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FOREWORD

Technological developments are bringing parallel computing back into the limelight after some years of absence from
the stage of main stream computing and computer science between the early 1990ties and early 2000s. The driving
forces behind this return are mainly advances in VLSI technology: increasing transistor densities along with hot chips,
leaky transistors, and slow wires make it unlikely that the increase in single processor performance can continue the
exponential growth that has been sustained over the last 30 years. To satisfy the needs for application performance,
major processor manufacturers are instead planning to double the number of processor cores per chip every second
year (thus reinforcing the original formulation of Moore's law). We are therefore on the brink of entering a new era
of highly parallel processing on a chip. However, many fundamental unresolved hardware and software issues remain
that may make the transition slower and more painful than is optimistically expected from many sides. Among the
most important such issues are convergence on an abstract architecture, programming model, and language to easily
and efficiently realize the performance potential inherent in the technological developments.

This is fourth time we organize the Workshop on Highly Parallel Processing on a Chip (HPPC). Again, it aims to be a
forum for discussing such fundamental issues. It is open to all aspects of existing and emerging/envisaged multi-core
processors with a significant amount of parallelism, especially to considerations on novel paradigms and models and
the related architectural and language support. To be able to relate to the parallel processing community at large,
which we consider essential, the workshop has been organized in conjunction with Euro-Par, the main European
(and international) conference on all aspects of parallel processing.

The Call-for-papers for the HPPC workshop was launched early in the year, and at the passing of the submission
deadline we had received 18 submissions, which were relevant to the theme of the workshop and of good quality.
The papers were swiftly and expertly reviewed by the program committee, all of them receiving 3-4 qualified reviews.
We thank the whole of the program committee for the time and expertise they put into the reviewing work, and for
getting it all done within the rather strict timelimit. Final decision on acceptance was made by the program chairs
based on the recommendations from the program committee. This year the themes of manuscripts matched well to
the scope of the workshop and we were able to accept full 8 contributions, resulting in an acceptance ratio of about
44%. The 8 accepted contributions will be presented at the workshop today, together with two forward looking invited
talks by Rolf Hoffmann and Jim Held on he massively parallel computing model GCA and Intel Lab’s Single-chip
Cloud Computer.

This handout includes the workshop versions of the HPPC papers and the abstracts of the invited talks. Final versions
of the papers will be published as post proceedings in a Springer LNCS volume containing material from all the Euro-
Par workshops. We sincerely thank the Euro-Par organization for giving us the opportunity to arrange the HPPC work-
shop in conjunction with the Euro-Par 2010 conference. We also warmly thank our sponsors VTT, University of Vienna
and Euro-Par for the financial support which made it possible for us to invite Rolf Hoffmann and Jim Held, both of
whom we also sincerely thank for accepting our invitation to come and contribute.

Finally, we welcome all of our attendees to the Workshop on Highly Parallel Processing on a Chip in the beautiful
city of Ischia, Italy. We wish you all a productive and pleasant workshop.

HPPC organizers
Martti Forsell, VTT, Finland
Jesper Larsson Träff, University of Vienna, Austria
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PROGRAM

4th Workshop on Highly Parallel Processing on a Chip (HPPC 2010)

TUESDAY AUGUST 31, 2010  Ischia - Naples

SESSION 1 - Models and memory organizations

09:30-09:35 Opening remarks - Jesper Larsson Träff and Martti Forsell, University of Vienna, VTT
09:35-10:35 Keynote - The Massively Parallel Computing Model GCA - Rolf Hoffmann, Technical University of
Darmstadt
10:35-11:00 Low-Overhead Organizations for the Directory in Future Many-Core CMPs - Alberto Ros and Manuel
E. Acacio, Technical University of Valencia, University of Murcia

11:00-11:30 -- Break --

SESSION 2 - Programming multicores

11:30-11:55 A Work Stealing Algorithm for Parallel Loops  on Shared Cache Multicores - Marc Tchiboukdjian, Vin-
cent Danjean, Thierry Gautier, Fabien Le Mentec and Bruno Raffin, CNRS - CEA/DAM, DIF, Grenoble University,
INRIA
11:55-12:20 Resource-agnostic programming for many-core microgrids - Thomas Bernard, Clemens Grelck,
Michael Hicks, Christopher Jesshope and Raphael Poss, University of Amsterdam
12:20-12:45 Programming Heterogeneous Multicore Systems using Threading Building Blocks - George Russell,
Paul Keir, Alastair Donaldson, Uwe Dolinsky, Andrew Richards and Colin Riley, Codeplay Software, University of
Glasgow, Oxford University

12:45-15:30 -- Lunch --

SESSION 3 - Applications and optimizations

15:30-15:55 Fine-grained parallelization of a Vlasov-Poisson application on GPU - Guillaume Latu, CEA, IRFM
15:55-16:20 Highly Parallel Implementation of Harris Corner Detector on CSX SIMD Architecture - Fouzhan Hos-
seini, Amir Fijany and Jean-Guy Fontaine, Italian Institute of Technology
16:20-16:45 Static Speculation as Post-Link Optimization for the Grid Alu Processor - Ralf Jahr, Basher Shehan,
Sascha Uhrig and Theo Ungerer, University of Augsburg

16:45-17:30 -- Break --

SESSION 4 - Networks and clouds

17:30-17:55 A Multi-Level Routing Scheme and Router Architecture to support Hierarchical Routing in Large Net-
work on Chip Platforms - Rickard Holsmark, Shashi Kumar and Maurizio Palesi, Jönköping University, University
of Catainia
17:55-18:55 Keynote - Intel Lab’s “Single-chip Cloud Computer”, an IA Tera-scale Research Processor - Jim Held,
Tera-Scale Computing Research, Intel
18:55-19:00 Closing remarks - Jesper Larsson Träff and Martti Forsell, University of Vienna, VTT
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KEYNOTE

