
HPPC
2009

(Hand-out) Proceedings of the

the 3rd Workshop on
Highly Parallel Processing

on a Chip

August 25, 2009, Delft, The Netherlands
Organizers Martti Forsell and Jesper Larsson Träff

in conjunction with

the 15th International European Conference on
Parallel and Distributed Computing (Euro-Par)

August 25-28, 2009, Delft, The Netherlands

Sponsored by

S

S

I P

S

S S

S

I P

S

S S

S

I P

S

S S

S

I P

M

S

S

S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S

S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S

S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S

I/O

I/O

I/O

I/O I/O I/O

I/O

M

I/O I/O

M M

I/O

I/O

I/O

I/O

I/O

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

C

M re

re
C

M

P
D

(Hand-out) Proceedings of the

3rd Workshop on
Highly Parallel Processing

on a Chip

August 25, 2009, Delft, The Netherlands
http://www.hppc-workshop.org/

in conjunction with

the 15th International European Conference on Parallel and Distributed Computing (Euro-Par)
August 25-28, 2009, Delft, The Netherlands

August 2009
Handout editors: Martti Forsell and Jesper Larsson Träff

Printed in Finland and Germany

2 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

CONTENTS

Foreword 4

Organization 5

Program 6

SESSION 1 - Multicore architectures

Keynote - The next 25 years of computer architecture? - Peter Hofstee, IBM Systems
and Technology Group 7

Distance Constrained Mapping to Support NoC Platforms based on Source Routing - Rafael Tornero,
Shashi Kumar, Saad Mubeen, Juan Manuel Orduña, University of Valencia, Jönköping University 8

SESSION 2 - Programming

Parallel Variable-Length Encoding on GPGPUs - Ana Balevic, University of Stuttgart 18

Toward generative programming for parallel systems on a chip - Lee Howles, Anton Lokhmotov,
Alastair Donaldson, Paul Kelly, Imperial College London, University of Oxford 28

Dynamic detection of uniform and affine vectors in GPGPU computations - Sylvain Collange,
David Defour, Yao Zhang, University of Perpigan 38

SESSION 3 - Application-specific multicores

Automatic Calibration of Performance Models on Heterogeneous Multicore Architectures - Cédric
Augonnet, Samuel Thibault, Raymond Namyst, INRIA, LaBRI, University of Bordeaux 48

Keynote - Software Development and Programming of Multicore SOC - Ahmed Jerraya, CEA-LETI,
MINATEC 58

SESSION 4 - Panel

Panel - Are many-core computer vendors on track? - Martti Forsell, Peter Hofstee, Ahmed Jerraya,
Chris Jesshope, Uzi Vishkin, VTT, IBM Systems and Technology Group, CEA-LETI, MINATEC,
University of Amsterdam, University of Maryland
- Moderator Jesper Larsson Träff, NEC Laboratories Europe 59

3HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

FOREWORD

Technological developments are bringing parallel computing back into the limelight after some years of absence from
the stage of main stream computing and computer science between the early 1990ties and early 2000s. The driving
forces behind this return are mainly advances in VLSI technology: increasing transistor densities along with hot chips,
leaky transistors, and slow wires make it unlikely that the increase in single processor performance can continue the
exponential growth that has been sustained over the last 30 years. To satisfy the needs for application performance,
major processor manufacturers are instead planning to double the number of processor cores per chip every second
year (thus reinforcing the original formulation of Moore's law). We are therefore on the brink of entering a new era
of highly parallel processing on a chip. However, many fundamental unresolved hardware and software issues remain
that may make the transition slower and more painful than is optimistically expected from many sides. Among the
most important such issues are convergence on an abstract architecture, programming model, and language to easily
and efficiently realize the performance potential inherent in the technological developments.

This is the third time we organize the Workshop on Highly Parallel Processing on a Chip (HPPC). Again, it aims to be
a forum for discussing such fundamental issues. It is open to all aspects of existing and emerging/envisaged multi-
core processors with a significant amount of parallelism, especially to considerations on novel paradigms and models
and the related architectural and language support. To be able to relate to the parallel processing community at large,
which we consider essential, the workshop has been organized in conjunction with Euro-Par, the main European
(and international) conference on all aspects of parallel processing.

The Call-for-papers for the HPPC workshop was launched early in the year, and at the passing of the submission
deadline we had received 18 submissions, which were relevant to the theme of the workshop and of good quality.
The papers were swiftly and expertly reviewed by the program committee, all of them receiving at least 4 qualified
reviews. We thank the whole of the program committee for the time and expertise they put into the reviewing work,
and for getting it all done within the rather strict timelimit. Final decision on acceptance was made by the program
chairs based on the recommendations from the program committee. Being a single day event, we had room for ac-
cepting only 5 of the contributions, resulting in an acceptance ratio of about 28%. The 5 accepted contributions will
be presented at the workshop today, together with two forward looking invited talks by Peter Hofstee and Ahmed
Jerraya on the next 25 years of computer architecture and building a concurrency and software development and
programming of multicore SOC. This year the workshop includes also a panel session on bringing together 5 distin-
guished panelists including Peter Hofstee, Ahmed Jerraya, Chris Jesshope, Uzi Vishkin, and Martti Forsell to discuss
whether many-core processor vendors are on track to scalable machines that can be effectively programmed for par-
allelism by a broad group of users.

This handout includes the workshop versions of the HPPC papers and the abstracts of the invited talks. Final versions
of the papers will be published as post proceedings in a Springer LNCS volume containing material from all the Euro-
Par workshops. We sincerely thank the Euro-Par organization for giving us the opportunity to arrange the HPPC work-
shop in conjunction with the Euro-Par 2009 conference. We also warmly thank our sponsors VTT, NEC and Euro-Par
for the financial support which made it possible for us to invite Peter Hofstee and Ahmed Jerraya as well as the pan-
elists, all of whom we also sincerely thank for accepting our invitation to come and contribute.

Finally, we welcome all of our attendees to the Workshop on Highly Parallel Processing on a Chip in the beautiful
city of Delft, The Netherlands. We wish you all a productive and pleasant workshop.

HPPC organizers
Martti Forsell, VTT, Finland
Jesper Larsson Träff, NEC Europe, Germany

4 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

ORGANIZATION

Organized in conjuction with the 15th International European Conference on Parallel and Distributed Computing

WORKSHOP ORGANIZERS

Martti Forsell, VTT, Finland
Jesper Larsson Träff, NEC Laboratories Europe, NEC Europe Ltd, Germany

PROGRAM COMMITTEE

David Bader, Georgia Institute of Technology, USA
Gianfranco Bilardi, University of Padova, Italy
Marc Daumas, University of Perpignan Via Domitia, France
Martti Forsell, VTT, Finland
Peter Hofstee, IBM, USA
Chris Jesshope, University of Amsterdam, The Netherlands
Ben Juurlink, Technical University of Delft, The Netherlands
Jorg Keller, University of Hagen, Germany
Christoph Kessler, University of Linkoping, Sweden
Dominique Lavenier, IRISA - CNRS, France
Ville Leppanen, University of Turku, Finland
Radu Marculescu, Carnegie Mellon University, USA
Lasse Natvig, NTNU, Norway
Geppino Pucci, University of Padova, Italy
Jesper Larsson Traff, NEC Laboratories Europe, NEC Europe Ltd, Germany
Uzi Vishkin, University of Maryland, USA

SPONSORS

VTT, Finland http://www.vtt.fi
NEC http://www.it.neclab.eu/
Euro-Par http://www.euro-par.org

5HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

PROGRAM

3rd Workshop on
Highly Parallel Processing on a Chip (HPPC 2009)

August 25, 2009, Delft, The Netherlands
http://www.hppc-workshop.org/

in conjunction with

the 15th International European Conference on Parallel and Distributed Computing (Euro-Par)
August 25-28, 2009, Delft, The Netherlands.

TUESDAY AUGUST 25, 2009

SESSION 1 - Multicore architectures

09:30-09:35 Opening remarks - Jesper Larsson Träff and Martti Forsell, NEC Laboratories Europe, VTT
09:35-10:35 Keynote - The next 25 years of computer architecture? - Peter Hofstee, IBM Systems and Technology
Group
10:35-11:00 Distance Constrained Mapping to Support NoC Platforms based on Source Routing - Rafael Tornero,
Shashi Kumar, Saad Mubeen, Juan Manuel Orduña, University of Valencia, Jönköping University

11:00-11:30 -- Break --

SESSION 2 - Programming

11:30-11:55 Parallel Variable-Length Encoding on GPGPUs - Ana Balevic, University of Stuttgart
11:55-12:20 Toward generative programming for parallel systems on a chip - Lee Howles, Anton Lokhmotov, Alas-
tair Donaldson, Paul Kelly, Imperial College London, University of Oxford
12:20-12:45 Dynamic detection of uniform and affine vectors in GPGPU computations - Sylvain Collange, David
Defour, Yao Zhang, University of Perpigan

12:45-14:30 -- Lunch --

SESSION 3 - Application-specific multicores

14:30-14:55 Automatic Calibration of Performance Models on Heterogeneous Multicore Architectures - Cédric Au-
gonnet, Samuel Thibault, Raymond Namyst, INRIA, LaBRI, University of Bordeaux
14:55-15:55 Keynote - Software Development and Programming of Multicore SOC - Ahmed Jerraya, CEA-LETI, MI-
NATEC

15:55-16:30 -- Break --

SESSION 4 - Panel

16:30-17:55 Panel - Are many-core computer vendors on track? - Martti Forsell, Peter Hofstee, Ahmed Jerraya,
Chris Jesshope, Uzi Vishkin, VTT, IBM Systems and Technology Group, CEA-LETI, University of Amsterdam, Univer-
sity of Maryland - Moderator Jesper Larsson Träff, NEC Laboratories Europe
17:55-18:00 Closing notes - Jesper Larsson Träff and Martti Forsell, NEC Europe, VTT

6 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

KEYNOTE

The next 25 years of computer architecture?

Peter Hofstee, IBM Systems and Technology Group, USA

Abstract: This talk speculates on a technology-driven path computer architecture is likely to have to follow in order
to continue to deliver application performance growth over the next 25 years in a cost- and power constrained envi-
ronment. We try to take into account transistor physics, economic constraints, and discuss how one might go about
programming systems that will look quite different from what we are used to today.

Bio: H. Peter Hofstee is the IBM Chief Scientist for the Cell Broadband Engine processors used in systems from the
Playstation 3 game console to the Roadrunner petaflop supercomputer. He has a masters (doctorandus) degree in
theoretical physics from the Rijks Universiteit Groningen, and a PhD in computer science from Caltech. After two
years on the faculty at Caltech, Peter joined the IBM Austin research laboratory in 1996 to work on the first GHz
CMOS microprocessor. From 2001 to 2008 he worked on Cell processors and was the chief architect of the Synergistic
Processor Element.

7HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

8 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Distance Constrained Mapping to Support NoC
Platforms based on Source Routing?

Rafael Tornero1, Shashi Kumar2, Saad Mubeen2, and Juan Manuel Orduña1

1 Departamento de Informática, Universitat de València, Spain
{Rafael.Tornero,Juan.Orduna}@uv.es

2 School of Engineering, Jönköping University, Sweden
{Shashi.Kumar,mems07musa}@jth.hj.se

Abstract. Efficient NoC is crucial for communication among processing
elements in a highly parallel processing systems on chip. Mapping cores
to slots in a NoC platform and designing efficient routing algorithms are
two key problems in NoC design. Source routing offers major advantages
over distributed routing especially for regular topology NoC platforms.
But it suffers from a serious drawback of overhead since it requires whole
communication path to be stored in every packet header. In this paper,
we present a core mapping technique which helps to achieve a mapping
with the constraint over the path length. We demonstrate the feasibility
of reducing the path length to just 50% of the diameter. We also present
a method to efficiently compute paths for source routing leading to good
traffic distribution. Evaluation results show that performance degrada-
tion due to path length constraint is negligible at low as well at high
communication traffic.

Key words: Network on Chip, Core Mapping, Routing Algorithms,
Source Routing

1 Introduction

As Semi-conductor Technology advances, it becomes possible to integrate a large
number of Intellectual Property (IP) cores, like DSPs, CPUs, Memories, etc, on a
single chip to make products with complex and powerful functions. Efficient com-
munication infrastructure is crucial for harnessing enormous computing power
available on these Systems on Chip (SoCs). Network on Chip (NoC) is being
considered as the most suitable candidate for this job [1].

Many design choices and aspects need to be considered for designing a SoC
using NoC paradigm. These include: network topology selection, routing strat-
egy selection and application mapping. Both application mapping and routing
strategy have big impact on the performance of the application running on a
NoC platform. The application mapping problem consist of three tasks: i) the
? This work has been jointly supported by the Spanish MEC and European Commis-

sion FEDER funds and the University of Valencia under grants Consolider Ingenio-
2010 CSD2006-00046 and TIN2009-14475-C04-04 and V-SEGLES-PIE Program.

9HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

2 Rafael Tornero et. al

application is split into a set of communication tasks, generally represented as a
task graph; ii) the tasks are assigned and scheduled on a set of IP cores selected
from a library; iii) the IP cores have to be placed onto the network topology in
such a way that the desired metrics of interest are optimized. The first two steps
are not new since they have been extensively addressed in the area of hard-
ware/software co-design and IP reuse [2] by the CAD community. The third
step, called topological mapping, has recently been addressed by a few research
groups [3], [4].

One way to classify the routing algorithms is by considering the component
in the network where the routing decision to select the path is done. Under
this consideration the routing algorithms are classified into source routing and
distributed routing algorithms. In source routing algorithms, the path between
each pair of communicating nodes is computed offline and stored at each source
node. When a core needs to communicate with another core the encoded path
information is put in the header of each packet. In distributed routing, the header
only needs to carry the destination address and each router in the network has
competence to make the routing decision based on the destination address.

Source routing has not been considered so far for NoCs due to its perceived
underutilization of network bandwidth due to the requirement of large number
of bits in the packet header to store path information. This conclusion may be
valid perhaps for large dynamic networks where network size and topology are
changing. But in a NoC with fixed and regular topology like mesh, the path
information can be efficiently encoded with small number of bits. Saad et. al. [5]
have made a good case for use of source routing for mesh topology NoCs. It can
be easily shown [6] that two bits are sufficient to encode information about one
hop in the path. Since the packet entering a router contains the pre-computed
decision about the output port, the router design is significantly simplified. Also,
since NoCs used in embedded systems are expected to be application specific,
we can have a good profile of the communication traffic in the network [7]. This
allows us to offline analyze the traffic and compute efficient paths according to
the desired performance characteristics, like uniform traffic load distribution,
reserved paths for guaranteed throughput etc.

Figure 1 shows an application, that has been assigned and scheduled on eight
cores, topologically mapped on a 4x2 mesh. The Application Characterization
Graph (APCG) of this application can be seen in Figure 1(a), where a node
corresponds to a core and a directed edge corresponds to communication between
two connected cores. APCG will be defined more formally in section 2. Assuming
minimal routing, the maximum route length required is equal to the diameter
of the topology. It means that, if the diameter was used for this example, the
required path length would be 4 hops and therefore 10 bits would be required
to code a route (see Figure 1(b)). However, it is possible to find a mapping in
which the maximum distance between two communicating cores is much smaller
than the diameter. Figure 1(c) shows such a mapping for the example in which
the maximum distance is just two hops and only 6 bits are required for the path
information.

10 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Distance Constrained Mapping for NoC using Source Routing 3

(a)

(b)

(c)

Fig. 1. Differents mappings of the same application. (a) the APCG, (b) A distance
unconstrained mapping, (c) A 2-hops constrained mapping

Close compactness of mapping could lead to higher congestion in certain
links. Since routers for source routing are relatively faster than routers for dis-
tributed routing, the above disadvantage will be adequately compensated [6].

Related Work
A large number of routing algorithms have been proposed in literature for NoCs.
Most proposals fall in the category of distributed adaptive routing algorithms
and provide partial adaptivity thus providing more than one path for most com-
municating pairs and at the same time avoiding possibility of deadlocks. In [7],
Palesi et al. propose a methodology to compute deadlock free routing algorithms
for application specific NoCs with the goal of maximizing the communication
adaptivity.

