNIX extensions and are issued at the UNIX prompt. These commands may also
be issued from within user programs; this topic is discussion in Section 3.2.

3.1.1 Allocating and Releasing Cubes

Before you can load programs onto the nodes, you must allocate a cube. Use the getcube
command to allocate a new cube, name it, and make it the current cube. The basic syn-
tax of the getcube command and some of the most useful options are listed below:

getcube [-t cubetype] [-c cubename]

where -t cubetype allows you to specify the size and type of your cube. Specify size first
followed by type in a contiguous string. The only valid cube type on our iPSC system is
rx. Without this option, you get the largest available cube.

The option -c cubename allows you to allocate multiple cubes by assigning a unique
name to each cube as you get it. Valid names are any ASCII character string of 15
characters or less. Without this option, the cube is automatically assigned the name
defaultname.

After executing a program, you must release the cube. The relcube command allows
you to release one or all cubes previously allocated with the getcube command. The ba-
sic syntax of the relcube command and some of the most useful options are listed below:

relcube [-c cubename | -a]

14 3 THE RUNTIME ENVIRONMENT

The option -c cubename allows you to release a specific named cube. Names are
assigned with getcube. For a list of cube names, use the cubeinfo command. If the
specified cube does not exist, an error is returned. Without this argument, the command
releases the currently attached cube. If you have not allocated a cube, an error is returned.

The -a option allows you to release all of the cubes that you own on the system from
which you invoke relcube.

To display the list of allocated cubes use the cubeinfo command. With no argu-
ments, the cubeinfo command returns information about the current attached cube.
The other options provide information about other allocated cubes as described. The
basic syntax of the cubeinfo command and some of the most useful options are listed
below:

cubeinfo [-a | -s]

The -a option returns information about all the cubes that you own on the system
from which you invoked the command. The -s option gets information on all the cubes
on the system from which the command was executed. If executed on an SRM, it
returns information on all cubes allocated from that SRM either directly or via remote
workstations. If executed on a remote development machine, it returns information on
all cubes that have been allocated from that workstation.

You should always release all your cubes at logout; this is not done automatically.
To ensure this, construct a .logout file which includes the command relcube -a.

3.1.2 Input/Output with the Host

The redirecting input and output system commands provide a method of altering the
standard output and standard error of the host and nodes. Two commands are available.
The syslog command sends the output of the host process to the file server handling
I/O from the nodes. The newserver command starts a new file server for the specified
cube. A simple alternative which will often suffice is given in 3.1.4 below.

3.1.3 Loading and Executing a Program

After you’ve allocated a cube, the next step is to load one or more processes onto the
cube to run. To load a node process, use the load command. This command puts the
specified file onto every node of the current cube and assigns an NX process ID (pid) of
0 to the node process. Each node process starts running as soon as it is loaded.

For example, if you have an executable called hello, you can allocate a cube and load
hello on each node of that cube as follows.

pixy[user]: getcube -t4

getcube successful: cube type 4m8rxn4 allocated

pixy[user]: cubeinfo

CUBENAME USER SRM HOST TYPE TTYS

defaultname user pixy pixy 4m8rxn4 ttyp02

3.1 System Commands 15

pixy[user]: load hello

hello world from node 0 process id 0.0000000

hello world from node 1 process id 0.0000000

hello world from node 2 process id 0.0000000

hello world from node 3 process id 0.0000000

pixy[user]: relcube

relcube released 1 cube

pixy[user]: cubeinfo

(host) cubeinfo: There is no attached cube

On pixy, see the directory /usr/ipsc/examples/f/hello for the FORTRAN source
code for the hello example (and /pixy/ipsc/examples/f/hello on edwin). The direc-
tory /usr/ipsc/examples/c/hello contains the C source code for the hello example.

A host program is a typical UNIX executable which may run on either pixy or
edwin and may perform computations, serve as a user interface, optionally perform cube
allocation/deallocation as well as node program loading and total execution management.
For example, if you have an executable node program called pi and a host program called
host, you can allocate a cube and execute the host program. This example loads the pi
program on each of the nodes from the host program and prompts the user for input.

pixy[user]: getcube -t4

getcube successful: cube type 4m8rxn4 allocated

pixy[user]: cubeinfo

CUBENAME USER SRM HOST TYPE TTYS

defaultname user pixy pixy 4m8rxn4 ttyp02

pixy[user]: host

... {Results from the program execution}

pixy[user]: relcube

relcube released 1 cube

pixy[user]: cubeinfo

(host) cubeinfo: There is no attached cube

On pixy, see the directory /usr/ipsc/examples/f/pi for the FORTRAN source
code for the pi example, and the directory /usr/ipsc/examples/c/pi for C source
code for the pi example. On edwin, the directories begin with /pixy/ipsc....

The killcube command kills the specified processes and flushes messages related to
those processes. It is not an error to use killcube to kill a nonexistent process. It is
recommended that you use the killcube command to kill any remaining cube processes
before you release the cube.