The Massively Parallel Computing Model GCA

Rolf Hoffmann, Professor, Technical University of Darmstadt, Germany

Abstract: The Global Cellular Automata Model (GCA) is an extension of the Cellular Automata Model (CA). Whereas
in the CA model each cell is connected via fixed links to its local neighbors, in the GCA model each cell is connected
via data dependant dynamic links to any (global) cells of the whole array. The GCA cell state does not only contain
data information but also link information. The cell state is synchronously updated according to a local rule, modifying
the data and the link information. Similar to the CA model, only the own cell state is modified. Thereby write conflicts
cannot occur. The GCA model is related to the CROW (concurrent read owners write) model and it can be used to
describe a large range of applications. GCA algorithms can be described in the language GCA-L which can be compiled
into different target platforms: a generated data parallel multi-pipeline architecture, a NIOS II multi-softcore architecture
and a NVIDIA GPU.   

Bio: Rolf Hoffmann is Professor and leader of the Computer Architecture Group in the Computer Science Department
of the Technical Unversity of Darmstadt Germany since 1978. He graduated 1970 at TU Berlin (Dipl.-Ing. Electrical
Engineering), and received there 1974 the Ph.D. in Computer Science. He published a book on Microprogramming
and Computer Design and many papers on special computer architectures and their FPGA implementations. Since
1994 several accelerators for Cellular Automata (CEPRA series) were implemented in his group. He is mainly working
on novel massively parallel computing models; in particular he proposed the Global Cellular Automata model.
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Abstract. Reordering instructions and data layout can bring significant
performance improvement for memory bounded applications. Paralleliz-
ing such applications requires a careful design of the algorithm in order
to keep the locality of the sequential execution. In this paper, we aim
at finding a good parallelization of memory bounded applications on
multicore that preserves the advantage of a shared cache. We focus on
sequential applications with iteration through a sequence of memory
references. Our solution relies on an adaptive parallel algorithm with a
dynamic sliding window that constrains cores sharing the same cache to
process data close in memory. This parallel algorithm induces the same
number of cache misses as the sequential algorithm at the expense of
an increased number of synchronizations. Experiments with a memory
bounded application confirm that core collaboration for shared cache ac-
cess can bring significant performance improvements despite the incurred
synchronization costs. On quad cores Nehalem processor, our algorithms
are 10% to 30% faster than algorithms not optimized for shared cache
thanks to a reduced number of last level cache misses.

1 Introduction

Many applications in scientific computing are memory bounded. Favoring the
locality of access patterns through data and computation reordering can bring
significant performance benefits. When designing parallel algorithms, one must
be extra careful not to lose the locality of the sequential application, which is
the key for good performance.

In most last generation multicores, the last level of cache is shared among
all cores of the chip. For instance the Intel Nehalem, the AMD Phenom and
Opteron (only for the quadcores and hexacores) and the IBM Power7 all have a
shared L3 cache. Recent GPU architectures also adopt this cache design: the L1

cache of a NVIDIA Fermi streaming multiprocessor is shared among 32 cores.
In this paper, we focus on one specific aspect of the parallelization of memory

bounded applications: how to adapt the scheduling to take advantage of the shared

? Part of this work was done while the second author was visiting the ArTeCS group
of the University Complutense, Madrid, Spain.
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caches of multicore processors. The goal is to propose a scheduling algorithm that
improves performance by reducing cache misses, compared to parallel algorithms
that do not take into account the shared cache amongst several cores. We propose
to have cores working on independent but close (regarding the memory layout)
data sets that can all fit in the shared cache. If a core needs a data that is not in
its data set, there is a good chance it will find it in the data set loaded in the
cache by one of its neighbors, thus saving cache misses. The algorithm behaves
as if each core would benefit from a full-size private cache, at the price of a few
extra synchronizations required to ensure a proper collaboration between cores.

This paper focuses on algorithms that take an input sequence to produce an
output sequence of results. Such algorithms encompass many of the C++ Standard
Template Library (STL) functions like for each or transform. Moreover, many
parallel libraries such as Intel TBB or the GNU STL parallel mode provide parallel
implementations of the STL. Thus providing shared cache aware parallelizations
of these algorithms can improve performance of many applications running on
multicores.

We provide a cache constraint that parallel algorithms should respect to
induce no more cache misses than the sequential algorithms. We present two new
algorithms respecting this cache constraint and two implementations, one based
on PThread and the other one based on work-stealing allowing efficient dynamic
load balancing. We also implement those new algorithms with the parallel library
TBB and the GNU parallel STL and compare them with our implementations
on the for each function.

The paper is organized as follows. In section 2, we present the cache constraint
and the associated algorithms. In section 3, we detail the implementation of
these two algorithms using the work-stealing based framework Kaapi. Finally,
we introduce the application we use to benchmark our algorithms in section 4
and the experimental data in section 5 before the conclusions.

2 Scheduling for Efficient Shared Cache Usage

2.1 Review of Work-Stealing and Parallel Depth First Schedules

Work Stealing (WS) is a scheduling algorithm that is very efficient both in theory
and in practice. It has been implemented in many languages and parallel libraries
including Cilk [1] and TBB [2]. In WS, each processor manages its own list of
tasks. When a processor becomes idle, it becomes a thief, randomly chooses
another processor, the victim, and try to steal some work. For an efficient load
balancing, the thief should choose a task that represents a big amount of work
far in memory from the work of the victim. This reduces the number of steal
operations and thus synchronization costs. Unfortunately, stealing such tasks may
not be optimal if one takes into account the shared cache of recent multicores.