Several works have been proposed in literature in the context of core map-
ping. Hu et al. present a branch and bound algorithm for mapping cores in a mesh
topology NoC architecture that minimizes the total amount of power consumed
in communications [8]. Murali et al. present a work to solve the mapping prob-
lem under bandwdith constraint with the aim of minimizing the communication
delay by exploiting the possibility of splitting the traffic among various paths
[3]. Hansson et al. present an unified single objective algorithm which couples
path selection, mapping of cores, and channel time-slot allocation to minimize
the network required to meet the constraints of the application [9]. Tornero et al.
present a communication-aware topological mapping technique that, based on
the experimental correlation of the network model with the actual network per-
formance, avoids the need to experimentally evaluate each mapping explored [4].
In [10], Tornero et al. present a multi-objective strategy for concurrent mapping
and routing for NoC. All the aforementioned works address the integration of
mapping and routing concurrently but taking into account only the distributed
routing functions.

Although source routing has been shown to be efficient for general networks
[11], it had not been explored so far for NoC architectures. Recently Mubeen
et.al [5] have made a strong case for source routing for small size mesh topology
NoCs. The author, has demonstrated that source routing can have higher com-

11HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

4 Rafael Tornero et. al

munication performance than adaptive distributed routing [6]. In this paper we
modify our earlier approach and tackle the integration of topological mapping
for NoC platforms which use limited path length source routing for inter-core
communication.

2 Problem Formulation

Simply stated, our goal is to find an arrangement of cores in tiles together with
path selection such that the global communication cost is minimized and the
maximum distance among communicating cores is within the given threshold.
The value of the threshold comes from the fixed on-chip communication infras-
tructure (NoC) platform which uses source routing with an upper limit on the
length of the path. Before formally defining the problem, we need to introduce
the following definitions [8].

Definition 1 An Application Characterization Graph APCG = G(C,A) is
a directed graph, where each vertex ci ∈ C represents a selected IP core,
and each directed arc a ∈ A characterizes the communication process from
core ci to core cj . For each communication a ∈ A∧ a = (ci, cj), the function
B(a) returns the bandwith requirements of a. This is minimum bandwith
that should be allocated by the network in order to meet the performance
constraint for communication a.

Definition 2 An Architecture Characterization Graph ARCG = G(T,L) is a
directed graph which models the network topology. Each vertex ti represents
a tile, and each directed arc lij represents the channel from tile ti to tile tj .

We must solve two problems: first, we have to find a mapping within the con-
straint of maximum distance allowed by the communication platform. The sec-
ond problem to be solved is to compute efficient paths for all communicating
pairs of cores such that there is no possibility of deadlock as well as the traffic is
well balanced. We can formulate the first problem as follows. Given the APCG
and the ARCG, that satisfy |C| 6 |T |, find a mapping function M from C to T
which minimizes the mapping cost function Mc:

min{Mc =
∑

∀ci,cj∈C
a=(ci,cj)∈A

B(a) ∗ (dist(M(ci),M(cj)))3} (1)

such that:

dist(M(ci),M(cj)) ≤ Threshold ∧ a = (ci, cj) ∈ A . (2)

In the equation 1, the second term of the summation is raised to power 3
with the aim of giving more importance to the distance in the search for a
pseudo-optimal mapping. This value is a trade-off between the quality of the
results and the computation time (the power 2 provides poor quality of results
and power of 4 and higher ones are too much time consuming). Condition 2

12 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Distance Constrained Mapping for NoC using Source Routing 5

guarantees that every pair of communicating cores should be mapped such that
the Manhattan distance between them is less than the threshold. We assume
that the underlying source routing uses only minimal distances. Nevertheless,
this threshold cannot be smaller than the lower bound on the path length
required for mapping APCG on ARCG. The lower bound in this context refers
to a value such that any possible mapping will have at least one pair with distance
more than or equal to the lower bound. For example, the lower bound for the
APCG in our example is 2, since there is no possibility to find a mapping with
distance 1. The APCG together with the ARCG can be analyzed in order to
find the lower bound for the mapping.

In a 4x2 mesh topology, a node can be connected to maximum three other
cores with a distance 1. A core can be connected to up to 6 cores if distance of 2
hops is allowed. There may not be any 2 distance constrained mapping available
for an APCG with maximum out-degree 5. If L is the lower bound, then one can
start by searching for a mapping with constraint equal to L. If one fails then one
must repeat the process of finding a feasible mapping by using L + 1, L + 2, . . .
and so on as the constraint.

Once the cores are mapped satisfiying (2), the second problem is to find a
path for every communicating core pair Ci and Cj such that: the path length
is equal to manhattan distance between Ci and Cj ; there is no possibility of
deadlock when some or all other core pairs communicate concurrently and the
traffic load on all the links in the network is as balanced as possible.

3 The Distance Constrained Mapping Algorithm

We have modified our earlier mapping approach developed for NoC platforms us-
ing distributed routing techniques [4] to obtain distance constrained topological
mapping. This approach considers the network resources and the communication
pattern generated by the tasks assigned to different cores in order to map such
cores to the network nodes. The method is based on three main steps.

Step 1 Model the network as a table of distances (or costs) between each pair
of source/destination nodes. The cost for communicating each pair of nodes
is computed as inversely related to the available network bandwidth.

Step 2 Perform a heuristic search in the solution space with the aim of obtaining
a near-optimal mapping that satisfies our distance restrictions.

Step 3 Repair the mapping found in the second step if some communicating
pairs violate the distance constraints.

We have computed steps 1 and 2 as in our previous work ([4]). If the mapping
found by the heuristic method does not satisfy the distance constraint, then
a heuristic repair procedure, step 3, tries to repair the solution found. This
procedure, based on [12], consists of a hill-climbing that minimizes the number
of constraints violated by the solution mapping. The advantage of this procedure
is that it is fast to compute, but presents some drawbacks like the capacity to
fall in a local minimum that does not satisfy the distance constraint.

13HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

6 Rafael Tornero et. al

Fig. 2. Feasible mappings with distant constraint

It should be noticed that the goal of this work is to prove that it is possible
to obtain efficient solutions for the problem of distance constrained mapping by
using a mapping technique analogous to the one shown in our previous work
([4]). In order to achieve this goal, we have used the same heuristic method for
solving step 2 than the one shown in [4]. Since that method was not designed
for this problem, a new heuristic method specifically developed for solving this
problem is likely to provide better solutions.

3.1 Feasibility Experiments

In order to test the distance constrained topological mapping method we have
made a set of feasibility experiments. These consists of mapping 500 random
APCGs on several 2-D mesh topologies. We have used a 5x5, 6x6, 6x8 and 7x7
mesh topologies. Each node of each APCG presents an out-degree log-normally
distributed with a mean of 2 and a standard deviation of 1 communications.
We have used an uniform probability distribution for spatial communications.
It means that the probability of a core ci communicating with a core cj is
the same for every core. The communication bandwith between each pair of
communicating cores is distributed uniformly between 10 and 100 Kbytes/sec.

Figure 2 shows the result of the experiments. The X-axis shows the topologies
and the Y-axis shows the percentage of feasible mappings. Each bar in the figure
presents for each topology the percentage number of APCGs the method is able
to map given a distance. As can be seen, 96% of the cases, the mapping technique
is able to map the 500 APCGs with a distance of only 5 hops for all the topologies
tried. It means that the path length of the header flit can be reduced from the
diameter of the topology to 5 hops reducing the network overhead.

4 Efficient Path Computation for Source Routing

After the cores have been mapped on the NoC platform which supports distance
constrained source routing, the next step will be to compute efficient paths for
all the communicating pairs of cores. For each source core these paths will be
stored as a table in the corresponding resource (core) to network interface (RNI).
The RNI will use this table to append the path in the header flit of the packet.

14 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Distance Constrained Mapping for NoC using Source Routing 7

Table 1. Best routing algorithm for a traffic type

Traffic Type Best Routing Algorithm

Random Traffic XY

Hot-Spot Traffic Odd-Even

East-Dominated Traffic West First

West-Dominated Traffic East First

Transpose Traffic Negative First

Beside avoiding deadlocks, the computed paths should also avoid congestion and
uniformly distribute traffic among the links in the network as much as possible.

4.1 Routing Algorithm selection

A large number of deterministic and adaptive routing algorithms are available
for deadlock free routing in mesh topology NoCs. The most famous among these
are XY, Odd-Even, West First and North Last routing algorithms. XY is a deter-
ministic routing algorithm and allows a single path between every pair of nodes.
The other algorithms are partially adaptive routing algorithms and prohibit the
packets to take certain turns, but allow path adaptivity for most pairs. It has
been shown that no single routing algorithm provides best performance for all
types of traffic. Table 1 gives relatively best routing algorithm for some specific
types of communication traffic [6].

A traffic is called West-Dominated if majority of communication (considering
number of communications and communication volume) is from east to west.
We analyze and classify the traffic using the mapped APCG and select the most
appropriate routing algorithm. The analysis uses the relative position of source
and destination cores and the communication volume between pairs [6].

4.2 Path Computation

One can easily compute a path for each communication pair using the routing
algorithm selected using the analysis in the previous subsection. In the case of
deterministic routing the only path available is selected. In the case of partially
adaptive routing algorithm the path is constructed by making a choice with a
uniform probability at all intermediate routers where a choice among multiple
admissible ports is available. Our study has shown that communication traffic
type is rarely pure. For example, it is rare to have an application with pure West-
Dominated traffic. To handle this we use adaptivity of the routing algorithm to
balance load on the links and avoid/reduce congestion. Figure 3 describes a
constructive algorithm to achieve this.

All the communications are sorted in ascending order according to their com-
munication volume. Then in each iteration a path is computed for one communi-
cation using the selected routing algorithm. At every router where there exists a
choice among multiple output ports, the port is selected if a lower load is already

15HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

8 Rafael Tornero et. al

Algoritm Path-Computations(RA, C, P)

/* Implicit inputs: Mappings of cores to slots in topology */

/* Inputs: RA - Routing Algorithm,

C - Set of Communications {Ci, i = 1..N} */

/* Outputs: Set of paths P = {Pi, i = 1..N, P i used for Ci} */

begin

1. Initialize load on each link li = 0, i = 1..Number of links
2. Order communications Ci, i = 1..N in ascending order based on

communication volume

3. For i = 1 to N do

- Find a path Pi for Ci using RA considering

current loads on various links and update the loads

end for

end

Fig. 3. Pseudocode of the algorithm for path computation

mapped to the corresponding output link. We keep updating the estimated load
on links after each iteration. It has been shown that this methodology leads to
efficient paths for communication [6].

5 Evaluation and Results

For evaluation purposes, we have evaluated the proposed approach using a set of
random traffic scenarios. Each traffic scenario has been generated as described
in section 3.1. For each scenario we have computed a random mapping, a near-
optimal unconstrained mapping and a near-optimal constrained mapping for
5 hops. The Figure 4 shows the performance results in terms of latency and
throughput for two of such traffic scenarios. In this figure the random mapping,
the near-optimal unconstrained mapping and the near-optimal distance con-
strained mapping have been labeled as RNDMAP, UNCONSTDISTMAP and
MINDISTMAP respectively.

The performance evaluation has been carried out using a NoC simulator
developed in SDL language [6]. The simulator implements a NoC Platform based
on a 2-D 7x7 mesh topology and source routing. The simulated NoC also uses
wormhole switching with a packet size fixed to 10 flits, the input buffers have
capacity for keep 4 flits. We have used the source packet injection rate (pir) as
load parameter. A Matlab based tool has been developed to compute efficient
paths for source routing as described in Section 4. For each load value, latency
and throughput values are averaged over 20,000 packets drained after a warm-up
of 2000 packets drained.

Figure 4(a) and Figure 4(c) show the simulation results for average latency
in cycles. These figures show that at both low traffic loads and high traffic loads
both the UNCONSTDISTMAP and MINDISTMAP present similar behaviour
and save more than 20% cycles and 25% over RNDMAP respectively.

16 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Distance Constrained Mapping for NoC using Source Routing 9

(a) Latency (b) Throughput

(c) Latency (d) Throughput

Fig. 4. Simulation results for two random APCGs

The throughput results, measured in packets/cycle, are shown in Figure 4(b)
and Figure 4(d). As we can look at the throughput achieved by the MINDISTMAP
is almost the same as the throughput achieved by the UNCONSTDISTMAP and
much higher than the throughput achieved by a RNDMAP close to saturation.

Therefore, the evaluation results show that is possible reduce the path length
of the header flit at least to half of the network diameter without significantly
degradation of the performance.

6 Conclusions and Future Work

We have addressed the application mapping problem for NoCs when the commu-
nication infrastructure is pre-designed as 2-D mesh topology using source routing
and the path length header field is delimited up by a number of hops significantly
less than the network diameter. In such a scenario we have demonstrated that
our distance constrained mapping technique is able to map 96% of applications
tried with a distance constraint less than half of the network diameter. We have
proposed an efficient method, based on existing distributed deadlock free routing
algorithms, to compute efficient paths required for source routing. The simula-
tion based evaluation results show that our distance constrained mapping gives
more than 20% latency improvement over random mapping at low traffic loads.
The saturation points traffic load also shows around 25% . Performance degra-

17HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

10 Rafael Tornero et. al

dation as compared to path length constraint is negligible at low communication
traffic and saturation packet injection rate is also only reduced by just 5%.

To the best of our knowledge this is the first attempt to consider core mapping
for NoC platforms based on source routing. As future work, we plan to use
intelligent heuristic search method to further lower the path length thus reducing
bandwidth underutilization of NoC. We are also working on methods to improve
computed paths for better link load balancing.

References

1. Benini, L., De Micheli, G.: Networks on chips: a new soc paradigm. Computer
35(1) (Jan. 2002) 70–78

2. Chang, J.M., Pedram, M.: Codex-dp: co-design of communicating systems using
dynamic programming. In: Proc. Design Automation and Test in Europe Confer-
ence and Exhibition 1999. (9–12 March 1999) 568–573

3. Murali, S., De Micheli, G.: Bandwidth-constrained mapping of cores onto noc
architectures. In: Proc. Design, Automation and Test in Europe Conference and
Exhibition. Volume 2. (16–20 Feb. 2004) 896–901

4. Tornero, R., Orduña, J.M., Palesi, M., Duato, J.: A communication-aware topolog-
ical mapping technique for nocs. In: Euro-Par ’08: Proceedings of the 14th inter-
national Euro-Par conference on Parallel Processing, Berlin, Heidelberg, Springer-
Verlag (2008) 910–919

5. Mubeen, S., Kumar, S.: On source routing for mesh topology network on chip. In:
SSoCC’09: 9th Swedish System on Chip Conference. (May 2009)

6. Mubeen, S.: Evaluation of source routing for mesh topology network on chip
platforms. Master’s thesis, School of Engineering, Jönköping University (June
2009)

7. Palesi, M., Holsmark, R., Kumar, S., Catania, V.: Application specific routing
algorithms for networks on chip. IEEE Transactions on Parallel and Distributed
Systems 20(3) (2009) 316–330

8. Hu, J., Marculescu, R.: Energy-aware mapping for tile-based noc architectures
under performance constraints. In: ASPDAC: Proceedings of the 2003 conference
on Asia South Pacific design automation, New York, NY, USA, ACM (2003) 233–
239

9. Goossens, K., Radulescu, A., Hansson, A.: A unified approach to constrained map-
ping and routing on network-on-chip architectures. Hardware/Software Codesign
and System Synthesis, 2005. CODES+ISSS ’05. Third IEEE/ACM/IFIP Interna-
tional Conference on (Sept. 2005) 75–80

10. Tornero, R., Starrantino, V., Palesi, M., Orduña, J.M.: A multi-objective strategy
for concurrent mapping and routing in network on chip. In: Proceedings of the
23rd IEEE International Parallel and Distributed Processing Symposium. (25–29
May 2009)

11. Flich, J., López, P., Malumbres, M.P., Duato, J.: Improving the performance of
regular networks with source routing. In: ICPP’00: Proceedings of the Proceedings
of the 2000 International Conference on Parallel Processing, Washington, DC, USA,
IEEE Computer Society (2000) 353

12. Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Solving large-scale constraint-
satisfaction and scheduling problems using a heuristic repair method. In: AAAI.
(1990) 17–24

18 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Parallel Variable-Length Encoding on GPGPUs

Ana Balevic

IPVS, University of Stuttgart
ana.balevic@ipvs.uni-stuttgart.de

Abstract. Variable-Length Encoding (VLE) is a process of reducing
the input data size by replacing fixed-length data words with codewords
of shorter length. As VLE is one of the main building blocks in systems
for multimedia compression, its efficient implementation is essential. The
massively parallel architecture of modern general purpose graphics pro-
cessing units (GPGPUs) has been successfully used for acceleration of
inherently parallel compression blocks, such as image transforms and
motion estimation. On the other hand, VLE is an inherently serial pro-
cess due to the requirement of writing a variable number of bits for each
codeword to the compressed data stream. The introduction of the atomic
operations on the latest GPGPUs enables writing to the output memory
locations by many threads in parallel. We present a novel data parallel
algorithm for variable length encoding using atomic operations, which
archives performance speedups of up to 35-50x using a CUDA1.3-based
GPGPU.