3.1.4 Using A Script Shell

One of the simplest ways of controlling execution of your program, in particular if you
do not have a host program running on pixy or edwin, is to write a simple script shell.

The file script1 below, for example, will allocate a cube with 16 nodes and load the
(compiled) node program nodep onto each of them. The nodes will read their input from

16 3 THE RUNTIME ENVIRONMENT

the file infile on the host machine executing the script. The cube is released when the
program terminates. The file script2, on the other hand, allocates 8 nodes on the system
and redirects all output from the program to the file outfile on the machine where the
script is executed (either pixy or edwin).

pixy[user]: more script1

getcube -t16 ; load nodep; waitcube <infile; relcube

pixy[user]: more script2

getcube -t8 > outfile; load nodep; waitcube <infile; relcube

3.1.5 NX Commands on the Nodes

The NX operating system running on the computational nodes of the Intel hypercube
may be accessed directly by the user. However, before a command may be issued, a login
script must be executed. If you wish to do this, you should create a login and logout
script, and a shell script for using NX as follows:

pixy[user]: more .login.ipsc

Sample .login.ipsc

set prompt="node%"

echo ’Entering node shell...’

echo ’Commands in Concurrent Programming Vol. 2’

pixy[user]: more .logout.ipsc

Sample .logout.ipsc

echo ’Terminating node shell...’

pixy[user]: more .cshrc.ipsc

Sample .cshrc.ipsc

set shell = /usr/ipsc/bin/csh

set path = (/usr/ipsc/bin /usr/ipsc/XDEV/i860/bin)

Examples for the most recent login files are kept in /usr/info on pixy. You can just
copy them to your home directory.

A list of the NX commands, which is very restricted, is to be found in the iPSC/860
Concurrent Programming Vol. 2. We do not discuss them further here.

3.1.6 Troubleshooting the Remote Host Software

The remote host software is used to work with the iPSC/860 from your SUN Workstation.
All the above-mentioned commands work in the same way from edwin as if your are
logged into pixy. There is a daemon running on all the SUNs that is talking to a similar
daemon on pixy. However, this daemon is not very stable on the SUNs and often hangs.
You realise this situation if the only answer you get to your requests is Commser not
responding. In this case, there is a simple command that restarts the daemon, called

3.2 System Calls 17

rebootcube. So if you have trouble getting a connection to pixy, you should enter the
following.

Example

tanja[martin]: cubeinfo

(host) cubeinfo: Commser not responding

tanja[martin]: rebootcube

1. Execute takedown run file: /usr3/ipsc/lib/rc0

2. Execute startup run file: /usr3/ipsc/lib/rc1

tanja[martin]: cubeinfo

(host) cubeinfo: There is no attached cube

tanja[martin]:

3.2 System Calls

The iPSC system calls allow the iPSC system commands to be performed from within
host and node programs and provide additional functions. The iPSC system calls are
divided functionally into four groups: cube control, message passing, byte swapping, and
global operations. Some system calls can be issued by either host or node programs.
Others are available only to host or only to node programs. When these calls are listed
below, the environment in which they can be invoked is identified.

3.2.1 Cube Control

The iPSC provides four types of system calls for cube control:

• Allocating, Loading, and Releasing a Cube

• Redirecting Input and Output

• Controlling Processes

• Handling Errors and Exceptions

This section provides a brief description of each category. A more detailed description
is available in the iPSC/2 and iPSC/860 User’s Guide.

The first type of cube control system calls deal with allocating, loading, and releasing
a cube. When allocating a cube, you must assign a unique name or accept the name
defaultname. The last cube allocated is referred to as the current cube. When you issue
a cubeinfo, load, or relcube system call without specifying a cube name, the call refers
to the current cubes are allocated, the current cube can be changed with attachcube.

18 3 THE RUNTIME ENVIRONMENT

System Call Environment Description
attachcube host Attach to a cube and make it the current cube.
cubeinfo host Obtain information about allocated cubes.
getcube host Allocate a cube.
load host/node Load a node process.
myhost host/node Obtain node ID of host machine.
mynode host/node Obtain node ID of calling process.
mypid host/node Obtain NX process ID (always 0) of call process.
relcube host Release specified cube.
setpid host Set NX process ID for host program.

The system calls for redirecting input and output provide a method of altering the
standard output and standard error of the host and nodes. These calls are only available
from the host program.

The system calls for controlling processes provide a means of synchronization and
termination of node processes. For example, one set of calls enables the user to terminate
a specific node process or a set of processes; while another set allows the user to wait for
a node or set of nodes.

The system calls for handling errors and exceptions provide a method to invoke a
user supplied routine for a hardware interrupt. The default action when a node process
experiences a hardware exception is to print an error message and kill the process.

3.2.2 Message Passing

The iPSC/860 is a multicomputer consisting of independent processor/memory pairs
which do not share physical memory. Each processor has it own memory and process
cooperation occurs through message passing.