Contrary to WS, the Parallel Depth First (PDF) schedule of [3] tries to
optimize shared cache usage. This schedule is based on the sequential order
of execution, which is supposed to be cache-efficient. When several tasks are
available, a processor will preferably execute the earliest task in the sequential
order. The authors showed that a PDF schedule induces no more cache misses
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than the sequential execution when the parallel execution uses a slightly bigger
cache. However, computing and maintaining such a schedule is costly in practice.

Informally, one could think of the PDF scheduler as a WS scheduler where
the thieves would choose the closest task in the victim list inducing lots of steal
operations. This is not as simple as all processors, not only a victim and its thief,
should work on data close in memory. In addition to the steal close operation,
another mechanism is needed to prevent processors to deviate from each other
after the steal operation. The cache constraint we present in the next section
serves exactly this purpose. The processing order we proposed is a trade-off
between WS and PDF. Processors work on data just close enough in memory to
fit in the shared cache. This way the parallel application should not make more
cache misses than the sequential application. The number of synchronizations
is better than PDF but not as good as WS. However, as the number of cache
misses is reduced, the overall performance should be improved over WS.

2.2 Window Algorithms for Sequence Processing

We consider algorithms that take an input sequence i1, i2, . . . , in (different input
elements can share some data) and a function op to be applied on all elements
of the input producing an output sequence o1, o2, . . . , on′ . Notice that treating
one element may produce a different number of elements in the output sequence.
Most STL algorithms are variations over this model. The sequential algorithm
processes the sequence in order from i1 to in. We assume that the sequential
algorithm already performs well with respect to temporal locality of data accesses.
Data processed closely in the sequential execution are also close in memory. We
focus on the case where all elements of the sequence can be processed in parallel.

We introduce two parallel algorithms to process such a sequence in parallel.
These two algorithms are parameterized by m, the maximum distance between
the threads. In the first one, denoted static-window , the sequence is first divided
into n/m chunks of m contiguous elements. Then, each chunk is processed in
parallel by the p processors sharing the same cache. Several strategies can be
used to parallelize the processing of each chunk. The m elements could be
statically partitioned into p groups of m/p elements, one per processor, or a
work-stealing scheme can be used to dynamically balance the load. The second
parallel algorithm, denoted sliding-window , is a relaxed version of the static-
window algorithm. At the beginning of the algorithm, the first m elements of
the sequence are ready and can be processed in any order. Each time the first
element ik not yet processed in the sequence is treated by a processor, it enables
the element ik+m at the end of a window of size m. These two algorithms will
be compared with an algorithm denoted no-window that do not respect the
cache constraint. All the elements of the sequence can be processed in any order.
This algorithm induces more cache misses than the sequential algorithm and the
window algorithms, but it requires fewer synchronizations.

2.3 Cache Performance of Window Algorithms

The re-use distance captures the temporal locality of a program [4]. Let consider
a series of memory references (xk)k≥0. When a reference xk access an element
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for the first time, the re-use distance of xk is infinite. If the element has been
previously accessed, xk′ = xk with k′ > k, the re-use distance of xk′ is equal to
the number of distinct elements accessed between these two references xk and
xk′ . Let hd denote the number of memory references with a re-use distance d.
The number of cache misses of a fully associative LRU cache of size C is equal
to Mseq =

∑∞
d=C+1 hd. We can extend this definition to sequence processing

algorithms: if processing ik and ik′ uses similar data, the re-use distance is k′ − k.

We consider now p processors sharing the same cache that process the se-
quence in parallel in distant places like the no-window algorithm. As we assumed
the sequence has good temporal locality, elements far-away in the sequence use
distinct data. In this case, the re-use distance is multiplied by p as to each access
of one processor corresponds p − 1 accesses of the others to distinct elements.
Thus, the number of cache misses is Mno-win =

∑∞
d=C+1 hd/p ≈

∑∞
d=C/p+1 hd.

The no-window algorithm induces as many cache misses as the sequential al-
gorithm with a cache p times smaller. We now restrain the processors to work
on elements at distance less than m like in the window algorithms. Let r(m)
be the maximum number of distinct memory references when processing m− 1
consecutive elements of the input sequence. In the worst case, when processing
element ik, all elements ik+1, . . . , ik+m−1 have already been processed accessing
at most r(m) additional distinct elements compared to the sequential order. Thus
the re-use distance is increased by at most r(m). The number of cache misses

is Mwindow ≤
∑∞

d=C+1 hd−r(m) = Mseq +
∑C

d=C+1−r(m) hd. As we assumed the

sequence has good temporal locality, r(m) is small compared to m and hd is small

for large d. Therefore
∑C

d=C+1−r(m) hd is small and the window algorithms induce
approximately the same number of cache misses as the sequential algorithm.

2.4 PThread Parallelization of Window Algorithms

We present here the implementation of the no-window and static-window algo-
rithms using PThreads. The PThread implementation allows a fine grain control
on synchronizations with very little overhead.

For the no-window algorithm, the sequence is statically divided into p groups.
Each group is assigned to one thread bound to one processor and all threads
synchronize at the end of the computation. For the static-window algorithm, the
sequence is first divided into chunks of size m. Then each chunk is statically
divided into p groups and all threads synchronize at the end of each chunk before
starting to compute the next one. Each synchronization is implemented with a
pthread_barrier. Threads wait at the barrier and are released when all of them
have reached the barrier. Although we expect the threads in the static-window
algorithm to spend more time waiting for other threads to finish their work, the
reduction of cache misses should compensate this extra synchronization cost.
The sliding-window algorithm has not been implemented in PThread because it
would require a very complex code. We present in the next section a work-stealing
framework allowing to easily implement all these algorithms.