1 Introduction

Variable-Length Encoding (VLE) is a general name for compression methods
that take advantage of the fact that frequently occurring symbols can be rep-
resented by shorter codewords. A well known example of VLE, Huffman cod-
ing [1], constructs optimal prefix codewords on the basis of symbol probabilities,
and then replaces the original symbols in the input data stream with the corre-
sponding codewords.

The VLE algorithm is serial in nature due to data dependencies in comput-
ing the destination memory locations for the encoded data. Implementation of
a variable length encoder on a parallel architecture is faced by the challenge of
dealing with race conditions when writing the codewords to a compressed data
stream. Since memory is accessed in fixed amounts of bits whereas codewords
have arbitrary bit size, the boundaries between adjacent codewords do not co-
incide with the boundaries of adjacent memory locations. The race conditions
would occur when adjacent codewords are written to the same memory location
by different threads. This creates two major challenges for creating a parallel im-
plementation of VLE: 1) computing destination locations for the encoded data
elements with a bit-level precision in parallel and 2) managing concurrent writes
of codewords to destination memory locations.

In recent years, GPUs evolved from simple graphics processing units to mas-
sively parallel architectures suitable for general purpose computation, also known

19HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

as GPGPUs. The nVidia GeForce GTX280 GPGPU used for this paper provides
240 processor cores and supports execution of more than 30,000 threads at once.
In image and video processing, GPGPUs have been used predominantly for the
acceleration of inherently data-parallel functions, such as image transforms and
motion estimation algorithms [6–8]. The VLE entropy coding to our best knowl-
edge has not been implemented on GPUs so far, due to its inherently serial
nature. Some practical compression-oriented approaches on GPUs include com-
paction and texture compression. The compaction is a method for removing
unwanted elements from the resulting data stream by using the parallel prefix
sum primitive [9]. An efficient implementation of the stream reduction for tra-
ditional GPUs can be found in [10]. The texture compression is a fixed-ratio
compression scheme which replaces several pixels by one value. Although it has
a fast CUDA implementation [11], it is not suitable for codecs requiring a final
lossless encoding pass, since it introduces a loss of fidelity.

We propose a fine-grain data parallel algorithm for lossless compression, and
present its practical implementation on GPGPUs. The paper is organized as
follows: Section II discusses related work, Section III presents an overview of the
architecture of the GPGPU used for this study, in Section IV we present a design
and implementation of a novel parallel algorithm for variable-length encoding
(PAVLE), and in Section V, we present performance results and discuss effects
of different optimizations.

2 GPGPU Architecture

The unified GPGPU architecture is based on a parallel array of programmable
processors [5]. It is structured as a set of multiprocessors, where each multi-
processor is composed of a set of simple processing elements working in SIMD
mode. In contrast to CPU architectures which rely on multilevel caches to over-
come long system memory latency, GPGPUs use fine-grained multi-threading
and a very large number of threads to hide the memory latency. While some
threads might be waiting on data to be loaded from the memory, the fine-grain
scheduling mechanism ensures that ready warps of threads (scheduling unit) are
executed, thus providing effectively highly parallel computation resources.

The memory hierarchy of the GPGPU is composed of global memory (high-
latency DRAM on the GPU board), shared-memory and register file (low-latency
on-chip memory). The logical organization is as follows: the global memory can
be accessed among all the threads running on the GPU without any restrictions;
the shared memory is partitioned and each block of threads can be assigned one
exclusive partition of the shared memory, and the registers are private to each
thread. When GPU is used as a coprocessor, the data needs to be transferred
first from the main memory of host PC to the global memory. In this paper, we
will assume that the input data is located in the global memory, e.g. as a result
of a computation or explicit data transfer from the PC.

The recent Tesla GPGPU architectures introduce hardware support for atomic
operations. The atomic operations provide a simple method for safly handling

20 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

race conditions, which occur when several parallel threads try to access and mod-
ify data at the same memory location, since it is guaranteed that if an atomic
instruction executed by a warp reads, modifies, and writes to the same location
in global memory for more than one of the threads of the warp, each access to
that memory location will occur and will be serialized, but the order in which
they occur is not defined [13]. The CUDA 1.1+ GPU devices support the atomic
operations on 32-bit and 64-bit words in the global memory, while CUDA 1.3
also introduces support for shared memory atomic operations.

3 The Parallel Variable-Length Encoding Algorithm

This section presents the parallel VLE (PAVLE) algorithm for GPGPUs with
hardware support for atomic operations. The parallel variable-length encoding
consists of the following parallel steps: (1) assignment of codewords to the source
data, (2) calculation of the output bit positions for compressed data (codewords),
and finally (3) writing (storing) codewords to the compressed data array. A high-
level block-diagram of the PAVLE encoder is given in Fig. 1. Pseudocode for the

Fig. 1. Block diagram of PAVLE algorithm.

parallel VLE is given in Listing 1 with lines 2 − 5 representing step 1, lines
68 being step 2 and lines 9 − 28 representing step 3. The algorithm can be
simplified if one assumes a maximal codeword length, as is done in the case for
the JPEG coding standard. Restricting the codeword size reduces the number of
control dependencies and also reduces the amount of temporary storage required,
resulting in much greater kernel efficiency.

3.1 Codeword Assignment to Source Data

In the first step, variable-length codewords are assigned to the source data. The
codewords can be either computed using an algorithm such as Huffman [4], or
they can be predefined, e.g. as it is frequently the case in image compression
implementations. Without loss of generality, we can assume that the codewords
are available and stored in a table. This structure will be denoted as the codeword
look-up table (codeword LUT). Each entry in the table contains two values: the
binary code for the codeword, and codeword length in bits, denoted as a (cw,
cwlen) pair. Our implementation uses an encoding alphabet of up to 256 symbols,

21HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

with each symbol representing one byte. During compression, each source data
symbol (byte) is replaced with the corresponding variable-length codeword.

The PAVLE is designed in a highly parallel manner, with one thread pro-
cessing one data element. The threads load source data elements and perform
codeword look-up in parallel. As the current GPGPU architecture provides more
efficient support for 32-bit data types, the source data is loaded as 32-bit un-
signed integers. The 32-bit data values are split into four byte symbols, which
are then assigned corresponding variable-length codewords from the codeword
LUT. The codewords are locally concatenated into an aggregate codeword, and
the total length of the codeword in bits is computed.

Algorithm 1 Parallel Variable Length Encoding Algorithm
1: k ← tid
2: for threads k = 1 to N in parallel
3: symbol← data[k]
4: cw[k], cwlen[k]← cwtable[symbol]
5: end for
6: for threads k = 1 to N in parallel
7: bitpos[1..N]← prefixsum(cwlen[1..N])
8: end for
9: for threads k = 1 to N in parallel

10: kc← bitpos[k] div ws
11: startbit← bitpos[k] mod ws
12: while cwlen[k] > 0 do
13: numbits← cwlen[k]
14: cwpart← cw[k]
15: if startbit + cwlen > wordsize then
16: overflow ← 1
17: numbits← wordsize− startbit
18: cwpart← first numbits of cw[k]
19: end if
20: put bits atomic(out, kc, startbit, numbits, cwpart)
21: if overflow then
22: kc← kc + 1
23: startbit← (startbit + numbits) mod wordsize
24: remove first numbits from cw[k]
25: cwlen[k]← cwlen[k]− numbits
26: end if
27: end while
28: end for

3.2 Computation of the Output Positions

To store the data which does not necessarily match the size of addressable mem-
ory locations, it is necessary to compute the destination address in the mem-
ory and also the starting bit position inside the memory location. Since in the

22 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

previous parallel step the codewords were assigned to input data symbols, the
dependency in computation of the codeword output locations can be resolved
based on the knowledge of the codeword lengths. The output parameters for each
codeword are determined by computing the number of bits that should precede
each codeword in the destination memory. The bit offset of each codeword is
computed as a sum of assigned codeword lengths of all symbols that precede
that element in the source data array. This can be done efficiently in parallel by
using a prefix sum computation.

The prefix sum is defined in terms of a binary, associative operator +. The
prefix sum computation takes as input a sequence x0, x1, ..., xn−1 and produces
an output sequence y0, y1, ..., yn−1 such that y0 = 0 and yk = x0+x1+ ...+xk−1.
We use a data-parallel prefix sum primitive [14] to compute the sequence of out-
put bit offsets yk on the basis of codeword lengths xk, that were assigned to
source data symbols. A work-efficient implementation of parallel prefix sum per-
forms O(n) operations in O(log n) parallel steps, and it is the asymptotically
most significant component in the algorithmic complexity of the PAVLE algo-
rithm. Given the bit positions at which each codeword should start in the com-

Fig. 2. An example of the variable-length encoding algorithm.

pressed data array in memory, the output parameters can be computed knowing
the fixed machine word size, as given in the lines 10-11 of the pseudocode.It
is assumed that the size of addressable memory locations is 32-bits, and it is
denoted as wordsize. The variable k is used to denote the unique thread Id. It
also corresponds to the index of data element processed by the thread k in the
source data array. The kc denotes index of the destination memory word in com-
pressed data array, and startbit corresponds to the starting bit position inside
that destination memory word.

Fig. 2 is given as an illustration of the parallel computation of the output
index and starting bit position on a block of 8 input data elements: The first
two steps of the parallel encoding algorithm result in the generation of match-
ing codewords for the input symbols, codeword lengths (as the number of bits),
and output parameters for the memory writes to the output data stream. The

23HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

number of bits for each compressed data block is obtained as a byproduct of
the first phase of the parallel prefix sum algorithm. Since a simple geometric
decomposition is inherently applied on the GPUs as a step of the mapping pro-
cess, this result can be used for concatenating the compressed data blocks into
a contiguous array prior to data transfers from GPU to system memory.

3.3 Parallel Bit-Level Output

Bit-level I/O libraries designed for general-purpose CPUs process data serially,
i.e., the codewords are stored one after the other into the memory. Implemen-
tation of a VLE on a parallel architecture introduces a problem of correctly
dealing with race conditions that occur when different threads attempt to write
their codewords to a same memory location. A recently introduced hardware
support for atomic bitwise operations enables efficient execution of concurrent
threads performing bit-level manipulations on the same memory locations, thus
providing a mechanism for safely handling race conditions. The parallel output
of codewords will produce correct results regardless of the write sequence, pro-
vided that each sequence of read-modify-write operations on a single memory
location can be successfully completed without interruption, and that each out-
put operation operation changes only the precomputed part of the destination
word. The parallel bit-level output is executed in two stages: First, the contents

Fig. 3. Setting memory contents at index kc to the desired bit-values (codeword).

of the memory location at the destination address are prepared for the output
by masking the numbits number of bits corresponding to the length of the code-
word starting from the pre-computed bit output position. Second, the bits at
these positions in the destination location are set to the value of the codeword,
as illustrated in Fig. 3. If the contents of the destination memory are set in
advance (all zeros), the output method can be reduced to only one atomic or
operation. The implementation of the put bits atomics procedure for the GPG-
PUs supporting atomic operations (CUDA1.1+ compatible) is given in the code
listing below.

A situation when a codeword crosses boundaries of a destination word in
memory can occur during variable length encoding, e.g., when the startbit is near

24 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

the end of the current word, and the codeword to be written requires more bits
than what is available in the reminder of the current word. The crossing of the
word-boundary is detected and handled by splitting the output of the codeword
into two or more store operations. When the codeword cross boundaries of several
machine words, some of the atomic operations can be replaced by the standard
store operation. The inner parts of the codeword can be simply stored to the
destination memory location(s), and only the remaining bits on both sides of
the codeword need to be set using the atomic operations.

device void put bits atomic(unsigned int∗ out, unsigned int kc,
unsigned int startbit, unsigned int numbits,
unsigned int codeword) {

unsigned int cw32 = codeword;
unsigned int restbits = 32−startbit−numbits;

#ifndef MEMSET0
unsigned int mask = ((1<<numbits)−1);
mask <<= restbits;
atomicAnd(&out[kc], ˜mask);

#endif

if ((startbit == 0) && (restbits == 0)) out[kc] = cw32;
else atomicOr(&out[kc], cw32 << restbits);

}

4 Performance Results

Performance of several kernel implementations was benchmarked on a PC with
an 2.66 GHz Intel QuadCore CPU, 2 GB RAM memory, and a nVidia GeForce
GTX280 GPU supporting atomic instructions on 32-bit words. The test data set
was composed of randomly generated test data files of different sizes and different
amount of information content (entropy between 0.5-8 bits/symbol). The test
files were assigned variable-length codewords using the Huffman algorithm with
the restriction on the maximal codeword length. The performance of a CPU
encoder running on one 2.66GHz CPU core is given as a reference. Fig. 4(a) gives
a performance comparison on a data set with 2.2 bits/symbol entropy. The GPU
encoder gm32 concatenates codewords for every 4 consecutive symbols (bytes)
and writes the aggregate codeword to the GPU memory using global memory
atomic operations. The performance of the serial encoder and the global memory
(GM) encoder gm32 are closely matching. However, by performing the atomic
operations on a temporary buffer in shared memory (SM), as in sm32, a speed-
up of more than an order of magnitude is achieved. The performance of the scan
kernel, which is the asymptotically dominant part of the parallel algorithm, is
given as a reference.

The gm32 and sm32 kernels operate under the assumption that the size
of the aggregate codeword for four consecutive symbols (bytes) will not exceed

25HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

0.25 0.5 1 2 4 8 16 32

0.25

0.5

1

2

5

10

20

50

100

200

500

Data size [MB]

T
im

e
 [
m

s
]

cpu

gm32

sm32

scan1

(a) CPU and GPU Kernels

0.25 0.5 1 2 4 8 16 32

0.25

0.5

1

2

5

10

20

50

100

200

500

Data size [MB]

T
im

e
 [
m

s
]

cpu

gm32

gm32 (CCWLUT)

sm64huff

sm64huff (CCWLUT)

scan1

(b) Codeword LUT caching

Fig. 4. Kernel execution times as a function of data size.

the original data length, i.e. it will always fit into one 32-bit word. When using
Huffman codewords, it may happen (although rarely) that the aggregate code-
word exceeds the original data size. We designed a second SM kernel, denoted as
sm64huff, that has a temporary buffer for the aggregate codeword of twice the
original data size (a typical buffer size in compression implementations). The
performance of sm64huff is slightly lower than the performance of sm32 ker-
nel, since it must perform one additional test during the codeword output. The
situation when a codeword spans more than two destination memory locations
is however correctly supported. In this case, no atomic operation is needed for
the part of the codeword that spans an entire memory location, and a stan-
dard store operation can be used. However, empirical evaluation showed that
atomic operations on the shared memory are implemented very efficiently, and
that introduction of the additional test actually hurts the performance due to
the increased warp serialization.

Additional performance improvements can be achieved by caching the code-
word LUT, instead of looking up the codeword for each symbol in the global
memory every time a symbol occurs. Fig. 4(b) gives a comparison of kernel exe-
cution times when the codeword look-ups are performed on the shared memory.
Similar results are achieved by using the texture memory, which is cached by
each multiprocessor. Use of low-latency shared memory for caching the code-
word LUT improved the performance of GM kernels by approximately 20%, and
the performance of SM kernels by up to 55%. As the symbols that appear more
frequently are replaced by the codewords of shorter length, the low entropy data
(well-compressible) will result in more shorter codewords that should be stored
by different threads at the same memory location. This issue could be miti-
gated by processing more than one 32-bit data element per thread. The average
number of bits that are written by each thread in one atomic operation to the
destination memory location is increased and fewer atomic operations are issued.