Messages can be either synchronous or asynchronous and are characterized by a
length, a type, and an id. The message length is described in bytes, and the message
sending routines will send exactly the specified length. If the receive buffer is not large
enough to hold the message, an error will occur. Different mechanisms are employed
for sending long messages (> 128 bytes). The type is an identifier, determined by the
programmer, allowing control and validation of messages by type. The id is an identifier
used to check for the completion of asynchronous messages.

The iPSC provides system calls for:

• Synchronous and asynchronous message passing

• Pending messages

• Getting information about pending or received messages

• Flushing and canceling messages

• Treating a message as an interrupt

3.2 System Calls 19

This section provides a description of each category. A more detailed description is
available in the iPSC/2 and iPSC/860 User’s Guide.

A synchronous send indicates that the submitting program waits until the send is
complete. The completion of the send is not a verification that the message was received,
but only means that the message left the sending process. A synchronous receive means
that the receiving program waits until the message arrives in the specified buffer. The
synchronous message calls are:

System Call Environment Description
crecv host/node Receive a message, wait for completion.
csend host/node Send a message, wait for completion.
csendrecv host/node Simultaneously, send a message, and post

a receive. Wait for completion of the receive.

An asynchronous operation, either a send or receive, does not cause the submitting
program to wait until the operation is complete, but returns a unique message id which
can be tested for completion. The iPSC has a limited number of message ids, and care
must be taken to release unneeded ids.

The asynchronous message calls are:

System Call Environment Description
irecv host/node Receive a message, don’t wait for completion.
isend host/node Send a message, don’t wait for completion.
isendrecv host/node Simultaneously, send a message, and post

a receive. Don’t wait for completion.

A pending message is a message that is available for receipt, but has not yet been
received. That is, a message type has arrived, for which a receive has not been issued,
and is held in a system buffer until a receive is issued. If a receive has already been
issued, the message goes directly into the application’s buffer and bypasses the system
buffer.

The iPSC provides system calls to return information about received or pending
messages. These calls, often referred to as info calls, return the size of the message, its
type, and the node number and NX pid of the sending process. Note that the NX pid of
the sending process on an rx node always returns as 0.

The iPSC provides system calls to flush a pending message by clearing pending mes-
sages from the system buffer. The flushmsg() call only flushes messages pending to be
received, not those pending to be sent. The msgcancel() call cancels an asynchronous
send or receive operation.

System calls are provided to treat a message as an interrupt and attach a handler to
the message’s receipt. That handler is then invoked when the message of that type is
either sent or received. For sections of critical code which should not be interrupted, a
system call is provided to mask all handlers.

20 3 THE RUNTIME ENVIRONMENT

3.2.3 Byte Swapping

The use of byte-swapping calls are needed when sending messages between the host and
the cube on which the remote workstation does not use Intel’s byte ordering convention.
The Intel convention specifies that the least significant byte of an integer is stored at the
lowest memory address. A Sun workstation such as edwin uses a different byte ordering
convention. Host programs on edwin which pass messages to the Intel will require byte-
swapping. The SRM (pixy) does not require byte-swapping as it matches the iPSC/860’s
byte ordering convention. Byte-swapping is required on either the remote host or the
node - but not both.

The names of the byte-swapping routines denote the base type of message being sent
and the direction between machines. For example, HTOCL() means that a Host byte
ordering is converted TO a Cube byte ordering and the data consists of Long integers.

The byte-swapping calls require two arguments. The first is the address of the data
to be swapped; the second is the size of the message. The size of the message is in terms
of the number of base type elements. That is, for an integer array of 100 elements, the
size of the message is 100.

The following partial code segment demonstrates how to swap bytes between the
host and node with an array of 5 elements of integers requiring 4 bytes. Note that the
byte-swapping routine for long integers is used for integers represented with 4 bytes.
Example:

integer*4 msg_send(5)

integer*4 msg_rec(5)

...

...

HTOCL(msg_send, 5) # Host TO Cube Long

csend(NODE_TYPE, msg_send, 20, -1, NODE_PID) # 20 denotes message length

... # in terms of bytes

CTOHL(msg_send, 5) # Swap the message back

... # in case it is needed

...

crecv(NODE_TYPE, msg_rec, 20) # Receive a message

CTOHL(msg_send, 5) # Swap the received message

...

NODE TYPE - message type. NODE PID - process ID of destination node.

There are some special calls for byte-swapping for C language constructs.

3.2.4 Global Operations

A global operation is a iPSC system call providing a high level construct for communi-
cation among node processes. Global operations optimize communication by using the
“e-cube routing algorithm” which operate on nearest neighbors over a DCM channel.