22 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

typedef struct {
InputIterator ibeg;
InputIterator iend;
OutputIterator obeg;
size_t osize;

} Work_t ;

void dowork(...) {
complete_work:

while (iend != ibeg) {
kaapi_stealpoint(..., &splitter);
for(i=0; i<grain; ++i, ++ibeg)

op(ibeg, obeg, &osize);
kaapi_preemptpoint(..., &reducer);

}
if ( kaapi_preempt_next_thief(...) )

goto complete_work ;
} // no more work -> become a thief

void reducer(Work_t *victim, Work_t *thief) {
memmove( victim->obeg, thief->obeg,

thief->osize );
victim->osize += thief->osize;
victim->ibeg = thief->ibeg;
victim->iend = thief->iend;

} // victim -> dowork / thief -> try to steal

void splitter( Work_t *victim, int count,
kaapi_request_t* request ) {

int i = 0;
size_t size = victim->iend - victim->ibeg;
size_t bloc = size / (1+count);
InputIterator local_end = victim->iend;
Work_t *thief;

if (size < gain)
return;

while (count >0) {
if (kaapi_request_ok(&request[i])) {

thief->iend = local_end;
thief->ibeg = local_end - bloc;
thief->obeg = intermediate_buffer;
thief->osize = 0;
local_end -= bloc;
kaapi_request_reply_ok(thief,

&request[i]);
--count;

}
++i;

}
victim->iend = local_end;

} // victim and thieves -> dowork

Fig. 1. C implementation of the adaptive no-window algorithm using the Kaapi API.

3 Work-Stealing Window Algorithms with Kaapi
In this section, we present the low level API of Kaapi [5] and detail the imple-
mentation of the windows algorithms.

3.1 Kaapi Overview
Kaapi is a programming framework for parallel computing using work-stealing.
At the initialization of a Kaapi program, the middleware creates and binds one
thread on each processor of the machine. All non-idle threads process work by
executing a sequential algorithm (dowork in fig. 1). All idle threads, the thieves,
send work requests to randomly selected victims. To allow other threads to
steal part of its work, a non-idle thread must regularly check if it received work
requests using the function kaapi_stealpoint. At the reception of count work
requests, a splitter is called and divides the work into count+1 well-balanced
pieces, one for each of the thieves and one for the victim.

When a previously stolen thread runs out of work, it can decide to preempt
its thieves with the kaapi_preempt_next_thief call. For each thief, the victim
merges part of the work processed by the thief using the reducer function and
takes back the remaining work. The preemption can reduce the overhead of storing
elements of the output sequence in an intermediate buffer when the final place of
an output element is not known in advance. To allow preemption, each thread
regularly checks for preemption requests using the function kaapi_preemptpoint.

To amortize the calls to the Kaapi library, each thread should process several
units of work between these calls. This number is called the grain of the algorithm.
In particular, a victim thread do not answer positively to a work request when it
has less than grain units of work.

Compared to classical WS implementations, tasks (Work_t) are only created
when a steal occurs which reduces the overhead of the parallel algorithm compared



23HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

to the sequential one [6]. Moreover, the steal requests are treated by the victim
and not by the thieves themselves. Although the victim has to stop working
to process these requests, synchronization costs are reduced. Indeed, instead of
using high-level synchronization functions (mutexes, etc.) or even costly atomic
assembly instructions (compare and swap, etc.), the thieves and the victim can
communicate by using standard memory writes followed by memory barriers, so
no memory bus locking is required. Additionally, the splitter function knows
the number count of thieves that are trying to steal work to the same victim.
Therefore, it permits a better balance of the workload. This feature is unique to
Kaapi when compared to other tools having a work-stealing scheduler.

3.2 Work-Stealing Algorithm for Standard (no-window) Processing

It is straightforward to implement the no-window algorithm using Kaapi. The
work owned by a thread is described in a structure by four variables: ibeg and
iend represents the range of elements to process in the input sequence, obeg is
an iterator on the output sequence and osize is the number of elements written
on the output. At the beginning of the computation, a unique thread possesses
the whole work: ibeg=0 and iend=n. Each thread processes its assigned elements
in a loop. Code of Fig. 1 shows the main points of the actual implementation.

3.3 Work-Stealing Window Algorithms

The static-window algorithm is very similar to the no-window algorithm of the
previous section. The first thread owning the total work has a specific status,
it is the master of the window. Only the master thread has knowledge of the
remaining work outside the m-size window. When all elements of a window have
been processed, the master enables the processing of the new window by updating
its input iterators ibeg = iend and iend += m. This way, when idle threads
request work to the master thread, the stolen work is close in the input sequence.
Moreover, all threads always work on elements at distance at most m.