Additionally, increasing DPT reduces the total number of data elements that
is processed by the prefix sum (scan), which significantly influences the run time.

26 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

Data size [MB]

T
im

e
 [
m

s
]

sm64huff (CCWLUT)

scan1

dpt (DPT=4,CCWLUT)

dpt (DPT=4,CCWLUT,CSRC)

scan2

(a) Comparison of standard and DPT
kernels

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

16

18

Data size [MB]

T
im

e
 [
m

s
]

dpt (DPT=1,CCWLUT)

dpt (DPT=1,CCWLUT,CSRC)

dpt (DPT=2,CCWLUT)

dpt (DPT=2,CCWLUT,CSRC)

dpt (DPT=4,CCWLUT)

dpt (DPT=4,CCWLUT,CSRC)

dpt (DPT=8,CCWLUT)

(b) DPT Parameter effects

Fig. 5. Effects of processing more data per thread (lin scale).

Fig. 5(a) shows performance gains using the ideal DPT value; performance of
scan using the original and reduced number of blocks are given as a reference.
Additional improvements are achieved by (1) caching the codeword LUT as pre-
viously described, and (2) caching aggregate codewords for every DPT elements
in a local buffer. However, further increasing DPT radically increases memory
requirements, since data is compressed in a shared memory buffer prior to trans-
fer to the global memory. Fig. 5(b) gives a comparison of run times using several
different DPT values. The investigation showed that the maximal DPT is lim-
ited by the shared memory requirements, and is relatively low (DPTmax = 8
when only codeword table is cached, and DPTmax = 4 when also aggregate
codewords are cached). The best results are obtained using DPT= 4, resulting
in a 35x speed-up.

5 Conclusion

In this paper, we presented a method for parallel bit-level output of data and
a novel parallel algorithm for variable-length encoding (PAVLE) for GPGPU
architectures supporting atomic operations. The PAVLE algorithm was imple-
mented on a CUDA1.3 GPGPU using atomic operations on the shared memory
for managing concurrent codeword writes, parallel prefix sum for computing the
codewords offsets in compressed data stream and caching of the codeword look-
up tables in the low-latency memory. The optimized version of PAVLE for CUDA
1.3 compatible GPGPUs achieves performance of approximately 4GB/sec using
Huffman codes for encoding the data on the nVidia GeForce GTX280 GPGPU.
We observed considerable speedups compared to the serial VLE on the state of
the art PCs (up to 35x on 2.66GHz CPU, and up to 50x on a 2.40GHz CPU),
thus making the PAVLE an attractive lossless compression algorithmic building
block for GPU-based applications.

27HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

References

1. D. Huffman, “A method for the construction of Minimum-Redundancy
codes,”Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

2. S. W. Golomb, “Run length encodings,” in IEEE Transactions on Information The-
ory IT-12, Juillet 1966, pp. 399–401.

3. J. Wen and J. Villasenor, “Reversible variable length codes for efficient and robust
image and video coding,” in Proceedings Data Compression Conference, 1998, pp.
471–480.

4. M. Atallah, S. Kosaraju, L. Larmore, G. Miller, and S. Teng, “Constructing trees in
parallel,” in Proceedings of the first annual ACM symposium on Parallel algorithms
and architectures. ACM New York, NY, USA, 1989, pp. 421–431.

5. E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A unified
graphics and computing architecture,” Micro, IEEE, vol. 28, no. 2, pp. 39–55, 2008.

6. Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “GpuCV: an opensource
GPU-accelerated framework forimage processing and computer vision,” 2008.

7. W. Chen and H. Hang, “H. 264/AVC motion estimation implmentation on Com-
puter Unified Device Architecture (CUDA),” in 2008 IEEE International Conference
on Multimedia and Expo, 2008, pp. 697–700.

8. J. Fung and S. Mann, “Using graphics devices in reverse: GPU-based image pro-
cessing and computer vision,” in 2008 IEEE International Conference on Multimedia
and Expo, 2008, pp. 9–12.

9. G. E. Blelloch, “Prefix sums and their applications,” Synthesis of Parallel Algo-
rithms, pp. 35—60, 1990.

10. D. Roger, U. Assarsson, and N. Holzschuch, “Efficient stream reduction on the
gpu,” in Workshop on General Purpose Processing on Graphics Processing Units,
D. Kaeli and M. Leeser, Eds., Oct 2007.

11. Ignacio Castaño, “High quality dxt compression using cuda,” last access: May,
2008.

12. A. Obukhov, “Discrete cosine transform for 8x8 blocks with cuda,” last access:
May, 2009.

13. NVIDIA Corporation Technical Staff, “Nvidia cuda -programming guide 2.0,”last
access: Dec, 2008. [Online]. Available: http://developer.download.nvidia.com/

compute/cuda/

14. M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan) with cuda.
GPU Gems, March, 2007.

28 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Towards Metaprogramming

for Parallel Systems on a Chip

Lee Howes1, Anton Lokhmotov1, Alastair F. Donaldson2, and Paul H. J. Kelly1

1 Department of Computing, Imperial College London,

180 Queen’s Gate, London, SW7 2AZ, UK
2 Computing Laboratory, University of Oxford,

Parks Road, Oxford, OX1 3QD, UK

Abstract. By presenting implementations of several versions of an image pro-

cessing filter, evaluated on Intel and AMD multicore systems equipped with

NVIDIA graphics cards, we demonstrate that efficiently implementing an algo-

rithm to execute on commodity parallel hardware requires careful tuning to match

the hardware characteristics. While such manual tuning is possible, it is not prac-

tical: the number of versions to write and maintain grows with the number of

target architectures, becoming infeasible for large applications. Our findings mo-

tivate the need for tools and techniques that decouple a high level algorithm de-

scription from low level mapping and tuning. We believe that the issues that make

such mapping and tuning difficult can be reduced by allowing the programmer

to describe both execution constraints and memory access patterns using Æcute

metadata, a high level representation which we briefly describe.

1 Introduction

We describe implementations of several versions of a simple image processing filter

which we evaluate on x86 multicore systems and a GPU-accelerated system via thor-

ough design space exploration. Our experimental results demonstrate that efficiently

implementing an algorithm to execute on commodity parallel hardware requires careful

tuning to match the hardware characteristics, as even similar systems show a variation

in performance depending on low-level details such as iteration space tiling and data

layout. While such manual tuning is possible, it is not practical: the number of versions

to write and maintain grows with the number of target architectures. For applications

consisting of multiple kernels such development and maintenance becomes infeasible.

Our findings motivate the need for tools and techniques that decouple a high level

algorithm description from low level mapping and tuning. We believe that the issues that

make such mapping and tuning difficult can be reduced by allowing the programmer

to describe both execution constraints and memory access patterns using a high level

representation such as Æcute metadata [1], an example of which we briefly present.

29HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

2 Vertical mean image filter

We consider a vertical mean image filter, for which the output pixel at position (x, y) is
given by the formula

Ox,y =
1

D

D−1
∑

k=0

Ix,y+k, where (1)

– I is a W × H grey-scale input image;

– O is a W × (H − D) grey-scale output image;

– D is the diameter of the filter, i.e. the number of input pixels over which the mean

is computed (typically, D � H);

– 0 ≤ x < W , 0 ≤ y < H − D.

Mean filtering is a simple technique for smoothing images, e.g. to reduce noise.

Let N be the number of output pixels: N = W × (H − D). A naı̈ve parallel algo-

rithm can run N threads, each producing a single output pixel, which requires Θ(ND)
reads and arithmetic operations. A good parallel algorithm, however, must be efficient

and scalable [2].

2.1 Scalable algorithm

The algorithm in Listing 1 strips the computation in the vertical dimension, where up

to T outputs in the same strip are computed serially in two phases. The first phase in

lines 6–10 computesOx,y0 according to (1). The second phase in lines 12–19 computes

Ox,y for y ≥ y0 + 1 as Ox,y−1 +
(

Ix,y+D−1 − Ix,y−1

)

/D.

1// for each column

2for(int x = 0; x < W; ++x)

3{ // for each strip of rows

4for(int y0 = 0; y0 < H-D; y0 += T)

5{

6// first phase: convolution

7float sum = 0.0f;

8for(int k = 0; k < D; ++k)

9sum += I[(y0+k)*W + x];

10O[y0*W + x] = sum / (float)D;

11

12// second phase: rolling sum

13for(int dy = 1; dy < min(T,H-D-y0); ++dy)

14{

15int y = y0 + dy;

16sum -= I[(y-1)*W + x];

17sum += I[(y-1+D)*W + x];

18O[y*W + x] = sum / (float)D;

19}

20}

21}

Listing 1: Vertical mean image filter algorithm in C.

30 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

This algorithm performs Θ(N + ND/T) reads and arithmetic operations, signifi-

cantly reducing memory bandwidth and compute requirements for T � D. Since the x
and y0 loops carry no dependences, up to dN/T e threads can run in parallel.

Note that since the order of arithmetic operations is undefined in (1), both the naı̈ve

and scalable algorithms are functionally, if not arithmetically, equivalent.

Clearly, the optimal value of T depends on problem parameters (W , H and D), and

device parameters (e.g. the number of cores and memory partitions). Thus, in §2.3, we
use the approach of iterative compilation to find the optimum.

2.2 Implementation

We describe efficient implementations of the vertical mean filter for a GPU, using the

NVIDIA Compute Unified Device Architecture (CUDA) [3], and for a multicore CPU

using Intel Streaming SIMD Extensions (SSE) [4].

CUDA Implementing the vertical mean filter efficiently on a GPU requires mapping

the iteration space onto threads, which are grouped into blocks located in a grid.

WPBX

WPBY

H-D

W

1 2 3

4 5 6

7 8 9
10 11 12

(a) A 2D grid mapping loses efficiency from unused threads off the right image

edge.

WPBY

H-D

WPBX

W

1 2 3

4 5

6 7
8 9 10

85

3

Round to SIMD size

(b) A 1D grid mapping uses its threads more efficiently by wrapping around

the right image edge. For efficiency, it must take into account alignment, which

complicates both memory access and iteration.

Fig. 1: Different mapping strategies result in different utilisation of threads. Light and dark re-

gions of blocks denote used and unused threads, respectively.

31HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

The most natural iteration space mapping is into thread blocks on a 2D grid, with

each block producing a rectangular section of the output image, of size WPBX ×
WPBY (WPB stands for work per block). However, if the image width is not a mul-

tiple of WPBX, significant portions of thread blocks covering the right edge of the

image may be unused, as illustrated by Figure 1a.

This issue can be alleviated by mapping into thread blocks on a 1D grid that covers

the image by wrapping around the right edge, as illustrated by Figure 1b. As we show

in §2.3, a mapping that maximises thread utilisation suffers from misalignment, if the

image width is not a multiple of the size of the SIMD unit (warp in NVIDIA’s termi-

nology); a better mapping takes alignment into account by wasting a small number of

threads on the right of the image, thus ensuring that the first pixel of each row is handled

by the first thread in a SIMD unit.

SSE On a multicore CPU, the notion of a GPU thread block corresponds to an instruc-

tion stream running on the vector unit of a single core, and a thread to an individual

vector lane. Since the number of threads is relatively low, one approach is to assign an

entire output column of pixels to a single thread, so that T = H − D. For a machine

with C cores with SIMD width S, there is no advantage to using more than C × S
threads because load balancing is not a concern for the algorithm and a high degree of

parallelism to cover memory latency is unnecessary. The out of order execution logic

of the CPU obtains adequate parallelism at the instruction level from a set of C threads

(a single CPU thread).

When vectorising code in Listing 1 on a single core, the loop xmust be interchanged

with the loop y0 (which will only execute once if T = H − D), and stripmined into

vectors (of 4 elements in SSE [4]). The vectorised code can then be parallelised across

multiple cores, vertically (T < H − D) or horizontally (T = H − D), in a straight-

forward manner such that a single instruction stream processes pixels from contiguous

columns (to gain from cache and prefetching mechanisms within each core).

2.3 Experimental results

CUDA Figure 2 presents experimental results obtained on a dual-core 3GHz Intel Core

2 Duo E8400 system with 2GiB RAM, equipped with an NVIDIA GTX 280 card, run-

ning 64-bit Linux Ubuntu 8.04. Code is compiled using CUDA SDK 2.2 and GCC 4.2.4

with the “-O3” optimisation setting. We measure the kernel execution time only and

record the best throughput out of 50 runs. Parameter TPBX/TPBY records the number

of threads per block in the X/Y dimension.

In all the experiments, we fix the number of threads per block at 128 (128 × 1),
as we nearly achieve the peak memory efficiency with this setting: ≈ 10 Gpixel/s × 4

bytes/pixel × (2 reads + 1 write) = 120 GB/s (close to the bandwidth of aligned copy

on this card). Thus, WPBX = 128 and WPBY = T .

Figure 2a shows that the 1D and 2D grid versions are similar in throughput when

applied to a 5120 × 3200 image, where 5120 is a multiple of 128 pixels. The through-

put is below 800 Mpixel/s when each thread produces a single pixel, climbs fast with

increasing serial efficiency, achieving (by the 1D grid version) the peak throughput of

9.89 Gpixel/s when T = 355, and then declines with decreasing parallelism.

32 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t
(M

p
ix

e
l/
s
)

Output pixels per thread (T)

W=5120, H=3200, D=40, TPBX=128, TPBY=1

2D
1D

(a) 5120 × 3200 image. 2D grid; 1D grid.

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t
(M

p
ix

e
l/
s
)

Output pixels per thread (T)

W=5121, H=3200, D=40, TPBX=128, TPBY=1

2D, padded to 5136
2D, padded to 5152
2D, padded to 5184
2D, padded to 5248

(b) 5121× 3200 image. 2D grid. Data padded to multiples of

16, 32, 64, and 128 pixels.

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t
(M

p
ix

e
l/
s
)

Output pixels per thread (T)

W=5121 (padded to 5184), H=3200, D=40, TPBX=128, TPBY=1)

1D wrapped on 5121
1D wrapped on 5136
1D wrapped on 5152
1D wrapped on 5184

(c) 5121 × 3200 image. Data padded to 5184 (a multiple of

64) pixels. 1D grid wrapped on the image width and multiples

of 16, 32 and 64 pixels.

Fig. 2: Comparison of different mappings with various image sizes, data padding and thread wrap-

ping alignment.

33HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

When applied to a 5121 × 3200 image, however, the 2D grid version only achieves

7.02 Gpixel/s, as shown by the bottom line in Figure 2b. Whilst we allocate memory us-

ing the cudaMallocPitch function, which pads the image to a multiple of 16 pixels

to enable global memory access coalescing (5136 pixels in this case), such allocation

leads to DRAM partition conflicts. We remedy the conflicts by manually padding the

image to a multiple of 32, 64 and 128. Since the results of padding to a multiple of 64

and 128 are barely distinguishable, we fix the image padding at a multiple of 64 (5184

pixels) for all subsequent experiments.

Figure 2c shows that the 1D grid mapping that maximises thread utilisation by wrap-

ping on 5121 pixels only achieves 6.00 Gpixel/s, whilst wrapping on the image padding

of 5184 pixels performs worse than wrapping on the warp size multiple of 5152 pixels.

To summarise, for the misaligned image padded to 5184 pixels, the 1D grid version

wrapped on 5152 pixels achieves 9.58 Gpixel/s at T = 396, whilst the 2D grid version

achieves only 9.06 Gpixel/s at T = 409; thus, the 1D grid version performs 6% better

than the 2D grid one.

 0

 200

 400

 600

 800

 1000

 1200

Xeon 8-core Phenom 4-core Duo 2-core

T
h

ro
u

g
h

p
u

t
(M

p
ix

e
l/
s
)

Machine/configuration

vmean SSE: W=5120, H=3200, D=40

 0

 200

 400

 600

 800

 1000

 1200

Xeon 8-core Phenom 4-core Duo 2-core

T
h

ro
u

g
h

p
u

t
(M

p
ix

e
l/
s
)

Machine/configuration

vmean SSE: W=5120, H=3200, D=40

1 thread block XY
1 thread block YX

2 thread blocks YX, parallel X
2 thread blocks YX, parallel Y
4 thread blocks YX, parallel X
4 thread blocks YX, parallel Y
8 thread blocks YX, parallel X
8 thread blocks YX, parallel Y

Fig. 3: Comparison of different blocking strategies for the CPU version of the vertical mean

filter. The large surrounding boxes represent the peak memory copy throughput for each of the

architectures, as obtained by running the STREAM benchmark [5].