21

Examples of global operations provided include:

System Call Environment Description
gdhigh node Global vector double precision MAX operation
gdlow node Global vector double precision MIN operation
gdprod node Global vector double precision MULTIPLY operation
gdsum node Global vector double precision SUM operation
giand node Global vector integer bitwise AND operation
gior node Global vector integer bitwise OR operation
gixor node Global vector integer bitwise exclusive OR operation
gsendx node Send a vector to a list of nodes
gsync node Global synchronization operation

There are Online Manual pages available on both pixy and edwin for all of the above
commands.

4 Using Fortran and C

Applications development for the Intel system is supported by various software compo-
nents. Both FORTRAN and C language compilers for the local and remote hosts may
be used for developing a host program designed to interface with any allocated node
programs. Cross-compilers enable iPSC/860 code to be generated. A library of system-
callable routines gives access to operating system and machine as well as cube specific
functions (see Section 3).

There are several FORTRAN and C compilers for the various platforms of the iPSC/860
system. You can compile host programs either on pixy or edwin.

FORTRAN C
Compiler Target Machine Compiler Target Machine
f77 pixy cc pixy
f77 edwin cc edwin
if77 iPSC/860 icc iPSC/860

The compilers f77 and cc are the standard FORTRAN and C compilers from Sun
Microsystems. The if77 and icc compilers are cross-compilers for the iPSC/860 from The
Portland Group. The f77 and cc compilers on pixy are compilers written by Greenhills
for the Intel 386 chip and are the native f77 and cc compilers for the SRM. To use any
of these compilers, you must first set the environment variable IPSC XDEV. This is to
insure that the compiler(s) can locate the necessary Intel libraries and include files. The
syntax to set the environment variable is:

setenv IPSC XDEV /usr/ipsc/XDEV

The above directory only applies to pixy, for edwin the directory is called /usr/tools/ssd.
The iPSC/2 and iPSC/860 User’s Guide refers to the rf77 and rcc compilers. These are

22 4 USING FORTRAN AND C

for older Intel systems with CX nodes and should not be used on UniVie’s iPSC/860
which has RX nodes.

4.1 FORTRAN on the Intel System

An Intel application program may consist of code running on several platforms; that is,
code running only on the Intel nodes (i.e., node only program); or code running on the
host and code running on the nodes (i.e., Host/Node program). Thus, compilation may
consist of generating code for different architectures. Additionally, the compilation of a
program can also be performed on various platforms. That is, when compiling the node
program, you can work on the remote host or use the SRM. This section describes how
to compile host and node FORTRAN programs for the Intel on the remote host and the
SRM.

4.1.1 FORTRAN Compilation on the Remote Host

All home directories are located on edwin and NFS-mounted on pixy. The iPSC/860
cross-compiler, if77, is installed on edwin, making it possible to compile and run node
programs with little need to login directly to pixy. The use of the remote host is encour-
aged to reduce the load on the SRM, which is severely underpowered as a front-end for
the iPSC/860. CPU intensive applications or host programs should not be run on the
SRM.

For programs which run on the RX (i860) nodes, the if77 command invokes the
iPSC/860 FORTRAN compiler, assembler, and linker. Set the environment variable
IPSC XDEV as shown in Section 4.

More detailed information on if77 may be obtained by invoking the man command,
or from the iPSC/860 FORTRAN Compiler User’s Guide and the iPSC/2 FORTRAN
Language Reference Manual.

The basic syntax for the if77 compiler is:

if77 [switches] sourcefile...

A partial list of switches follows:

-node Creates an executable program for RX nodes.

-Kflag Requests special compilation semantics from the compiler. The
permitted flag values are:

ieee - Performs REAL and DOUBLE PRECISION divides in conformance
with the IEEE 754 standard (default).

noieee - Performs REAL and DOUBLE PRECISION divides using a faster
inline divide algorithm, which produces results that differ from

4.1 FORTRAN on the Intel System 23

the IEEE result by no more than three units in the last place.

-g Generates symbolic debug information at optimization level 0,
unless a -O switch is present on the command line after the -g.

-O[level] Set the optimization level:

0 - A basic block is generated for each FORTRAN statement.

1 - Scheduling within extended basic blocks and some register
allocation is performed.

2 - Level 1 optimizations plus scalar optimizations such as
induction and loop invariant motion by the global optimizer.

3 - Level 2 optimizations plus software pipelining.

4 - Level 3 optimizations with aggressive register allocation
for software pipelined loops.

If a level is not supplied with -O, the optimization level is
set to 2. If -O is not specified, then the level is set to 0
if -g is specified, and set to 1 if -g is not specified.

-c Skips the link step; compiles and assembles only.

-oname Uses name for the executable program. The default is a.out.

-Idir Adds directory to the compiler’s search path for include files.
For include files surrounded by angle brackets (<..>), each
directory is searched followed by the default location. For
include files surrounded by double quotes (“..”), the directory
containing the file containing the include statement is searched,
followed by the -I directories, followed by the default location.

-llib Loads lib.a from the standard library directory. The library
name is constructed and the full library path is passed to the
linker. See also the -L switch.