The sliding-window algorithm is a little bit more complex. In addition to
the previous iterators, the master also maintains ilast an iterator on the first
element after the stolen work in the input sequence (see Fig. 2). When the master
does not receive any work request, then iend == ilast == ibeg+m. When the
master receives work requests, it can choose to give work on both sides of the
stolen work. Distributing work in the interval [ibeg,iend] corresponds to the
previous algorithm. The master thread can also choose to distribute work close
to the end of the window, in the interval [ilast,ibeg+m]. We implemented
several variants of the splitter. The local_splitter gives in priority work
in the interval [ibeg,iend]. It favors processing elements at the beginning
to fast-forward the window thus enabling new elements to be processed. The
distant_splitter gives in priority work in the interval [ilast,ibeg+m]. By
distributing work at the end of the window, it should reduce the number of
preemptions. The last one, balanced_splitter try to give well-balanced amount
of work to all thieves by dividing the union of both intervals into equal size
pieces. No piece of work can contains elements on both sides of the window as
the resulting work would not be an interval.
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Processed Elements Master Work Stolen Work Remaining Elements

m-size window

ibeg ilastiend

Fig. 2. Decomposition of the input sequence in the sliding-window algorithm.

4 Marching Tetrahedra for Isosurface Extraction

Isosurface extraction is one on the most classical filters of scientific visualization. It
provides a way to understand the structure of a scalar field in a three dimensional
mesh by visualizing surfaces of same scalar value. The marching tetrahedrons
(MT) is an efficient algorithm for isosurface extraction [7]. For one cell of a mesh,
the MT algorithm reads the point coordinates and scalar values and computes
a linear approximation of the isosurface going through this cell. Applied on all
mesh cells sequentially, it leads to a cost linear in the number of cells.

We now look at cache misses induced by MT. The mesh data structure usually
consists of two multidimensional arrays: an array storing point attributes (e.g.
coordinates, scalar values, etc.) and an array storing for each cell its points
and attributes (e.g. type of the cell, scalar values, etc.). Points are accessed by
following a reference from the cell array, e.g. reading coordinates of a point. As
cells close in the cell array often use common points or points with close indices,
processing cells in the same order as the sequential algorithm induces fewer cache
misses when accessing the point array due to an improved temporal locality.

When implementing the window algorithms, the window size m should be
chosen such that a sub-part of m cells of the mesh fits in the shared cache. Each
point is coded on four doubles and each tetrahedron with four references (64bit
integers) to points. On average, meshes have six times more tetrahedrons than
points. So, for an 8MB cache, we approximately have m = 225, 000. The same
reasoning could apply to other mesh processing applications.

5 Experiments

We present experiments using the MT algorithm for isosurface extraction. We
first calibrate the grain for the work-stealing implementation and the window
size m for the window algorithms. Then, we compare the Kaapi framework
with other parallel libraries on a central part of the MT algorithm which can be
written as a for each. Finally we compare the no-window , static-window and
sliding-window algorithms implementing the whole MT.

All the measures reported are averaged over 20 runs and are very stable. The
numbers of cache misses are obtained with PAPI [8]. Only last level cache misses
are reported as the lower level cache misses are the same for all algorithms. Two
different multicores are used, a quadcore Intel Xeon Nehalem E5540 at 2.4Ghz
with a shared 8MB L3 cache and a dualcore AMD Opteron 875 at 2.2Ghz with
two 1MB L2 private caches. If the window algorithms reduce the number of cache
misses on the Nehalem but not on the Opteron, one can conclude that this is
due to the shared cache.
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Fig. 3. (Left) Number of L3 cache misses for the PThread implementation of the
static-window algorithm for various window sizes compared to the sequential
algorithm and the no-window algorithm. (Right) Parallel time for the Kaapi
implementation of the static-window algorithm with various grain sizes. (Both)
All parallel algorithms use the 4 cores of the Nehalem processor.

5.1 Calibrating the Window Algorithms

Fig. 3(left) shows the number of L3 cache misses for the static-window algorithm
compared to the sequential algorithm and the no-window algorithm. The static-
window algorithm is very close to the sequential algorithm for window sizes less
than 220. It does not exactly match the sequential performance due to additional
reduce operations for managing the output sequence in parallel. With bigger
windows, L3 misses increase and tend to the no-window algorithm. For the
remaining experiments, we set m = 219.

Fig. 3(right) shows the parallel time of the static-window algorithm with the
Kaapi implementation for various grain sizes. Performance does not vary much,
less than 10% on the tested grains. For small grains, the overhead of the Kaapi
library becomes significant. For bigger grains, the load balancing is less efficient.
For the remaining experiments, we choose a grain size of 128. We can notice that
the Kaapi library allows very fine grain parallelism: processing 128 elements
takes approximately 3µs on the Nehalem processor.

5.2 Comparison of Parallel Libraries on for each

Table 1 compares Kaapi with the GNU parallel library (from gcc 4.3) (denoted
GNU) and Intel TBB (v2.1) on a for each used to implement a central sub-part
of the MT algorithm. The GNU parallel library uses the best scheduler (parallel
balanced). TBB uses the auto partitioner with a grain size of 128. TBB is faster
than GNU on Nehalem and it is the other way around on Opteron. Kaapi shows
the best performance on both processors. This can be explained by the cost of
the synchronization primitives used: POSIX locks for GNU, compare and swap
for TBB and atomic writes followed by memory barriers for Kaapi.
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Time (ms) Nehalem Opteron

Algorithms #Cores STL GNU TBB Kaapi STL GNU TBB Kaapi

no-window
1 3,987 4,095 3,975 4,013 9,352 9,154 10,514 9,400
4 1,158 1,106 1,069 2,514 2,680 2,431

static-window
1 3,990 4,098 3,981 4,016 9,353 9,208 10,271 9,411
4 1,033 966 937 2,613 2,776 2,598

Table 1. Performance of the no-window and static-window algorithms on a for each

with various parallel libraries. GNU is the GNU parallel library. Time are in ms.