SSE Figure 3 presents experimental results obtained on: 2.5GHz eight-core (dual-

socket quad-core) Intel Xeon E5420 with 16GiB RAM (Xeon); 2.3GHz quad-core

AMD Phenom 9650 with 8GiB RAM (Phenom); 3GHz dual-core Intel Core 2 Duo

E8400 with 2GiB RAM (Duo). All systems run 64-bit Linux Ubuntu 8.04. Code is

compiled using Intel Compiler 11.0 with the “-xHost -fast” optimisation settings.

As a baseline for comparison we use a version where the horizontal and vertical

loops have not been interchanged to lead to contiguous memory accesses. We refer to

this version as XY, and to versions where loop interchange has been applied as YX.

34 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

The YX loop scans horizontally and sums into an intermediate accumulation array.

We compare the number of thread blocks (cpu threads) and the way the computation is

parallelised – horizontally (“parallel X”) or vertically (“parallel Y”). Using more thread

blocks than cores performs worse as load balancing issues are minimal and overhead is

increased. The peak throughput is sometimes achieved with a lower number of thread

blocks than the number of cores (e.g. with 4 threads on the eight-core Xeon system).

Another peculiarity is that parallelising horizontally (“parallel X”) is always more ben-

eficial than parallelising vertically (“parallel Y”) on the AMD Phenom system, whilst

this is not the case on the Intel systems.

3 Towards metaprogramming

To ease the programmer’s burden of mapping and tuning computation kernels to par-

allel systems on a chip, we propose extending a kernel’s description with decoupled

Access/Execute (Æcute) metadata. Execute metadata for a kernel describes its itera-

tion space ordering and partitioning. Access metadata for a kernel describes memory

locations the kernel may access on each iteration.

This access and execute metadata improves productivity and portability of program-

ming for the following reasons. First, the specification of the iteration space ordering

and partitioning is independent of the addressing of data or the computation kernel. Ad-

dressing and iteration space visiting (loop) code can be generated automatically. Parti-

tioning of a program can be device specific, either programmer specified or discovered

via design space search. Secondly, data movement code can be generated from memory

access pattern descriptions [1]. Efficient data movement code to deal with alignment

and synchronisation constraints can be complicated and time-consuming to produce by

hand. In particular, on vector architectures, independent computation elements (CUDA

threads) cooperate in one way for movement, and another for computation. This breaks

the thread separation model for CUDA, and cuts across other optimisations inconve-

niently.

1// Array descriptors (C array wrappers)

2Array2D<float> arrayI(&I[0][0], W, H);

3Array2D<float> arrayO(&O[0][0], W, H-D);

4

5// Execute metadata: parallel iteration space

6IterationSpace1D x(0,W);

7IterationSpace1D y(0,H-D);

8IterationSpace2D iterXY(x,y);

9

10// Access metadata: iteration space -> memory

11VerticalStrip2D_R accessI(iterXY, arrayI, D);

12Point2D_W accessO(iterXY, arrayO);

Listing 2: Æcute metadata for the vertical mean image filter.

We give an example of Æcute metadata for the vertical mean image kernel in List-

ing 2. In lines 1–3 we wrap accesses to plain C arrays I[W][H] and O[W][H-D] into

35HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Æcute array descriptors arrayI and arrayO to cleanse the kernel of uncontrolled

side-effects. In lines 5–8 we construct a 2D iteration space descriptor iterXY from

1D descriptors x and y, having the same bounds as the output image dimensions. By

default, an iteration space is parallel in every dimension. Finally, in lines 10–12 we

specify that on each iteration of the 2D iteration space the kernel reads a vertical strip

of D pixels from arrayI and writes a single pixel to arrayO.

Similar to Stanford’s Sequoia language [6], we target systems with software-managed

memory hierarchies and seek to separate a high-level algorithm representation from a

system-specific mapping. Unlike Sequoia, we base our mapping on partitioning (manu-

ally or automatically) an iteration space into disjoint subspaces and infer memory access

of subspaces from Æcute metadata.

For example, for a single GPU-accelerated system, a hierarchy of iteration space

partitions can specify subspaces to be executed:

– at the lowest level, by individual threads:

// 1xT outputs per thread

iterXY.partitionThreads(1,T);

– at the middle level, by blocks of possibly cooperating threads:

// 128xT outputs per block

iterXY.partitionBlocks(128,T);

– at the highest level, by possibly cooperating compute devices:

// (W/2)x(H-D) outputs per device

iterXY.partitionDevices(W/2,H-D)

Further extensions are possible onto clusters of accelerated nodes.

4 Work in progress

The OpenCL initiative [7] aims to provide portability across heterogeneous compute

devices by providing a detailed, low-level API for describing computational kernels.

Although a standard-compliant OpenCL kernel will execute correctly on any standard-

compliant implementation, it is clear that performance of the kernel will depend criti-

cally on characteristics of the underlying hardware.

We are working on a tool that will take a high-level algorithm representation and

generate efficient device-specific OpenCL code. The representation will be kept similar

to C++, e.g. as in Listing 1 with accesses to C arrays replaced with accesses to Æcute

array descriptors as in Listing 2. Code generation will be particularly oriented towards

effectively orchestrating data movement in software-managed memory hierarchies, in-

cluding automatically handling such low-level details as data alignment and padding.

5 Related work

In previous work we introduced the Æcute framework for explicit but separate expres-

sion of the memory access pattern and execution schedule for a computational ker-

nel, showing that Æcute specifications can be used for automatic generation of data-

movement code which performs within a reasonable margin of hand-tuned code on the

36 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Cell BE processor [1]. The hand-written SSE and CUDA versions of the vertical mean

filter which we consider in this paper are examples of possible outputs from an extended

Æcute framework. We plan to extend the ideas of [1] with the lessons learned from this

case-study, leading to a generative approach to programming highly parallel systems.

We have explored the optimization space of the vertical mean filter example by run-

ning large batches of experiments for different image sizes and partitions. A more so-

phisticated method of optimization space exploration, termed optimization space carv-

ing is presented in [8].

The CUDA-lite [9] experimental enhancement to CUDA aims to simplify GPU pro-

gramming, allowing the programmer to write in a more abstract version of CUDAwhich

hides the complex memory hierarchy of a GPU, and providing a source-to-source trans-

lation resulting in equivalent CUDA code which aims to conserve memory bandwidth

and reduce memory latency.

SPIRAL [10] aims to generate efficient DSP transformations on various architec-

tures, including GPUs, from high level mathematical representations. It uses represen-

tations forms of formulae that allow efficient code generation for specific architectures

and attempts to find a mathematical transformation, through heuristics and auto-tuning,

to utilise these formulae. SPIRAL’s representations are more mathematical and domain-

specific than those used in the Æcute model but offer hints about how Æcute kernels

could be combined in sequences with iteration space reordering.

6 Conclusions and future work

By exploring the optimization space of several versions of an image processing filter,

evaluated on Intel and AMD architectures equipped with GPUs, we have shown that the

strategy used for iteration space partitioning can have a dramatic effect on the perfor-

mance of the filter. No single version is suitable for both GPU and CPU architectures,

and each version requires quite different code to be written and maintained. We have

considered only a simple image processing kernel; clearly the difficulty of creating and

maintaining multiple versions of efficient code bases only increases in difficulty when

working with more complicated kernels and full HPC applications.

The cost and maintenance problem makes it problematic for programmers to work

at this level of development. We plan to investigate extensions to the Æcute model [1] to

support automatic code generation and optimisation for GPUs, CPUs with vector capa-

bilities, and multi-core processors with scratch-pad memories such as the Cell Broad-

band Engine. We believe that cleanly separating the execution schedule of a kernel

from its memory access pattern has the potential to facilitate productive and efficient

programming of heterogeneous multi-core systems.

References

1. Howes, L.W., Lokhmotov, A., Donaldson, A.F., Kelly, P.H.: Deriving efficient data move-

ment from decoupled Access/Execute specifications. In: Proceedings of the 4th International

conference on High-Performance Embedded Architectures and Compilers (HiPEAC). Vol-

ume 5409 of LNCS., Springer (2009) 168–182

37HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

2. Lin, C., Snyder, L.: Principles of Parallel Programming. 1st edn. Addison-Wesley, Boston,

MA, USA (2008)

3. NVIDIA: CUDA.

http://www.nvidia.com/cuda (2006–2009)

4. Bik, A.J.: The Software Vectorization Handbook. Applying Multimedia Extensions for Max-

imum Performance. Intel Press (2004)

5. McCalpin, J.D.: STREAM: Sustainable memory bandwidth in high performance computers.

http://www.cs.virginia.edu/stream/ (1990–2009)

6. Fatahalian, K., Horn, D.R., Knight, T.J., Leem, L., Houston, M., Park, J.Y., Erez, M., Ren,

M., Aiken, A., Dally, W.J., Hanrahan, P.: Sequoia: programming the memory hierarchy. In:

Proceedings of the ACM/IEEE conference on Supercomputing. (2006) 83

7. The Khronos Group: OpenCL.

http://www.khronos.org/opencl (2008–2009)

8. Ryoo, S., Rodrigues, C.I., Stone, S.S., Stratton, J.A., Ueng, S.Z., Baghsorkhi, S.S., Hwu,

W.m.W.: Program optimization carving for GPU computing. J. Parallel Distrib. Comput.

68(10) (2008) 1389–1401

9. Ueng, S.Z., Lathara, M., Baghsorkhi, S.S., Hwu, W.M.W.: CUDA-Lite: Reducing GPU

programming complexity. In: LCPC’08. Volume 5335 of LNCS., Springer (2008) 1–15

10. Püschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M., Singer, B., Xiong, J.,

Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL:

Code generation for DSP transforms. Proceedings of the IEEE, special issue on “Program

Generation, Optimization, and Adaptation” 93(2) (2005) 232– 275

38 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Dynamic detection of uniform and affine vectors
in GPGPU computations

Sylvain Collange1, David Defour1 and Yao Zhang2

1 ELIAUS, Université de Perpignan, 66860 Perpignan, France
{sylvain.collange,david.defour}@univ-perp.fr

2 ECE Department, University of California Davis
yaozhang@ucdavis.edu

Abstract. We present a hardware mechanism which dynamically de-
tects uniform and affine vectors used in SPMD architecture such as
Graphics Processing Units, to minimize pressure on the register file and
reduce power consumption with minimal architectural modifications. A
preliminary experimental analysis conducted with the Barra simulator
shows that this optimization can benefit up to 34 % of register file reads
and 22 % of the computations in common GPGPU applications.

1 Introduction

GPUs are now powerful and programmable processors that have been used to
accelerate general-purpose tasks other than graphics applications. These pro-
cessors rely on a Single Program Multiple Data (SPMD) programming model.
This model is implemented by many vector units working in a Single-Instruction
Multiple-Data (SIMD) fashion, and vector register files. Register usage is a crit-
ical issue as the number of instance of the same program that can be executed
simultaneously depend on the number of hardware registers and the register
usage per instance. Making this bad situation worse, vectorizing scalar opera-
tions in an application makes inefficient use of registers and functional units. To
efficiently handle scalar data, Cray-like vector machines incorporate scalar func-
tional units as well as scalar registers. Modern GPUs lack such scalar support,
leaving it to vector units. These vector units execute the same instruction on the
same data leading to as many unnecessary operations as the length of the vector
when uniform data are encountered. These unnecessary operations involve data
transfers and activity in functional units that consume power, which is a critical
concern in architectural and microarchitectural designs of GPUs.

We observed through our experiments that standard GPGPU applications
use a significant number of vectors to store uniform data. A closer look at the
manipulated values shows that this number is even higher when we consider affine
values (e.g. 1, 3, 5, 7. . .) stored in a given vector. Motivated by this observation,
we propose and evaluate by simulation a technique that tags a vector register
file according to the type of registers: uniform, affine or generic vector.

The rest of the paper begins with a brief description of the NVIDIA ar-
chitecture upon which our model is based. Section 3 presents our performance

39HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

2

evaluation methodology, based on a functional simulator named Barra. We use
it to both evidence the presence of redundancy in calculations in Section 4 and
evaluate the proposed technique described in Section 5. We discuss technical is-
sues in Section 6. Section 7 presents quantitative results and figures, and Section
8 concludes the paper.

2 Architecture Model

The base architecture we consider in our simulations consists of a vector pro-
cessor, a set of vector register files, a set of vector units, and an instruction set
architecture that mimics the behavior of the NVIDIA GPUs used in the Com-
pute Unified Device Architecture (CUDA) environment [1]. This environment
relies on a stack composed of an architecture, a language, a compiler, a driver
and various tools and libraries.

Multiprocessor n

Multiprocessor 2

GPU
memory

(global
memory)

Multiprocessor 1

Hardware: Tesla Software: CUDA

Vector register fileShared
Memory

SP SP SP SP

SP SP SP SP

SFU

SFU

Instruction Unit Block
Scheduler

Grid KernelBlock 1

Warp 1
Inst.

Warp 2
Inst.

Warp k
Inst.

Block 2 Block n...

...

Vector register file
VR iVR 1VR 0

R0

R1

R15
...

R16

R17

R31
...

...

0 1 32...
Threads

Fig. 1. Processing flow of a CUDA program.

A CUDA program runs on an architecture composed of a host processor CPU,
a host memory and a graphics card with an NVIDIA GPU with CUDA support.
All current CUDA-enabled GPUs are based on the Tesla architecture, which is
made of an array of multiprocessors. Tesla GPUs execute thousands of threads in
parallel thanks to the combined use of multiple multiprocessors, SIMD processing
and hardware multithreading [2]. Figure 1 describes the hardware organization
of such a processor. Each multiprocessor contains the logic to fetch, decode
and execute SIMD instructions which operate on vectors of 32 elements. There
are 256 or 512 vector registers, each register being a 32-wide vector of 32-bit
values. In addition to the register file, each multiprocessor contains a scratchpad
memory (or shared memory, using NVIDIA’s terminology) and separate caches
for constant data and instructions.

The hardware organization is tightly coupled with the parallel programming
model of CUDA. The programming language used in CUDA is based on C with
extensions to indicate if a function is executed on the CPU or the GPU. Functions
executed on the GPU are called kernels. CUDA lets the programmer define if a
variable resides in the GPU address space and specify the kernel execution across
different granularities of parallelism: grids, blocks and threads. As the underlying
hardware is a SIMD processor, threads are grouped together in so-called warps
which operate on 32-wide vector registers. Each instruction is executed on a

2

ewhitecturearcbaseThe

MohitectureArc2

er.paptheconcludes8
Section.6Sectioninsues

hniquetecosedpropthealuateev
presencetheevidenceothbtoit
based,dology,methoaluationev

ulationssimourinconsider

delMo

resultsetitativanqutspresen7
5Sectioninedscribedhnique

calculationsinancyredundofpresence
latorusimfunctionalaonbased

pro-ectorvaofconsistsulations

Sectionandfigures,andresults
is-hnicaltecdiscusseWWe.5

and4Sectionincalculations
useeWWeBarra.namedlator

libraries.andolstoariousvand
osedcompkstacaonrelies

hitectureArcDeviceUnifiedpute
mimicsthathitecturearc

registerectorvofsetacessor,
ewhitecturearcbaseThe

eT:erawdraH

libraries.
language,ahitecture,arcanofosed

vironmenenA)(CUDhitecture
NVIDIAethofiorvehabthe

units,ectorvoftseafiles,register
ulationssimourinconsider

alse

1ocklB

regrotecVe

erdrivacompiler,alanguage,
tvironmenenThis].1[tvironmen

Com-theinusedGPUsNVIDIA
setinstructionanandunits,

pro-ectorvaofconsistsulations

ADUC:erawtfoS

dirG lenerK2ocklB k ncBlo...

ler fietisreg

multiprofyarraanofmade
A-enabledCUDtcurrenAll

aphicsrgaandmemoryhosta
runsprogramACUDA

Pro1.Fig.

VR 1VR 0

0R

1R

51R
...

61R

71R

13R
...

executeGPUseslaT.essorscoprro
eTTeslatheonbasedareGPUsA-enabled
GPUNVIDIAanwithcardaphics

osedcomphitecturearcanonruns

program.ACUDaofwfloowcessingPro

1rp aW
.stnI

 2 .parW
.stnI

krp aW
.stnI

...

reg
VR i...