-Ldir Changes the default directory in which the linker searches for
libraries to directory. The linker searches directory first
(i.e., before the default path and before any previously specified
-L paths).

The if77 command bases its processing on the suffixes of the files it is passed. Files

24 4 USING FORTRAN AND C

generally have names ending with .F, .f, .s, .o and .a. The meaning of each of these
extensions is:

.F FORTRAN source code to be preprocessed, compiled and assembled.

.f FORTRAN source code to be compiled and assembled.

.s i860 assembly language files to be assembled.

.o object files to be passed directly to the linker.

.a libraries, which must be linked.

All other files are taken as object files and passed to the linker (if linking is requested)
with a warning message. If a single FORTRAN program is compiled and linked with the
if77 command, the intermediate object and assembly files are deleted.

Example:

The following command compiles the node program in the file f1.f on the remote
host, using the -o option to indicate the executable as f1, and the -node option to link
in the appropriate libraries.

if77 -o f1 f1.f -node -i860

For host programs which run on edwin, the /usr/local/bin/f77 command invokes
the Sun FORTRAN compiler and can be used with the appropriate libraries to interface
with node programs running on the RX (i860) nodes. This command requires access to
the appropriate include and library files.

More detailed information may be obtained by using the man command and the Sun
FORTRAN Compiler User’s Guide.

The basic syntax for the f77 compiler is:

f77 [switches] sourcefile...

A partial list of Intel related switches follows:

-Idir Adds directory to the compiler’s search path for include
files. The switch -I/usr/ipsc/include adds the directory
for Intel include files.

-Ldir Changes the default directory in which the linker searches for
libraries to dir.

-llib Loads liblib.a from the standard library directory. The switch
-lhost loads the Intel libhost.a library.

Example:

4.2 C on the Intel system 25

The following command compiles a host program that runs on edwin, using the -I
option defining the prefix for include files, the -o option to indicate the executable as
prog, and the -lhost option to link in the appropriate libraries.

f77 -I/usr/ipsc/include -o prog prog.f -lhost

4.1.2 FORTRAN Compilation on the SRM

Programs which run on the RX (i860) nodes are compiled the same as on the remote
host. Set the environment variable IPSC XDEV, as shown in Section 4.

The basic syntax for the if77 compiler is:

if77 [switches] sourcefiles -node

See Section 4.1.1 for details on the switches.
Host programs which run on the SRM (discouraged, but sometimes useful) are com-

piled slightly differently than on the remote host. The include and library files for the
Sun are not needed during compilation on the SRM, thus the FORTRAN compilation
command is simplified.

The basic syntax for the Greenhills f77 compiler script is:

f77 [switches] sourcefiles -host

A partial list of options for f77 follows:

-host Creates an executable program for the SRM.

-o name Uses name for the executable program. The default is a.out.

-c Skips the link step; compiles and assembles only.

Example:

f77 -o prog prog.f -host

4.2 C on the Intel system

An Intel application program may consist of code running on several platforms; that is,
code running only on the Intel nodes (i.e., node only program); or code running on the

26 4 USING FORTRAN AND C

host and code running on the nodes (i.e., Host/Node program). Thus, compilation may
consist of generating code for different architectures. Additionally, the compilation of a
program can also be performed on various platforms. That is, when compiling the node
program, you can work on a remote host or use the SRM. This section describes how to
compile host and node C programs for the Intel on the remote host and the SRM.

4.2.1 C Compilation on a Remote Host

All home directories are located on edwin and NFS-mounted on pixy. The iPSC/860
cross-compiler, icc, has been installed on edwin, making it possible to compile and run
node programs there with little need to login directly to pixy. The use of the remote
host is encouraged to reduce the load on the SRM, which is severely underpowered as a
front-end for the iPSC/860. CPU intensive applications or host programs should not be
run on the SRM.

For programs which run on the RX (i860) nodes, the icc command invokes the
iPSC/860 C compiler, assembler, and linker with switches derived from the driver’s com-
mand line switches. Set the environment variable IPSC XDEV, as shown in Section 4.

More detailed information may be obtained by using man icc, the iPSC/2 and
iPSC/860 User’s Guide or the iPSC/2 and iPSC/860 C Language Reference Manual.

The basic syntax for the icc compiler is:

icc [switches] sourcefile...

A partial list of switches follows:

-node Creates an executable program for RX nodes.

-Kflag Requests special compilation semantics from the compiler. The
permitted flag values are ieee and noieee. See Section 4.1.1
for description of these flags.

-g Generates symbolic debug information at optimization level 0,
unless the -O switch -g switch.

-O[level] Set the optimization level to 0, 1, 2 or 3.
See Section 4.1.1 for a description of these levels.

-c Skips the link step; compiles and assembles only.

-o name Uses name for the executable program. The default is a.out.

-Idir Adds dir to the compiler’s search path for include files.
See Section 4.1.1 for details.

4.2 C on the Intel system 27

-llib Loads liblib.a from the standard library directory. See
Section 4.1.1 for details.