5.3 Performance of the Window Algorithms

We now compare the performance of the window algorithms. Table 1 shows
that the static-window algorithm improves over the no-window algorithm for all
libraries on the Nehalem processor. However, on the Opteron with only private
caches, performances are in favor of the no-window algorithm. This was expected
as the Opteron has only private caches and the no-window algorithm has less
synchronizations. We can conclude that the difference observed on Nehalem is
indeed due to the shared cache.

Fig. 4(left) presents speedup of all algorithms and ratio of cache misses
compared to the sequential algorithm. The no-window versions induces 50% more
cache misses whereas the window versions only 13% more. The window versions
are all faster compared to the no-window versions. Work stealing implementations
with Kaapi improves over the static partitioning of the PThread implementations.
The sliding-window (with the best splitter: balanced_splitter) shows the best
performance.

Fig. 4(right) focus on the comparison of the sliding-window and static-window
algorithms. Due to additional parallelism, the number of steal operations are
greatly reduced in the sliding-window algorithm (up to 2.5 time less for bigger
windows) leading to an additional gain around 5%.

6 Related works

Previous experimental approaches have shown the interest of efficient cache
sharing usage, on a recent benchmark in [9] and on data mining applications
in [10]. In this paper, we go beyond those specific approaches by providing general
algorithms for independent tasks parallelism which respect the sequential locality.

Many parallel schemes have been proposed to achieve good load balancing for
isosurface extraction [11]. However, none of these techniques take into account the
number of cache misses and the shared cache of multicore processors. Optimization
of sequential locality for mesh applications has been studied through mesh layout
optimization in [12].

7 Conclusions

This paper focuses on exploiting the shared cache of last generation multicores. We
presented new algorithms to parallelize STL-like sequence processing. Experiments
on several parallel libraries confirm that these techniques increase performance
from 10% to 30% thanks to a reduced number of last level cache misses.



27HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

No Static No Static Sliding

0

1

2

3

4

PThread Kaapi

2.44

3.12
2.96

3.25 3.37

1.48

1.09

1.51
1.16 1.15

Speedup Tseq/Tpar

L3 misses ratio Cpar/Cseq

0%

5%

10%

Speedup Tstatic/Tsliding

Steals Ratio Sstatic/Ssliding

212 214 216 218
1

1.5

2

2.5

window size m
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Abstract. Many-core architectures are a commercial reality, but pro-
gramming them efficiently is still a challenge, especially if the mix is het-
erogeneous. Here granularity must be addressed, i.e. when to make use of
concurrency resources and when not to. We have designed a data-driven,
fine-grained concurrent execution model (SVP) that captures concur-
rency in a resource-agnostic way. Our approach separates the concern
of describing a concurrent computation from its mapping and schedul-
ing. We have implemented this model as a novel many-core architecture
programmed with a language called µTC. In this paper we demonstrate
how we achieve our goal of resource-agnostic programming on this target,
where heterogeneity is exposed as arbitrarily sized clusters of cores.

Keywords: Concurrent execution model, many core architecture, resource-
agnostic parallel programming.

1 Introduction

Many-core architectures provide the only solution to the various barriers oppos-
ing advances in mainstream computing performance [8]. However, programming
applications on such platforms is still notoriously difficult [6,1,7]. Concurrency
must be exposed, and in most programming paradigms it must be also explicitly
managed [11]. For example, low-level constructs must be carefully assembled to
map computations to hardware threads and achieve the desired synchronisation
without introducing deadlocks, livelocks, race conditions, etc. From a perfor-
mance perspective, any overhead associated with concurrency creation and syn-
chronisation must be amortised with a computation of a sufficient granularity.
The difficulty of the latter is under-estimated and in this paper we argue that
this mapping task is too ill-defined statically and too complex to remain the
programmer’s responsibility. With widely varying resource characteristics, gen-
erality is normally discarded in favour of performance on a given target, requiring
a full development cycle each time the concurrency granularity evolves.

1 This work is supported by the European Union through the Apple-CORE project,
grant no. FP7-ICT-215216.
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We have addressed these issues in our work on SVP (for Self-adaptive Virtual
Processor), which combines fine-grained threads with both barrier and dataflow
synchronisation. Concurrency is created hierarchically and dependencies are cap-
tured explicitly. Hierarchical composition aims to capture concurrency at all
granularities, without the need to explicitly manage it. Threads are not mapped
to processing resources until run-time and the concurrency exploited depends
only on the resources made available dynamically. Dependencies are captured
using dataflow synchronisers and threads are only scheduled for execution when
they have data to proceed. In this way, we automate thread scheduling and
support asynchrony in operations. More detail on the model can be found in [3].

Asynchrony is exposed at the function level by delegating a unit of com-
putation to independent processing resources where it can execute concurrently
with its parent. It is also exposed in the dependencies captured between threads.
In the context of this paper, where the model is implemented in a processor’s
ISA [5], we have efficient concurrency creation and synchronisation, requiring
just a few processor cycles to distribute an arbitrary number of identical, indexed
threads to a cluster of cores. Moreover, asynchronous operations are supported
at a granularity of individual instructions and we can therefore tolerate latency
in long-latency operations, such as loads from a distributed shared memory. The
mapping of threads to a cluster of cores in our Microgrid chip architecture is
automatic, and the compiled code may also express more concurrency than is
available in a cluster. To resolve this mismatch, cores automatically switch from
space scheduling to time scheduling when all hardware thread slots are in use.
Hence, the minimal resource requirement for any SVP program is a single thread
slot on a single core, which implies pure sequential execution, even though the
code is expressed concurrently. It is through this technique and the latency tol-
erance that we achieve resource-agnostic code with predictable performance.