0 1 23...
adserTh

inthreadsofthousandsexecute
ishwhic,ecturtehiarcesla

ort.suppACUDwithGPU
CPU,cessorprohostaofosed

program.

rogrammpTheA.CUDofdelmo
organizationarehardwThe

instructions.anddatatconstanfor
memoryshared(ormemory

thetoadditionInalues.vvalues.
registers,ectorv512or256are

instructionsSIMDexecuteand
Eaccessor.oprahsucof

ultithreadingmarehardwand
binedcomthetothanksparallel

multipry

CUDinusedlanguagengirogramm
withcoupledtlytighsiorganization

instructions.
terminology)NVIDIA’susing,memory

cessorultipromheacle,firegister
aeingbregisterheacregisters,

ectorsvonerateophwhicinstructions
thetainsconcessorultipromh
theesdescrib1Figure].2[ultithreading

ultipromultiplemofusebined
multipr

withConbasedisACUD
programmingparallelthe

hescacseparateandterminology)
hpadscratcatainsconcessor

32-bitofectorv32-widea
Therets.elemen32ofectors

dedecoh,fetctologicthe
organizationarehardwthe

ssingceproSIMDcessors,ultipro

32-wideonerateophwhic
cessor,proSIMDaisarehardw
parallelism:ofularitiesgrantdifferen

GPUtheinresidesariablevvariable
areGPUtheonexecuted

functionaifindicatetoextensions

instructionhEacregisters.ectorv32-wide
togetheredgrouparethreadscessor,

andcksblo,gridsparallelism:
theecifyspandspaceaddressGPU
theletsACUD.kernelscalled

CPUtheonexecutedisfunction

aonexecutedisinstruction
warpsso-calledintogether

underlyingtheAs.adsethrre
acrossexecutionernelkthe

aifdefineprogrammerthe
unctionsFGPU.theorCPU

40 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

3

warp by a multiprocessor. Warps execute instructions at their own pace, and
multiple warps can run concurrently on a multiprocessor to hide latencies of
memory and arithmetic instructions. This technique helps hide the latency of
streaming transfers, and improve the effective memory bandwidth. The register
file of a multiprocessor is logically split between the warps it executes. As a
GPU includes several multiprocessors, warps are grouped into blocks. Blocks
are scheduled on the available multiprocessors. A multiprocessor can process
several blocks simultaneously if enough hardware resources (registers and shared
memory) are available.

The compilation flow of a normal CUDA program is a three-step process di-
rected by the CUDA compiler nvcc. First, according to specific CUDA directives
from the CUDA Runtime API, the program is split into a host program and
a device program. The host program is then compiled using a host C or C++
compiler and the device program is compiled through a specific back-end for the
GPU. The resulting device code is binary instruction code (in cubin format) to
be executed on a specific GPU. The host program and the device program are
linked together using the CUDA libraries, which includes the necessary functions
to load a cubin either from inside the executable or from a stand-alone file and
send it to the GPU for execution.

3 Barra, a Functional Simulator of NVIDIA GPUs

Several options exist to model the dynamic behavior of CUDA programs. CUDA
offers a built-in emulation mode that run POSIX threads on the CPU on behalf
of GPU threads, thanks to a specific compiler back-end. However, this mode
differs in many ways with the execution on a GPU: the behavior of floating-point
and integer computations, the scheduling policies and memory organization are
different.

GPU simulators running CUDA’s intermediate language PTX such as GPGPU-
Sim [3] or Ocelot [4] can offer a greater accuracy, but still run an unoptimized
intermediate code instead of the instructions actually executed by a GPU.

Recent versions of CUDA include a debugger that allows watching the values
of GPU registers between each line of source code. Though this mode offers
perfect functional accuracy, it cannot be modified for instrumentation or feature
evaluation purposes.

Barra [5] simulates the actual instruction set of the NVIDIA Tesla architec-
ture at the functional level. The behavior of all instructions is reproduced with
bit-accuracy, with the exception of transcendentals (exp, log, sin, cos, rcp, rsq).
To our knowledge, Barra is the only publicly-available tool that both executes
the same instructions as Tesla GPUs and allows viewing the exact contents of
registers during the execution.

This simulator consists of two parts: a driver, and a simulator. The driver is a
shared library with the same name and exporting the same symbols as NVIDIA’s
libcuda.so so that CUDA Driver API calls can be dynamically redirected to the
simulator. It includes major API functions to load, and execute a CUDA program

41HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

4

and manage data transfers. The simulator takes the binary code compiled by
NVIDIA’s nvcc compiler as input simulates the execution of the kernel, and
produces statistics for the each instruction.

3.1 Logical execution pipeline

Memory

Warp 3 : @p1.leu mad.f32.rn p1|r2, s[a2+48], r0, c14[32]

PC

Scheduler

Register File
Address
registers

Predicate
registers

Mask

Warp
number

ALU/
FPU

Schedule Fetch Decode Read Execute Write

64

32

32x32

32x32

32x32

4x32

32x32

Warp 3

mad.f32.rn

r0

a2

@p1

.leu

r2

32

c14[32]

s[a2+48]

Warp ID

Vector
Address

Mask

p1
4x32

mad.f32.rn

s[a2+48]

c14[32]

@p1.leu

p1|r2

r0

Pred

OP

Dest

Src1

Src2

Src3

mask &

W1
W2
W3
W4

W24

@p1.leu

Fig. 2. Overview of the functional execution pipeline during the execution of a
MAD instruction.

The instruction-set simulator executes each assembly instruction according
to the model described in Figure 2. First, a scheduler selects the warp ready
for execution according to a round-robin policy and reads its current program
counter (PC). Then the instruction is fetched and decoded. Then operands are
read from the register file or from on-chip memories (scratchpad) or caches (con-
stants). The instruction is executed and its results are written back to the register
file.

3.2 Vector register file

General Purpose Registers (GPRs) are dynamically split between threads during
kernel launch, allowing a trade-off between the number of registers per threads
and the latency hiding capability. Barra maintains a separate state for each active
warp in the multiprocessor. These states include a program counter, address and
predicate registers, mask and address stacks, a window to the assigned register
set, and a window to the shared memory.

42 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

5

4 Uniform and affine data in SPMD code

NVIDIA’s so-called “scalar” architecture is actually a pure vector (SIMD) archi-
tecture. At the hardware level, all instructions, including memory and control-
flow operations, operate on vectors, and all architecturally-visible registers are
vectors. Though this provides a clean programming model by abstracting away
the vector length and allows scalable implementations, it can become a source of
inefficiency when performing inherently scalar operations. This issue is akin to
value locality, where a correlation in time is observed in many values appearing
in computations [6]. However in vector processors, correlations appear mostly
inside vectors rather than between different time steps.

A uniform vector V is defined as having every component contain the same
value Vi = x. Two main causes lead to uniform patterns. First, constant values
and data read from memory with a uniform address vector (broadcast) generate
uniform vectors. Second, uniform control flow is governed by uniform conditions.
For example, a for loop with uniform bounds will also have a uniform counter.
Modern GPUs also allow non-uniform conditions in conditional statements by
allowing sub-vector control-flow. However, best performance is achieved when
the control condition is uniform across a warp [1]. This means that in optimized
algorithms, all lanes of registers that are used as conditions will hold the same
value.

Similarly, to maximize memory bandwidth, memory accesses should follow
specific patterns, such as the coalescing rules or conflict-free shared-memory
access rules. In the Tesla architecture, memory addresses are usually computed
using the regular SIMD ALUs. Programs following NVIDIA guidelines to access
memory will operate mostly on consecutive addresses, which are common in
vector programming. This correspond to a affine pattern, when threads access
memory in sequence. In this case, the vector register V that stores the address is
such that each component Vi = x + iy. One can notice that the uniform pattern
is a specific case of the affine pattern when y = 0.

To quantify how often both of these patterns occur, we use Barra to dynam-
ically check for each input and output operand in registers if they are uniform
or affine vectors. We perform this analysis on two kinds of applications.

First, we used the examples from the CUDA SDK. Even though these ex-
amples are not initially meant to be used as benchmarks, they are currently
the most standardized test suite of CUDA applications. As code examples, they
reflect the best practices in CUDA programming.

The second benchmark is a bioinformatics application. RNAFold GPU is a
CUDA program which performs RNA folding. Based on dynamic programming,
it achieves a 17-time speedup compared to a multicore implementation [7].

The proportion of uniform and affine inputs/outputs from and to registers
is depicted in figure 3. Uniform or affine input data represent the percentage of
uniform (affine) vectors among the data transferred between the register file and
functional units.

Similarly, uniform or affine output data is the proportion of uniform (affine)
data written back to the register file. It can be observed that whenever the

43HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

6

output is uniform (affine), the operation itself is executed on uniform (affine)
data only.

We observe that a respective average of 27 % (44 %) of data read from
the vector register file are uniform (affine) and 15 % (28 %) of data written
back are uniform (affine). This proportion of uniform or affine inputs/outputs is
significant enough to justify specific optimizations.

0%

20%

40%

60%

80%

100%

scanLargeArray

binomialOptions

BlackScholes

fastWalshTransform

histogram256

matrixMul

MersenneTwister

MonteCarlo

quasiRandomGenerator

reduction

transpose

rnafold
Average

Uniform inputs
Uniform outputs

Affine inputs
Affine outputs

Fig. 3. Proportion of uniform and affine operands in registers. Averages are
27 % uniform inputs, 15 % uniform outputs, 44 % affine inputs and 28 % affine
outputs.

5 Proposed technique

In this section we describe a technique which can detect if registers contain uni-
form or affine data as defined in Section 4. The first objective is to minimize
memory and bus activity between the register file and the functional units for
the proportion of input data captured by the proposed technique. The second
objective extends the first one and goes further, by detecting uniform or affine
data that are provided at the input of functional units and that remains uniform
or affine at the output. In that case, the result can be computed by dedicated
scalar hardware like in Cray processors or by relying on the existing vector hard-
ware. As we target power reduction, the scalar solution would provide automatic
reduction. However, this solution would cause data duplication in the register
file and make the operand datapath more complex. The second solution can
benefit from techniques that were not available at the time Cray machines were
designed, such as clock-gating. This second solution can reuse the same vector
hardware, with one or two scalar units enabled to compute the result, the other
units being shut down using fine-grained stage-based clock gating as in the case
of the IBM Cell SPU FPU [8]. The large vector length (32) used in the Tesla ar-
chitecture promises larger power reductions than observed for more conventional
SIMD extensions (typical length 4).

Instructions executed by GPUs show that most of uniform and scalar data
come from a broadcast of some data or a copy of the register that contains
the thread identifier. For these cases, uniform and scalar detection can be done
statically for once at compile time or dynamically in hardware.

44 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

7

A static detection involves architectural as well as microarchitectural mod-
ifications. First, each instruction and register detected as uniform or scalar by
the compiler has to be tagged in the instruction word. Then at runtime during
the decode stage, the hardware can automatically schedule instructions accord-
ing to the tag data. A dynamic detection keeps the instruction set unchanged.
However, the burden of detecting uniform and scalar data is transfered from the
compiler to the hardware. This solutions requires for example a tagged vector
register file.

We tested the dynamic solution based on a tagged vector register file where
each tag contains the type of data stored in the associated register (uniform,
affine or generic vector) using the Barra simulator. At kernel launch time, the
tag of the register that contains the thread identifier is set to the affine state.
Instructions that broadcast values from a location in constant or shared memory
set the tag of the result to the uniform state. Tags are then propagated across
arithmetic instructions according to a simple set of rules, as shown in table 1. We
arbitrarily restrict the allowed strides to powers of two to allow efficient hardware
implementations, and conservatively make multiplications between affine and
uniform data return vectors. Additionally, the information stored in this tag
may be used by memory access units as it gives information about memory
access patterns.

Table 1. Examples of rules of uniform and affine tag propagation. For each
operation, the first row and first column indicate the tag of the first and second
operand, respectively (Uniform, Affine or Vector). The central part contains the
computed tag of the result.

+ U A V

U U A V
A A V V
V V V V

× U A V

U U V V
A V V V
V V V V

<< U A V

U U A V
A V V V
V V V V

Cost. A tag array contains two bits per vector register. Each multiprocessor of
a NVIDIA GT200 GPU features five hundred and twelve 1024-bit registers, for
a total register-file size of 512 kb (not accounting for the size of error-correction
codes, if any). In a basic implementation, the associated tags would require 1 kb
of extra storage, making it comparatively almost negligible.

In terms of latency, reading the tags adds one level of indirection before read-
ing registers. In NVIDIA GPUs, registers are read in sequence for a given instruc-
tion to minimize bank conflicts [9]. Therefore, operand reads can be pipelined
with tag reads. Additionally, GPUs can tolerate large instruction latencies us-
ing fast context switching between threads. The tag of the output can then be
computed using a few boolean operations from the tags of the input, so the
required hardware modifications are minimal. Support for broadcasting a word
across all SIMD units is already available to handle operands in Constant and
Shared memory.

45HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

8

Benefits. When an input or output operand is known to be uniform, only one
lane needs to be accessed. Likewise, affine vectors v such that vi = x + iy can
be encoded using the base x and the stride y. Thus, their storage requirements
are only two vector lanes. This reduces the used width of the register file ports
and internal buses, thus saving power.

Computing a uniform or affine result function of uniform and affine inputs
can be performed using only one or two Scalar Processing (SP) units with a
throughput of one cycle instead of the full SIMD width during two cycles. Indeed,
most arithmetic operations on affine vectors can be reduced to operations on the
base and stride.

6 Technical issues

Some issues may limit the efficiency of the proposed method and need to be
taken into account in an implementation.

Partial writes. GPUs handle branch divergence using predication. A predicated
instruction does not write in every lane of its output register, keeping some of
them in their previous state. In this case, even if the output value is uniform (or
affine), the uniform (affine) property cannot be guaranteed for the destination
register.

Half registers. The Tesla architecture allows access to lower/higher 16-bit sub-
registers inside regular 32-bit registers. To handle this correctly, separate tags
are needed for the lower, higher and whole parts to correctly track uniform/affine
information.

Overflows. An arithmetic overflow may occur in a lane of an affine register,
even if the base and stride are both representable. Overflows have no direct
consequences when using two’s-complement arithmetic, but casts between signed
and unsigned formats of various sizes can occur, resulting for instance in an
overflowing 16-bit affine value being extended into a non-affine 32-bit value.

This problem can be worked around by checking for overflows when per-
forming affine computations, and re-issue the offending instruction as a vector
operation when one is detected. Support for re-issuing instructions is already
present to handle bank conflicts in the constant cache and scratchpad memory.
As overflows should not occur in address calculations of correct programs, we
expect it to be a rare occurrence. Indeed, we did not encounter this case in any
of the benchmarks we ran.

Conversions from affine to generic vector. When an affine operand is combined
with a vector operand, it needs to be first converted to a vector. As long as stride
lengths are restricted to small powers of two, this can be implemented efficiently
in hardware. However, it may be advantageous to reuse the conventional SIMD
ALUs to perform the conversion, then re-issue the instruction if this situation is
infrequent enough.

46 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

9

7 Results and validation

Figures 4 and 5 represent the respective proportions of uniform and affine operand
captured with the proposed technique. We observe that on average, 19 % of in-
puts and 11 % of outputs can be identified as uniform data. These ratio go up
to 34 % and 22 % respectively when considering affine data.

This means that the proposed methods reduce the bus activity between the
register file and functional units for 34 % of the reads transfers. Likewise, the
activity within the functional units can be reduced during 22 % of the opera-
tions executed in GPGPU computations. The power reduction brought by this
technique, proportional to the activity reduction, is known to be of a critical
issue for GPU [10]. Future works have to precisely quantify it.

0%

20%

40%

60%

80%

100%

scanLargeArray

binomialOptions

BlackScholes

fastWalshTransform

histogram256

matrixMul

MersenneTwister

MonteCarlo

quasiRandomGenerator

reduction

transpose

rnafold
Average

Uniform inputs
Uniform inputs captured

Uniform outputs
Uniform outputs captured

Fig. 4. Proportion of uniform operands in registers captured using our technique.