-Ldir Changes the default directory in which the linker searches for
libraries to directory. See Section 4.1.1 for details.

The icc command bases its processing on the suffixes of the files it is passed. Files
specified generally have names ending with .c, .s, .o and .a.

The meaning of each of these extensions is:

.c C source code to be compiled and assembled.

.s i860 assembly language files to be assembled.

.o object files to be passed directly to the linker.

.a libraries, which must be linked.

All other files are taken as object files and passed to the linker (if linking is requested)
with a warning message. If a C program is compiled and linked with the icc command,
the intermediate object and assembly files are deleted.

Example:

The following command compiles the node program in the file node.c on the remote
host, using the -o option to indicate the executable as node, and the -node option to
link in the appropriate libraries.

icc -o node node.c -node -i860

For host programs which run on edwin, the /usr/ucb/cc command invokes the Sun
C compiler and can be used with the appropriate libraries to interface with node programs
running on the RX (i860) nodes. This command requires access to the appropriate include
and library files.

More detailed information may be obtained by using the man command and the Sun
C Compiler User’s Guide.

The basic syntax for the cc compiler is:

cc [switches] sourcefile...

A partial list of Intel related switches follows:

-Idir Adds dir to the compiler’s search path for include files.
The switch -I/usr/ipsc/include adds the directory for Intel
include files.

28 5 MATHEMATICAL LIBRARIES

-Ldir Changes the default directory in which the linker searches for
libraries to dir.

-llib Loads liblib.a from the standard library directory. The switch
-lhost loads the Intel libhost.a library.

Example:

The following command compiles a host program to run on edwin using the -I op-
tion defining the prefix for include files, the -o option to indicate the executable as host,
the -L option to define the prefix for library files, and the -lhost option to link in the
appropriate libraries.

cc -I/usr/ipsc/include -o host host.c -lhost ...

4.2.2 C Compilation on the SRM

Programs which run on the RX (i860) nodes are compiled the same as on the remote
host. Set the environment variable IPSC XDEV, as shown in Section 4.

The basic syntax for the icc compiler is:

icc [switches] sourcefile... -node ...

See Section 4.2.1 for more details on the switches.
Host programs which run on the SRM (discouraged, but sometimes useful) are com-

piled slightly differently than on the remote host. The include and library files for the
Sun are not needed during compilation on the SRM, thus the C compilation command
is simplified.

The basic syntax for the Greenhills cc compiler is:

cc [switches] sourcefiles -host

Example:

cc -o prog prog.c -host

5 Mathematical Libraries

There are two mathematical libraries available on the iPSC/860, the Basic Math Library
and Veclib, the vector library. This section provides an overview of their content, char-

5.1 iPSC Basic Math Library 29

acteristics and use. More detailed information is available in the documents iPSC/860
Basic Math Library User’s Guide and iPSC/2 and IPSC/860 Math Libraries Reference
Manual . These libraries are not available to host programs. Reference appropriate docu-
mentation for the SRM or your remote host to determine availability and use of provided
mathematical software.

5.1 iPSC Basic Math Library

The iPSC Basic Math Library contains highly optimized implementations of many of
the operations most often found to dominate large scale scientific computing. Library
content includes routines comprising the the Basic Linear Algebra Subprograms (BLAS)
collection supplemented with onedimensional Fast Fourier Transform (FFT) routines.
The iPSC Basic Math Library is available only to FORTRAN node programs. Access to
this library is accomplished by specifying the -lkmath load option on the if77 command
line as follows:

if77 -node -o node node.f -lkmath

5.1.1 Content and Characteristics

All three levels of BLAS routines are included. Both single and double precision real and
complex arguments are supported.

• BLAS Level 1 routines input one or two vectors and output either a vector or a
scalar. Specific examples are dot product, vector scaling and Givens plane rotation.

• BLAS Level 2 routines perform calculations involving both vectors and matrices.
Specific examples are the product of a vector and a matrix, the solution of a linear
system and certain low rank matrix update operations.

• BLAS Level 3 routines have matrices as both their input and output arguments.
Specific examples are the product of two matrices and certain high rank matrix
update operations.

Three one-dimensional FFT routines are included in both single and double precision
versions. Transforms are done in place and are limited to power-of-two lengths. Forced
precomputation of necessary coefficients provides highly efficient computation of multiple
transforms of common length. Specific routines are:

• Forward or inverse FFT, complex to complex

• Forward FFT, real to complex

• Inverse FFT, complex (forward FFT of a real vector) to real

30 5 MATHEMATICAL LIBRARIES

5.1.2 Arguments

Vector arguments are passed in one-dimensional arrays and include length and stride
attributes. The stride (or increment) can be positive, negative or zero, respectively
specifying vector element selection from the input array in a forward, reverse or broadcast
fashion, respectively.