The main contribution of this paper is that we show simply implemented,
resource agnostic SVP programs adapt automatically to the concurrency effec-
tively available in hardware and can achieve extremely high execution efficiency.
We also show that we can predict the performance of these programs based on
simple throughput calculations even in the presence of non-deterministic instruc-
tion execution times. This demonstrates the effectiveness of the self-scheduling
supported by SVP. In other words, we promote our research goal:

“Implement once, compile once, run anywhere.”

2 The SVP concurrency model

We have built an implementation of SVP into a system language µTC and
a compiler that maps this code to the Microgrid implementation. µTC is not
intended as an end-user language; work is ongoing to target µTC from a data-
parallel functional language (SaC [10]) and a parallelising C compiler [14,9].

In SVP programs create multiple threads at once as statically homogeneous,
but dynamically heterogeneous families. The parent thread can then perform a
barrier wait on termination of a named family using a sync action. This fork-join
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pattern captures concurrency hierarchically, from software component composi-
tion down to inner loops. A family is characterised by its index sequence, the
initial PC for threads and the definition of unidirectional dataflow channels from,
to and within the family. Channels are I-structures [2], i.e. blocking reads and
single non-blocking writes; either from parent to all children (“globals”) or side-
ways in the family (“shareds”). For more details see [5].

In the Microgrid implementation, the number of active threads per core is
constrained by a block size specified for each family or by exhaustion of thread
contexts. Additional expressed concurrency is then scheduled by reusing thread
contexts non-preemptively. Deadlock freedom is guaranteed by restricting com-
munication to forward-only dependency chains [17].

A key characteristic of SVP is the separation of concerns between the program
and its scheduling onto computing nodes. Space scheduling is achieved by binding
a collection of computing nodes, called a place, to a family upon its creation.
This can happen at any level in the hierarchy, dynamically. Although in principle,
SVP can be implemented at any level of granularity, we focus in this paper on
the finest granularity, where clusters of cores implement an SVP run-time system
in hardware. The SVP create distributes families equally to all cores in a cluster
or locally depending on the place specifier. Clusters of cores are connected in
rings and may be configured either at design-time or run-time.

On the Microgrid, SVP channels are mapped onto the cores’ registers. De-
pendencies between threads mapped to the same core share the same physi-
cal registers to allow fast communication and when distributed between cores,
communication is induced automatically upon register access. The latter is still
a low-latency operation since constraints on dependency patterns ensure that
communicating cores are adjacent on chip. Implementing I-structures on the
registers also enforces scheduling dependencies between consumers and produc-
ers. Hence, long-latency operations may be allowed to complete asynchronously
giving out-of-order completion with non-deterministic delay. Examples include
memory operations, floating point operations (with FPU sharing between cores)
and family synchronisation. This mechanism, together with support for a large
number of threads per core provides the latency tolerance necessary to achieve a
high utilisation of the cores’ pipeline cycles. More information is available in [5].

3 An SVP implementation

The Microgrid evaluated in this paper comprises 128 cores sharing 64 FPUs with
separate add, mul, div and sqrt pipelines. Each core supports up to 256 threads
in 16 families using up to 1024 integer and 512 floating-point registers. On-chip
memory comprises a modest 32×32KB L2 caches, shared in groups of 4 cores.
There are 4 rings of 8 L2 caches; the 4 directories are connected in a top-level
ring subordinated to a master directory. Two DDR3-1600 channels connect the
master directory to external storage. The on-chip memory network implements
a Cache-Only Memory Architecture (COMA) protocol with synchronisation at
family creation, termination and on communication between threads. A cache
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line has no home location and migrates to the point of most recent use. This is
described in more detail in [18].

Cluster 
ring
1 FPU +
2 cores

L2 cache

COMA
directory

COMA
ringRoot directory Root directory

DDR Channel DDR Channel

Fig. 1. Functional diagram of a 128 core Microgrid.

The following parameters are relevant to the numerical results: the two
DDR channels provide 1600 million 64-bit transfers/s, i.e. a peak bandwidth
of 25.6GB/s overall; each COMA ring provides a total bandwidth of 64GB/s,
shared among its participants; the bus between cores and L2 caches provides
64GB/s of bandwidth; the SVP cores are clocked at 1GHz.

The Microgrid runs a minimal operating system. This includes initialisation,
collection of system metrics, heap allocation, input of data from the environ-
ment through memory, and text output. A software SVP place allocation service
allows to select dynamic cluster sizes, to subject benchmarks to heterogeneous
concurrency parameters. We highlight that compiled program code is indepen-
dent from all the architectural parameters of the Microgrid.

4 Experiments and results

Our aim in this paper is to show how we can obtain deterministic performance
figures, even though the code is compiled from naive µTC code, with no knowl-
edge of the target. We evaluate results from executing a range of benchmarks
across a range of problem sizes on clusters of size 1-64 cores. These include both
sequential and parallel algorithms with various data access patterns. The results
are presented with performance on cold and warm caches. In order to analyse the
performance, we need to understand the constraints on performance. For this
we define two measures of arithmetic intensity (AI). The first AI1 is the ratio
of floating point operations to instructions issued. For a given kernel that is not
I/O bound, this limits the floating point performance. For P cores at 1 GHz, the
peak performance we can expect therefore is P × AI1. In some circumstances,
we know that execution is constrained by dependencies between floating point
operations and here we modify AI1 to take this into account giving an effec-
tive intensity AI ′1. The second measure of arithmetic intensity is the ratio of
Floating point operations to I/O operations, AI2 FLOPs/Byte. I/O bandwidth
IO is usually measured at the chip boundary (25.6GB/s) unless we can identify
bottlenecks internally on the COMA rings (64GB/s). As these I/O bandwidths
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are independent of the number of cores used, this measure will provide a hard
performance limit when P × AI1 ≥ AI2 × IO.