0%

20%

40%

60%

80%

100%

scanLargeArray

binomialOptions

BlackScholes

fastWalshTransform

histogram256

matrixMul

MersenneTwister

MonteCarlo

quasiRandomGenerator

reduction

transpose

rnafold
Average

Affine inputs
Affine inputs captured

Affine outputs
Affine outputs captured

Fig. 5. Proportion of affine operands in registers captured using our technique.

It can be noted that the tag technique is not optimal, as it fails to detect
some uniform and affine vectors. This is mostly due to the partial write effect
as described in Section 6, and complex address calculations involving multipli-
cation, division or modulo operations. Further work may improve the accuracy
of the detection.

8 Conclusion

In this paper, we presented a technique to exploit two forms of value locality
specific to vector computations encountered in GPUs. The first one corresponds

47HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

10

to the uniform pattern present when computing conditions which avoid diver-
gence in sub-vectors. The second one corresponds to the affine pattern used to
access memory efficiently. An analysis conducted on common programs used in
the field of GPGPU showed that both of them are common. The novel idea of
using both forms of value locality with the proposed modifications significantly
reduces the power required for data transfers between the register file and the
functional units as well as the power drawn by the SIMD arithmetic units. Fu-
ture work will focus on improving the accuracy of the hardware-based dynamic
technique presented in this article, as well as considering software-based static
implementations.

Acknowledgments

We thank John Owens for his valuable comments on this work and Guillaume
Rizk for the discussion related to bioinformatics applications. This work was
partly supported by the French ANR BioWic.

References

1. NVIDIA: NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, Version 2.2. (2009)

2. Lindholm, J.E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro 28(2) (2008) 39–55

3. Bakhoda, A., Yuan, G., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing
CUDA workloads using a detailed GPU simulator. In: proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software (IS-
PASS), Boston (April 2009) 163–174

4. Diamos, G., Kerr, A., Kesavan, M.: Translating GPU binaries to tiered SIMD
architectures with Ocelot. Technical Report GIT-CERCS-09-01, Georgia Institute
of Technology (2009)

5. Collange, S., Defour, D., Parello, D.: Barra, a Modular Functional GPU Simula-
tor for GPGPU. Technical Report hal-00359342, Université de Perpignan (2009)
http://hal.archives-ouvertes.fr/hal-00359342/en/.

6. Balakrishnan, S., Sohi, G.S.: Exploiting value locality in physical register files. In:
MICRO 36: Proceedings of the 36th annual IEEE/ACM International Symposium
on Microarchitecture, Washington, DC, USA, IEEE Computer Society (2003) 265

7. Rizk, G., Lavenier, D.: GPU accelerated RNA folding algorithm. In: Computa-
tional Science – ICCS 2009. Volume 5544 of LNCS., Springer (2009) 1004–1013

8. Mueller, S., Jacobi, C., Oh, H.J., Tran, K., Cottier, S., Michael, B., Nishikawa,
H., Totsuka, Y., Namatame, T., Yano, N., Machida, T., Dhong, S.: The vector
floating-point unit in a synergistic processor element of a CELL processor. In:
17th IEEE Symposium on Computer Arithmetic (ARITH-17). (June 2005) 59–67

9. Lindholm, E., Siu, M.Y., Moy, S.S., Liu, S., Nickolls, J.R.: Simulating multiported
memories using lower port count memories. US Patent US 7339592 B2 (March
2008) NVIDIA Corporation.

10. Collange, S., Defour, D., Tisserand, A.: Power Consumption of GPUs from a
Software Perspective. In: ICCS 2009. Volume 5544 of Lecture Notes in Computer
Science., Springer (2009) 922–931

48 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Automatic Calibration of Performance Models
on Heterogeneous Multicore Architectures

Cédric Augonnet, Samuel Thibault, and Raymond Namyst

INRIA Bordeaux, LaBRI, University of Bordeaux

Abstract. Multicore architectures featuring specialized accelerators are
getting an increasing amount of attention, and this success will probably
influence the design of future High Performance Computing hardware.
Unfortunately, programmers are actually having a hard time trying to
exploit all these heterogeneous computing units efficiently, and most ex-
isting efforts simply focus on providing tools to offload some compu-
tations on available accelerators. Recently, some runtime systems have
been designed that exploit the idea of scheduling – as opposed to of-
floading – parallel tasks over the whole set of heterogeneous computing
units. Scheduling tasks over heterogeneous platforms makes it necessary
to use accurate prediction models in order to assign each task to its
most adequate computing unit [2]. A deep knowledge of the application
is usually required to model per-task performance models, based on the
algorithmic complexity of the underlying numeric kernel.
We present an alternate, auto-tuning performance modelling approach
based on performance history tables dynamically built during the appli-
cation run. This approach does not require that the programmer pro-
vides some specific information. We show that, thanks to the use of a
carefully chosen hash-function, our approach quickly achieves accurate
performance estimations automatically. Our approach even outperforms
regular algorithmic performance models with several linear algebra nu-
merical kernels.

1 Introduction

Multicore architectures are now widely adopted throughout the computer ecosys-
tem. There are also clear evidences that solutions based on specialized hardware,
such as accelerator devices (e.g. GPGPUs) or integrated coprocessors (e.g. Cell’s
SPUs) are offering promising answers to the physical limits met by processor de-
signers. Future processors will therefore not only get more cores, but some of
them will be tailored for specific workloads.

In spite of their promising performance in terms of computational capabilities
and power efficiency, such heterogeneous multicore architectures require appro-
priate tools. This introduces challenging problems at all levels, ranging from
programming models and compilers to the design of libraries with a real support
for heterogeneity. As they offer dynamic support for what has become hardly
doable in a static fashion, runtime systems have a central role in this software

49HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

stack. In previous work, we have therefore developed StarPU [2], a unified run-
time system that offers support for heterogeneous multicore architectures. Its
specificity is that it not only targets accelerators (GPUs, Cell’s SPUs, etc.) but
also multicore processors at the same time, in a portable fashion. StarPU also
provides portable performance thanks to a high-level framework for designing
portable scheduling policies.

Performance modeling is a very common technique in the scheduling litera-
ture. Whenever doable, practically building such models usually requires conse-
quent efforts along with a certain knowledge of both the application algorithm
and the underlying architecture. This is even more difficult in the case of het-
erogeneous platforms. But without an appropriate interface, such knowledge is
not available from the runtime systems’ perspective: describing a task as a func-
tion pointer and pointers to the data (similar to OpenMP 3.0 tasks) does not
really give much information to the runtime system in charge of the scheduling.
(Un)fortunately, current accelerators reintroduces the problem of data manage-
ment across distributed a memory model, so that we have to adopt much more
expressive task APIs anyway. The majority of the programming models that tar-
get accelerators (and that do not just delegate data movements to the program-
mers!) require to explicitly describe which data is accessed by a task [6,7,10,1].
While this adds constraints on the programmers who have to adapt their ap-
plications to those expressive programming interfaces, the underlying runtime
system gets much more information.

In this paper, we explain how StarPU takes advantage of that expressiveness
to seamlessly build performance models on heterogeneous multicore architec-
tures. Then, we illustrate how this systematic approach performs in terms of
prediction accuracy and regarding its impact on the actual performance. Fi-
nally, we show that StarPU not only grabs information from the programming
interface to perform better scheduling, but it also returns performance feedback
information thanks to convenient tools which are helpful for instance in the
context of auto-tuned libraries or when analyzing performance.

2 StarPU, a runtime system for heterogeneous machines

In this section, we briefly present StarPU, our unified runtime system designed
for heterogeneous multicore platforms, described in more details in a previous
paper [2]. It distributes tasks onto both accelerators and processors simultane-
ously while offering portable performance thanks to generic scheduling facilities.

2.1 A unified runtime system

The design of StarPU is organized around three main components: a portable
offloable-task abstraction, a library that manages data movements across het-
erogeneous platforms, and a flexible framework to design portable scheduling
policies.

50 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Fig. 1. Execution of a Task within StarPU. Applica-
tions submit tasks that are dispatched onto the differ-
ent drivers by the scheduler. The driver offloads the
computation, using the proper implementation from the
codelet, and the DSM ensures the availability of coher-
ent data. A callback is executed when the task is done.

Fig. 2. The ”Earliest Fin-
ish” Scheduling Strategy.

A unified execution model. StarPU introduces the notion of codelet,
which is the set of implementations of the same computation kernel (e.g. a
vector sum) for different computation units (e.g. CPU and GPU). A StarPU
task is then an instance of a codelet applied to some data. Figure 1 shows the
path followed by tasks in StarPU. Programmers submit (graphs of) tasks to
StarPU which is responsible for mapping them as efficiently as possible on the
eligible processing units. Instead of hard-coding all the interactions between
the processing units, StarPU makes it possible to concentrate on the design of
efficient computational kernels and algorithmic problems instead of being stuck
by low-level concerns.

A data management library. Maintaining data coherency (and availabil-
ity) is a crucial issue with accelerators. In a previous paper [1], we have designed
a high-level data management library that is integrated in StarPU. Mapping
data statically is not necessarily sufficient when multiple processing units access
the same pieces of data. The resulting data transfers are critical for the overall
performance so that integrating data management within StarPU made it pos-
sible to apply optimizations (e.g. prefetching, reordering, asynchronous memory
transfers) and to guide the scheduler.

A scheduling framework. StarPU not only executes tasks, but it also
maps them as efficiently as possible thanks to its expressive scheduling interface.
Hence, StarPU offers a flexible framework to implement portable scheduling poli-
cies [2]. Such policies are portable in the sense that they are directly applicable
to platforms as different as a Cell processor and a hybrid GPU/CPUs machine.

2.2 Scheduling strategies based on performance models

In a previous paper [2], we have presented various scheduling policies imple-
mented in StarPU with relatively few efforts. For instance, one of these policies
is similar to the HEFT scheduling strategy [12]. As shown on Figure 2, the sched-
uler keeps track of the expected duration until the different processing units are

execuiskcallbacAdata.ten
ensureDSMtheanddelet,co
propthesingucomputation,

heduler.sctheybersdrivten
arethattaskssubmittions
asTaaofExecution1.Fig.

done.istaskthewhentedexecu
her-coofyailabilitvathesensure
thefromtationimplemenerprop
theoffloadserdrivTheheduler.

differ-thetoonheddispatc
pplica-AStarPU.withinask

.StrategyhedulingScish”
Fin-”EarliestThe2.Fig.

dataA
concerns.elw-levloow-levyb

ernelskcomputationaltefficien
StarPU,tsunicessingprothe

nits.ucessingproeligible
onsiblerespishwhicStarPU

nitasksybedwfolloowpath
ofinstanceanthenistask

tndiffereforsum)ectorv
implemenofsettheishwhic

executionunifiedA

datai iM ilibrary

problemsalgorithmicandernels
concentoossiblepitesmakStarPU
alldinghard-coofInstead
efficienasthemgmappinforonsible
ubsProgrammers.arPUStn

sometoapplieddeletcoaof
CPUe.g.(unitscomputation

computationsametheoftationsimplemen
ducestroinarPUSt.delmoexecution

il-ailab(andcoherency

kstuceingbofinsteadproblems
ofdesigntheontrateconcen

eenwetbteractionsinthe
theonesiblospastlyefficien
totasks)of(graphsmitub

thewssho1Figuredata.
arPUSttarPUAGPU).andCPU

ae.g.(ernelkcomputation
,deletocofnotiontheduces

flexibleaoffersStarPUHence,
astlyefficienasthemmaps

framewhedulingscA
theguidetoandtransfers)

izationmoptiapplytosible
tegratinginthatsoerformancep

Thedata.ofpiecessamethe
necessarilynotisstaticallydata

managemendataelhigh-leva
withissuecrucialaisy)it

managemendataA

timplementoorkframewflexible
eexpritstothanksossiblepas

executesonlynotStarPU.orkframew
heduler.csthe

reordering,hing,prefetce.g.(sization
withintmanagemendatategrating

transfersdataresultingThe
ultiplemwhentsufficiennecessarily
tegratedinisthatlibrarytmanagemen

pappreviousaInaccelerators.
datatainingMainn.librarytmanagemen

oli-pulingdehscortablept
terface.inulingdehscessive

alsoitbuttasks,executes

memoryhronousasyncreordering,
os-ptimadeStarPUwithin

erallvotheforcriticalare
accessunitscessingproultiple
appingMStarPU.integrated

designedevhaew[1],erpap
il-ailabva(andcoherencydata

exptheofktraceepskuler
heduliscFTHEthetosimilaris
relativwithStarPUintedmenn

[2],erpappreviousaIn

strategihedulingSc2.2

astdifferennasplatformsto
areoliciesphSuc[2].cies
flexibleaoffersStarPUHence,

differenthetilundurationectedexp
wshoownAs[12].strategyngheduli

instance,orFefforts.fewelyrelativ
scariousvtedpresennevhaew

erformanceponbasedsestrategi

ybridhaandcessorproCellaas
theythatsensetheinortablep

timplementoorkframewflexible

areunitssingcesprotdifferen
hed-scthe2,Figureonwn

oliciesptheseofoneinstance,
imple-oliciesphedulingsc

delsmoerformance

hine.macGPU/CPUsybrid
plicableapdirectlyarethey

oli-pulingdehscortablept

51HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

available. When a task is submitted to the scheduler, it is attributed to the pro-
cessing unit that minimizes termination time according to the expected duration
of the task on the different architectures (depicted by hatchings).

We have for instance used this rather simple strategy successfully to obtain
superlinear speedups on an LU decomposition thanks to per-architecture per-
formance models that take into account the (lack of) affinity of tasks with the
different processing units. However this strategy requires that we can approxi-
mate the execution time of the tasks on the various architectures.

3 Dynamically building Performance Models

In this section, we discuss how we can build performance models, and we give a
systematic approach to dynamically construct and query a performance model
based on historical knowledge, seamlessly for the programmers.

In the context of dynamic task scheduling, we do not need perfectly accurate
models, but we need to take appropriate decisions when assigning the tasks onto
the different processing units. Our performance models should for instance cap-
ture the relative speedups as well as the affinities between tasks and processors.

3.1 How to define a performance model?

In order to define a performance model, we need to decide which parameters the
model should depend on.

The most obvious parameters to describe a task are the kernel and the archi-
tecture: in the case of a matrix product on CUDA, we could for instance identify
a task by the pair (SGEMM, CUDA) and associate it with its predicted execu-
tion time. A trivial refinement is to consider the total size of the tasks’ data,
so we can also associate this pair with a parametric cost function depending on
that size (e.g. C(S) = αS3/2 in the case of SGEMM, α being a parameter that
has to be defined).

The total size is often not sufficient: in the case of a kernel handling a (n ×
m) matrix in O(n2m), we must make a difference between (1024 × 512) and
(512 × 1024) matrices. Such multivariate models are however only applicable if
we have sufficient knowledge of the algorithm, which a runtime system could
hardly infer automatically in a generic way. Finding an explicit model of the
execution time can also be awkward because of architectural concerns such as
the size of the caches. Using piecewise models is possible, but it requires to
delimit the boundaries of the pieces, which can be time demanding, especially
for a multivariate model and in a heterogeneous environment.

In many classes of algorithms, we can reasonably make some extra regularity
assumption such as most tasks handling blocks of fixed size (e.g. in tiled algo-
rithms), or a limited set of sizes (e.g. in divide and conquer algorithms). In this
case, explicitly modeling the performance as a function of the data size can be
unnecessarily complicated. A history-based approach would be much simpler:
instead of using a complicated multivariate model to differentiate between a

52 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

(1024× 512) matrix and a (512× 1024) one, we simply store the execution time
that was measured for those different input configurations. The advantage of
this approach is that it is transparent to the programmer as long we have some
mechanism to match a task with those previously executed. In the next section,
we present how StarPU implements history-based models in a flexible way, with
sufficient performance feedback to help programmers easily decide whether this
is an appropriate model or not.

3.2 How to build performance models?

There are various ways to determine the parameters required to build the perfor-
mance models that we have described in the previous section: either completely
manual, or completely automated, depending on the type of the adopted model.

Building a performance model by hand (e.g. using the ratio between the
number of operations and the speed of the processor) is hardly applicable to
modern processors and require a perfect knowledge of both the application and
the architecture. In the case of heterogeneous multicore processors, with multiple
processing units to handle, this becomes rather unrealistic. It is however possible
to design a model based on the amount of computations per task, and to calibrate
the parameters by the means of a regression.