Matrix arguments are passed in two-dimensional arrays and include leading dimen-
sion, number of rows and number of columns as attributes. In addition, a character
transposition parameter is often passed which indicates whether the matrix argument is
to be used in normal, transposed or (for a complex matrix) conjugate transpose form.

5.1.3 Performance Hints

For optimal performance, follow these guidelines for array arguments whenever possible:

• Use a vector stride of one.

• Begin double precision complex arrays on a 16 byte memory address boundary.

• Begin array arguments to FFT routines on a 16 byte memory address boundary.

• Place vector arguments to BLAS 1 routines in the data cache. Place the first of
two vector arguments in data cache when both will not fit.

5.2 iPSC Vector Library

The iPSC Vector Library VecLib routines provide a basic set of vector operations that
can be used to replace either FORTRAN DO loops or C for loops. VecLib is available
to both FORTRAN and C node programs. Access to this library is accomplished by
specifying the -lvec load option on the if77 or icc command line as follows:

if77 -node -o node node.f -lvec

icc -node -o node node.f -lvec

5.2.1 Content and Characteristics

VecLib routines include, but are not limited to, BLAS Level 1 routines, along with
routines for direct and inverse FFT of single or double precision complex data. All
VecLib routine names include a one character prefix to a base functional name which
designates the vector argument type they accept. FFT routines do not transform in
place. BLAS Level 2 and Level 3 routines are not available. This library is recommended
only as a supplement to the iPSC Basic Math Library.

31

6 System Software Tools

Several third party software packages are available to analyze and/or evaluate application
programs being developed for the iPSC/860. Additionally, Intel provides a Performance
Analysis Tool (PAT) to gather statistics on the expenditure of execution-time resources.

6.1 Portable Instrumented Communication Library (PICL)

PICL is a set of communication routines developed primarily at Oakridge National Lab-
oratories with the purpose of providing both a portable communication layer as well as
communication routines with an inbuilt mechanism for generating trace file output.

The library is made up of three distinct sets of routines.

• low-level communication and system primitives

• high-level communication routines

• and routines to control the tracing facility

PICL consists of two libraries, hostlib.a for host programs and nodelib.a for node
programs. On pixy they can be found in

hostlib: /usr/lib/libhostlib.a and

nodelib: /usr/ipsc/XDEV/i860/lib-coff/libnodelib.a

On edwin the filenames are

hostlib: /usr/local/lib/libhostlib.a and

nodelib: /usr/tools/ssd/i860/lib-coff/libnodelib.a

More information about PICL and the available functions can be found in the directory
/global/doc/picl.

6.2 Paragraph

Paragraph is a graphical package which displays the results of a program run using PICL
communication routines. It may be invoked on a SUN workstation, using the command
PG (/usr/ipsc/bin/PG).

Paragraph is currently being further developed by Intel. It will be marketed under the
name SSD Paragraph in an enhanced version which includes self-defining data formats,
thus enabling its use as a graphical display for program performance data from a range
of trace file formats.

The documentation for Paragraph can be found in /global/doc/paragraph.

32 6 SYSTEM SOFTWARE TOOLS

6.3 Performance Analysis Tool (PAT)

The iPSC/860 Parallel Performance Analysis Tools (PAT) is an Intel Supercomputer Sys-
tems Division version of a performance analysis product developed by ParaSoft Corpo-
ration. The PAT utilities provide tools for analyzing program execution, communication
performance, and event traced performance of application programs on the iPSC/860
system.

The PAT utilities gather performance data at runtime and then output the data to
disk when the application terminates. PAT provides a set of analysis tools that convert
the performance data to graphical and tabular forms that can be analyzed interactively
using X. The PAT utilities provide hardcopy output in PostScript form. The reference
for PAT is the iPSC/860 Parallel Performance Analysis Tools Manual.

The PAT performance data is collected automatically by using compiler switches
and/or an environment variables or selectively through the use of PAT C or FORTRAN
calls that are compiled with the application program. The iPSC system uses three basic
methods to collect PAT profiling data:

• Compiler switches to automatically profile/trace application performance.

• Environment variables that interactively turn on/off the gathering of performance
data.

• A programmatic interface that allows you to manually insert PAT system calls at
desired locations in the application code.

The preferred method of gathering profiling data uses switches with the C and FOR-
TRAN compilers to turn one or more of the profilers on or off for the code being compiled.
With this method, appropriate PAT procedures are automatically inserted at the start
and exit of every procedure/subroutine.

The -Mperf switch is available with the iPSC/860 C and FORTRAN compiler
drivers, and turns on PAT instrumentation code. The syntax for the use of -Mperf
is:

-Mperf [= { prof | comm | event } [= { auto | manual }] [,...]

A short description of the parameters follows:

prof Enables the PAT execution profiling.
comm Enables the PAT communication tracing.
event Enables the PAT event tracing.

auto Specifies that performance monitoring code is
to be invoked automatically on the application.

manual Specifies that performance monitoring code is
to be invoked manually using PAT programmatic
procedure calls.

33

The environment variable, EXPROF SWITCHES allows you to set or reset any
or all the PAT profile/trace tools. The syntax for the EXPROF SWITCHES envi-
ronment variable follows:

setenv EXPROF SWITCHES “[c][e][x]”

where the option c represents communication tracing, e represents event tracing, and x
represents execution profiling.

The PAT utilities provide three tools to analyze and display the results from the PAT
profiling on the iPSC system:

• The execution profiler tool, xtool, monitors time spent in individual routines.

• The communication profiler tool, ctool, assesses time spent in communication and
I/O.

• The event profiler tool, etool, shows the interactions between processors and allows
user-specified events to be monitored.

The syntax for the use of each tool is:

xtool [options] program-name

ctool [options] program-name

etool [options] program-name

A partial list of options follows:

-p Suppress graphical output. Tabular output to stdout.

-T Use an alternative graphical device for output (e.g. -TX).

See the man page for pat or for each tool for a more complete description.

7 Running VFCS Code on the Intel

Output from VFCS generated using the iPSC backend includes the Intel byte-swapping
routines (see Section 3.2.3) required to execute the host from a SUN workstation. How-
ever, it may also be desirable to run it from the SRM.

A simple program to compile the output from VFCS for the iSPC/860 is available
in /usr/ipsc/vfcs util/bin on both systems. It is called ipsccomp. A command
line switch is provided to generate optional trace data. Read the README file in this
directory for further information.

Both systems make use of runtime libraries specially constructed to run with Vienna
Fortran programs. These libraries are maintained by the system operator, and are stored

34 8 DEBUGGING

in the standard library directories on each machine, so there is no need to provide any
path information when linking them. Host codes use routines in the library vfcs-host.a
and node programs use routines from vfcs.a and parti.a.

8 Debugging

The Interactive Parallel Debugger is a full-featured symbolic debugger that is useful in
debugging FORTRAN, C and assembly language programs. The ability to delineate and
control the debugging environment when running parallel applications makes this tool
useful to the applications developer.

8.1 Interactive Parallel Debugger (IPD)

The Interactive Parallel Debugger (IPD) is used to debug codes on the SRM. IPD provides
source level debugging functionality similar to debuggers available on other computers
including commands specific to debugging a parallel application. IPD may only be used
to debug node programs on pixy. You may not debug a host program on either pixy or
a remote host such as edwin. Before invoking IPD, you must compile your code with
the -g flag, as shown:

if77 -node -i860 -g -o node node.f

Before ipd is invoked, you must specify how many nodes you require.

The prompt ipd> appears. Enter IPD commands at this prompt. The first command
required is load. You must load the node code onto the iPSC/860. For example:

load (all:0) node

The prompt changes to the default context (all:0). Typing help or ? lists all the IPD
commands. For more information about a particular command, type help followed by
the command name. To run the program enter run followed by the wait command as
follows:

(all:0) run; wait

The program runs until all processes are complete, a breakpoint is reached or the program
is manually interrupted with a Control-c. If you manually interrupt the program, use
the stop command to halt execution.

The frame command gives a traceback. The commands msgqueue and recvqueue
allow you to look at the message send and receive queues. You can use the context
command to define the set of node(s) that the debug command affects. To set and
remove breakpoints, use the break and remove commands respectively. To terminate
IPD, type exit.

35

If you used getcube to obtain a cube, you need to do a relcube to release the cube
after exiting IPD.

For more information about IPD, see the iPSC/2 and iPSC/860 Interactive Parallel
Debugger Manual.

9 Intel Documentation

All manuals listed below are available in the Computer Room. Only the copies of the
manuals are allowed to be removed from this room. The original manuals may only be
read there.

Online documentation like README files or Postscript manuals for the different
software packages mentioned can be found on edwin in the directory /global/doc.
These are frequently updated by the Systems Administrator.

9.1 The iPSC/2 and iPSC/860 User’s Guide

This manual gives an introduction to the iPSC systems. Major features of the hardware
and software are described and some example programs are given. This manual is highly
recommended for the new user.

Intel manuals include:

• Intel Mini Manual (Preliminary)

• iPSC/2 and iPSC/860 User’s Guide

• iPSC/860 Basic Math Library User’s Guide

• iPSC/2 FORTRAN Language Reference Manual

• iPSC/860 FORTRAN Compiler User’s Guide

• iPSC2 iPSC/860 Programmer’s Reference Manual

• iPSC/860 C Compiler User’s Guide

• iPSC/2 iPSC/860 C Language Reference Manual

• iPSC/2 iPSC/860 Interactive Parallel Debugger Manual

• iPSC/860 Parallel Performance Analysis Tools Manual

• iPSC/2 iPSC/860 Network Queueing System Manual

• i860 64-bit Microprocessor Assembler and Linker Reference Manual

• iPSC/2 iPSC/860 Technical Documentation Guide

• iPSC/2 and iPSC/860 Math Libraries Reference Manual