It is common to use specific precalibration programs to build those models.
While this may be suited for kernels that are widely used (e.g. BLAS), this
requires a specific test-suite and the corresponding inputs, which often represents
an important programming overhead. In the context of multicore architectures,
it is even harder to create a realistic workload: independently benchmarking the
various processing units without taking into account the various interactions
(e.g. cache sharing or bus contention) may not result in reliable measures.

On the other hand, it is possible to measure the performance of the different
tasks during an actual execution. This does not require any additional programs,
and it provides realistic performance measurements. StarPU can therefore auto-
matically calibrate parametric models, either at runtime using linear regression
models (e.g. C(n) = O(nα)) or offline in the case of non-linear models (e.g.
C(n) = αnβ + γ, as shown on Figure 7). StarPU also builds history-based per-
formance models by storing the performance of the tasks on the different inputs,
transparently for the application.

3.3 A generic approach for building history-based performance
models dynamically

This section shows how StarPU keeps track of the performance obtained by the
tasks on the different input, and how it is possible to match a task with its
similar predecessors. As shown on Figure 3, this process involves three main
steps: measuring the actual duration of the tasks when they are executed and
integrating this measurements in the history log of the task; being able to look-
up the performance of some task according to the previous measurements; and
offering some performance feedback to the application.

53HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Fig. 3. Performance feedback loop.

Task Y =AX︷ ︸︸ ︷

hdata = h (hY , hA, hX)
= h (h(ny), h(nx, ny), h(nx))

signature =
(
sgemv, gpu︸ ︷︷ ︸

Table

, hdata︸︷︷︸
Entry

)

Fig. 4. Uniquely identifying a task

Measuring tasks’ duration. Measuring the time spent to compute a task
is usually simple thanks to the cycle counter facility provided by most construc-
tors. In the case of Cell processors, we had to make the SPUs transmit those
measurements to the PPU along with the output data, but this is not an intrusive
mechanism since those DMA transfers are overlapped.

Identifying task kinds. We use the layout and size of the data to distin-
guish the different kind of instances of a computational kernel. We now present
how to compute a hash value to characterize the data layout of a task.

StarPU’s data management library not only manipulates buffers described by
a pointer and its length, but it also handles a mixture of various high-level data
interfaces [1]. On Figure 4, a matrix-vector product accesses a set of matrices and
vectors. There can also be much more complex data interfaces (e.g. compressed
sparse matrices), but the size of any piece of data can be characterized by a
k-uplet of parameters (p1, . . . , pk) where k and the parameters depend only on
the data interface. A matrix is for instance described by a pair (n, m), and a
single parameter is sufficient to describe the length of a vector.

We now define a hash function that computes a unique identifier for such a
set of parameters. As shown on Figure 4, we characterize the size of each piece
of data by applying a hash function 1 to the parameters p1, . . . , pk−1 describing
it. By then applying the hash function to the different per-data hashes, we get
a characterization of the data layout and size for the whole task. Applying this
method on a tiled algorithm would for instance result in having as many hash
values as there are tile sizes.

Feeding and looking up from the model. It is now extremely simple to
implement a model based on the history in StarPU: each computational kernel
is associated with a hash table per architecture. When a task is submitted to
StarPU, it computes its hash, and consults the hash table corresponding to the
proper kernel-architecture pair to retrieve the average execution time previously
measured for this kind of task. The average execution time and other metrics

1 For example, we can use the usual CRC hash functions: h(p1, . . . , pk) =
CRC(p1, . . . , CRC(pk−1, CRC(pk, 0)))

54 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

such as standard deviation are updated when a new measure is available. Hash
tables can be saved (or loaded) to (from) a file so that these performance models
are persistent between different runs. It is therefore possible to rapidly calibrate
models by running small problems that have the same granularity as the actual
problems.

4 Experimental validation

We have implemented these automatic model calibration mechanisms in StarPU
which runs on multicore CPUs, GPUs and Cell processors. In this section,
we give evidence that they have a significant impact on performance; we also
illustrate the performance feedback offered by StarPU, and how StarPU provides
some tools to help programmers understand the performance they obtain, and
to select the most appropriate models in consequence. We here show how these
mechanisms perform in the case of a hybrid platform with a nVidia Quadro
FX4600 GPU and a E5410 Xeon quad-core CPU.

4.1 Sharpness of the performance prediction

Figure 5 shows the results obtained on an LU decomposition for two different
problem sizes. The first line exhibits the average and standard deviation of the
reference performance obtained when using a greedy scheduling policy to dis-
tribute tasks to CPUs and the GPU. The second line shows the results obtained
when calibrating the history-based performance model after either one, two or
three runs and the average performance (and standard deviation) obtained after
4 runs. During the first execution, the greedy strategy clearly outperforms the
non-calibrated strategy based on performance models. But once the model is cal-
ibrated, the performance obtained by the model-based strategy gets better, not
only in terms of average speed, but also with respect to the standard deviation.
The improvement between the runs is explained by the fact that the application
runs on a hybrid CPU/GPU platform: the better the accuracy, the better the

Speed (GFlop/s)
PPPPPPPPolicy

Size
(16k × 16k) (30k × 30k)

Greedy (avg.) 89.98 ± 2.97 130.68 ± 1.66

Perf.
Model

1st iter. 48.31 96.63

2nd iter. 103.62 130.23

3rd iter. 103.11 133.50
≥ 4 (avg.) 103.92 ± 0.46 135.90 ± 0.64

Fig. 5. Impact of performance sampling on the
speed of an LU decomposition (in GFlop/s)

0.1 %

1.0 %

5.0 %

10.0 %

25.0 %

50.0 %

100.0 %

10
1

10
2

10
3

10
4

Number of samples

Prediction Error (%)
CPUs
GPU

Fig. 6. Performance model accuracy

55HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

10
7

10
8

E
x
e
c
u
ti
o
n
 t
im

e
 (

u
s
)

Size (bytes)

Non-linear regression
(y = α x

β
 + γ)

CPU
GPU

1 %
25 %

50 %

75 %
99 %

Percentiles

Fig. 7. Performance and regularity of an
STRSM BLAS3 kernel depending on gran-
ularity.

STRSM on CPU

Measured execution time (us)

N
o

rm
a

liz
e

d
 D

e
n

s
it
y

1800 2000 2200 2400 26000
.0

0
0

0
0

.0
0

2
5

STRSM on GPU

Measured execution time (us)

N
o

rm
a

liz
e

d
 D

e
n

s
it
y

925 930 935 940

0
.0

0
0

.1
0

Fig. 8. Distribution of the execution
times of a STRSM kernel measured for
tiles of size (512 × 512).

load balancing. Until the models are properly calibrated, some processing units
receive too much work while others are not kept busy enough.

Figure 6 depicts the evolution of the prediction inaccuracies depending on
the number of collected samples. More precisely, the error is computed by taking
the sum of the absolute differences between prediction and measurements, for
all tasks, and by dividing this total prediction error by the total execution time.
As suggested by Figure 5, the accuracy of the models becomes better as we keep
collecting measurements. We finally obtain an accuracy of an order of 1% for
multicore CPUs, and below 0.1% for a GPU. This difference is due to complex
interactions occuring within multicore CPUs (e.g. cache sharing and contention)
while computations are not perturbed on GPUs. The large majority of tasks
in an LU decomposition are matrix products, whose performance is especially
regular even on CPUs, so that we obtain a relatively good overall accuracy.

4.2 Performance feedback tools

StarPU provides tools to detect tasks that are not predictable enough (e.g.
BLAS1 kernels). Figures 7 and 8 are automatically generated by StarPU, which
can collect performance measurements at runtime.

Figure 7 summarizes the behaviour of a kernel on all input sizes and the
performance variations observed for the different sizes, and for the different ar-
chitectures; it also shows the non-linear regression-based performance models
automatically generated by StarPU so that we can figure out whether such a
model is applicable or not. It also illustrates in which situation it is worth using
accelerators or CPUs, therefore helping to select the most appropriate gran-
ularity. Using a small grain size on CPUs results in variable execution times,
certainly explained by a poor cache use which makes performance very sensitive
to the bus contention for instance. This problem disappears as we take large
tiles, or if we use a GPU that is much less sensitive to such variations.

56 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

Figure 8 shows the actual distribution of the measurements that were col-
lected for a given hash value. This not only gives a precise idea of the performance
dispersion, but it can also be used to understand the actual performance issues:
on the very predictable GPUs, we obtain a very thin peak, while on the CPUs,
the distribution exhibiting two hills suggests that there may be some contention
issue which should be further analyzed.

5 Related Works

Auto-tuning techniques have been successfully used to automatically generate
the kernels of various high-performance libraries such as ATLAS [4], FFTW,
OSKI or SPIRAL; and similar results are obtained in the context of GPU com-
puting by the MAGMA project[9]. While performance models permit to generate
efficient computational kernels even on heterogeneous systems, computations are
usually mapped statically on the different processing resources when dealing with
hybrid systems [11].

Iterative compilation frameworks also use performance feedback to take the
most appropriate optimization decisions. Jimenez et al. [8] keep track of the
relative speedups of the applications on the different architectures to decide
which processing unit should be assigned to an application. Their approach is
much less flexible since it does not allow to actually schedule interdependent
tasks within an application.

Different runtime systems currently offer support for accelerators [3], or even
hybrid systems. Similarly to StarPU, the Harmony runtime system targets hy-
brid platforms while proposing some scheduling facilities, possibly based on per-
formance modeling [5]. Its performance is modeled by the means of (possibly
multivariate) regression models. This approach is hardly applicable without any
support from the programmer, and possibly requires a large number of samples
to have a reliable model. Thanks to the high-level support for data management
integrated within StarPU, the history-based solution that we propose in this
paper is simpler as it is completely transparent for the programmers.

6 Conclusion

We have proposed a generic approach to seamlessly build history-based per-
formance models. It has been implemented within the StarPU runtime system
with the support of its integrated data management library, and we have shown
how StarPU’s performance feedback tools help programmers analyze whether
the resulting performance prediction are relevant or not.

Such history-based performance models naturally rely on some regularity
hypothesis since it cannot predict the behaviour of a task if all its predeces-
sors had different sizes: in that case, a parametric performance model calibrated
by the means of regressions is more suitable. Our history-based approach also
requires computational kernel with a static flow control. Tasks’ execution time
should be independent from the actual content of the data, the latter is often

57HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

unknown when the scheduling decisions are taken anyway. Since our approach
does not require any effort from the programmers, they can easily use our auto-
matic calibration mechanisms to see whether the use of such models results into
performance improvements.

This technique is directly applicable to the case of complex hybrid setups
(e.g. heterogeneous multiGPU). This work could also be extended to model the
performance of memory transfers so that StarPU could schedule them as well.
Scheduling policies could take advantage of performance models that depend on
the actual state of the underlying machine: using hardware performance coun-
ters, the history-based models could for instance keep track of contention or
cache usage. Finally, performance feedback can be valuable: this not only helps
to understand the behaviour of an application during a post-mortem analysis,
but this is also useful for iterative compilation environments and auto-tuned
libraries.

References

1. C. Augonnet and R. Namyst. A unified runtime system for heterogeneous multicore
architectures. In Euro-Par 2008 Workshops - HPPC’08, Las Palmas de Gran
Canaria, Spain, August 2008.

2. C. Augonnet, S. Thibault, R. Namyst, and P.A. Wacrenier. StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures. In Pro-
ceedings of the 15th Euro-Par Conference, Delft, The Netherlands, August 2009.

3. P. Bellens, J.M. Perez, R. M. Badia, and J. Labarta. Cellss: a programming model
for the cell be architecture. In SC ’06: Proceedings of the 2006 ACM/IEEE con-
ference on Supercomputing, page 86, New York, NY, USA, 2006. ACM.

4. R. Clint Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software.
In Ninth SIAM Conference on Parallel Processing for Scientific Computing, 1999.

5. G. Diamos and S. Yalamanchili. Harmony: Runtime Techniques for Dynamic Con-
currency Inference, Resource Constrained Hierarchical Scheduling, and Online Op-
timization in Heterogeneous Multiprocessor Systems. Technical report, Georgia
Institute of Technology, Computer Architecture and Systems Lab, 2008.

6. A. Duran, J.M. Perez, E. Ayguade, R. Badia, and J. Labarta. Extending the
openmp tasking model to allow dependant tasks. In IWOMP Proceedings, 2008.

7. K. Fatahalian, T.J. Knight, M. Houston, M. Erez, D. Reiter Horn, L. Leem,
J. Young Park, M. Ren, A. Aiken, W.J. Dally, and P. Hanrahan. Sequoia: Program-
ming the memory hierarchy. In Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, 2006.

8. V.J. Jiménez, L. Vilanova, I. Gelado, M. Gil, G. Fursin, and N. Navarro. Predictive
runtime code scheduling for heterogeneous architectures. In HiPEAC, 2009.

9. Y. Li, J. Dongarra, and S. Tomov. A Note on Auto-tuning GEMM for GPUs. In
ICCS (1), pages 884–892, 2009.

10. M.D. McCool. Data-Parallel Programming on the Cell BE and the GPU using the
RapidMind Development Platform. In GSPx’06 Multicore Applications Conference.

11. S. Tomov, J. Dongarra, and M. Baboulin. Towards Dense Linear Algebra for
Hybrid GPU Accelerated Manycore Systems. Technical report, January 2009.

12. H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. Parallel and Distributed
Systems, IEEE Transactions on, 13(3):260–274, Mar 2002.

KEYNOTE

Software Development and programming of multicore
SoC

Ahmed Jerraya, CEA-LETI, MINATEC, France

Abstract: SoC designs integrate an increasing number of heterogeneous programmable units (CPU, ASIP and DSP
subsystems) and sophisticated communication interconnects. In conventional computers programming is based on
an operating system that fully hide the underlying hardware architecture. Unlike classic computers, the design of SoC
includes the building of application specific memory architecture and specific interconnect and other kinds of hardware
components required to efficiently executing the software for a well defined class of applications. In this case, the
programming model hides both hardware and software interfaces that may include sophisticated communication and
synchronization concepts to handle parallel programs running on the processors. When the processors are heteroge-
neous, multiple software stacks may be required. Additionally, when specific Hardware peripherals are used, the de-
velopment of Hardware dependent Software (HdS) requires a long, fastidious and error prone development and
debug cycle. This talk deals with challenges and opportunities for the design and programming of such complex de-
vices.

Bio: Dr. Ahmed Jerraya is Director of Strategic Design Programs at CEA/LETI France. He served as General Chair for
the Conference DATE in 2001, Co-founded MPSoC Forum (Multiprocessor system on chip) and is the organization
chair of ESWEEK2009. He supervised 51 PhD, co authored 8 Books and published more than 250 papers in Interna-
tional Conferences and Journals.

58 HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

PANEL

Are many-core computer vendors on track?

Martti Forsell, VTT, Finland
Peter Hofstee, IBM Systems and Technology Group, USA

Ahmed Jerraya, CEA-LETI, MINATEC, France
Chris Jesshope, University of Amsterdam, the Netherlands

Uzi Vishkin, University of Maryland, USA

Moderator: Jesper Larsson Träff, NEC Laboratories Europe, Germany

Outline: The current proliferation of (highly) parallel many-core architectures (homo- and heterogeneous CMP's,
GPU's, accellerators) puts an extreme burden on the programmer seeking (or forced) to effectively, efficiently, and
with reasonable portability guarantees utilize such devices. The panel will consider whether what many-core vendors
are doing now will get us to scalable machines that can be effectively programmed for parallelism by a broad group
of users.

Issues that may be addressed by the panelists include (but not exclusively): Will a typical CS graduate be
able to program main-stream, projected many-core architectures? Is there a road to portability between different types
of many-core architectures? If not, should the major vendors look for other, perhaps more innovative, approaches to
(highly) parallel many-core architectures? What characteristics should such many-core architectures have? Can pro-
gramming models, parallel languages, libraries, and other software help? Is parallel processing research on track?
What will the typical CS student need in the coming years?

59HPPC 2009—the 3rd Workshop on Highly Parallel Processing on a Chip, August 25, 2009, Delft, The Netherlands

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

C

M re

re
C

M

P
D

the 3rd Workshop on
Highly Parallel Processing
on a Chip