The results presented in this paper are produced using cycle-accurate emu-
lation of a Microgrid chip that implements SVP in the ISA. It assumes custom
silicon with current technology [5]. It defines all states that would exist in a
silicon implementation and captures cycle-by-cycle interactions in all pipeline
stages. We have used realistic multi-ported memory structures, with queueing
and arbitration where we have more channels than ports. The timing assump-
tions are based on evaluation using CACTI [16]. We also simulate the timing
of standard DDR3 channels. As details of the architecture have been described
elsewhere we include only sufficient detail here to support the discussion.

4.1 Sequential code

The first kernel we consider is DNRM2 from the BLAS library, which computes
the Euclidean norm of a vector. Here we do not parallelise the loop, which uses
a carried dependency to calculate the sum. We are interested in how well the
Microgrid tolerates the memory latency of hundreds of cycles. Branch prediction
and out-of-order instruction issue can provide some latency tolerance, typically
tens of cycles, which is sufficient to optimise performance when working from
on-chip cache but not for larger data sets. Prefetching can do better on constant-
stride accesses but as memory latencies rise, the probability that prefetched data
will remain in cache diminishes. In our approach, the hardware provides latency
hiding through interleaving multiple threads in the pipeline. In this kernel, a
memory load and a mul form an independent prefix to the dependent add which
computes the sum using a shared variable.

The thread code compiles to 4 instructions of which two are FP operations.
So AI1 = 0.5. However, every thread must wait for its predecessor to produce
its result before computing its FP add. The cost of communicating the result
from thread to thread requires between 6 and 11 cycles per add depending on
the scheduling of threads, with the difference representing the cost of waking
up a waiting thread and getting it to the read stage of the pipeline, which may
be overlapped by other independent instructions in the pipeline. This implies
0.14 ≤ AI ′1 ≤ 0.22, i.e. an expected single core performance of 0.14 to 0.22
GFLOP/s. As Figure 2 shows, provided we have enough threads we observe just
under 0.20 GFLOP/s on one core.

We do not expect to see any performance increase by increasing the number
of cores, because the independent prefix instructions that can be scheduled inde-
pendently represent less than one third of the cycles required by the thread, i.e.
3÷AI ′1. Even with ideal scheduling and no overhead, Amdahl’s law would limit
speedup to a factor 1.5. The fact that we see a 10% increase is testament to the
low overhead in this architecture of managing concurrency and communication.
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Fig. 2. Performance of DNRM2 on one SVP place. Working set: 8×#psize bytes.
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Fig. 3. IP performance, using N/P reduction. Working set: 16×#psize bytes.

4.2 Reductions

Any reduction can be parallelised for commutative and associative operations.
The second benchmark is parallelised inner product (IP, Livermore kernel 3).
The code is a straightforward extension of the naive implementation in µTC. It
relies on the number of cores in the ‘current place’ being exposed to programs
as a language primitive and splits the reduction into two stages, the first creates
a family of one thread per core, which performs a local reduction and then
completes the reduction between cores. When the number of threads per core
is significantly larger than the number of cores, the cost of the final reduction
is small and the performance should scale linearly with the number of cores.
Figure 3 shows the experimental results for this code.

For IP, AI1 = 0.29; however, again we must consider the effective intensity:
0.12 ≤ AI ′1 ≤ 0.17, i.e. an expected single core performance of 0.12 to 0.17
GFLOP/s. The outer loop is parallel and hence we would expect a maximum
performance of 0.15 × 64 or 9.6 GFLOP/s. However, for this code AI2 = 0.125
FLOPs/byte and so performance would be memory limited to 3.2 GFLOP/s.

We achieve only 1.4 GFLOP/s, dropping to 0.88 GFLOP/s, for cold caches
with the largest problem size. This deviation occurs when the working set does
not fit in the L2 caches, because then loads to memory must be interleaved
with line evictions. Even though evictions do not require I/O bandwidth, they
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do consume COMA ring bandwidth. It is more difficult to reason about ring
bandwidth under such circumstances. In the worst case a single load may evict a
cache line where the loaded line is used only by one thread before being evicted
again. A single 8 byte load could require as much as two 64-byte line transfers,
i.e. a perceived bandwidth for loads of 4 GB/s rising to 32GB/s if all 8 words are
used. This translates into a peak performance of between 0.5 and 4 GFLOP/s
with AI2 = 0.125 FLOPs/Byte, when the caches become full. Note also, at a
problem size of 20K on 64 cores, between 17 and 22% of the cycles required are
for the sequential reduction, a large overhead and at a problem size of 100K,
when this overhead is significantly smaller, only 1/6th of the problem fits in
cache for up to 32 cores (1/3 for 64 cores).

With warm caches, this transition to on-chip bandwidth limited performance
is delayed and more abrupt. For P = 32 the maximum in-cache problem size
is N=16K and for P = 64, N=32K (ignoring code etc.). As would be expected
for ring-limited performance, we see peak performance at N=10K and 20K resp.
for these two cases. Any increase in problem size beyond this increases ring
bandwidth to the same level as with cold caches.

4.3 Data-parallel code

We show here the behaviour of three data-parallel algorithms which exhibit dif-
ferent, yet typical communication patterns. Again, our µTC code is a straight-
forward parallelisation of the obvious sequential implementation and do not at-
tempt any explicit mapping to hardware resources. The equation of state frag-
ment (ESF, Livermore kernel 7) is a data parallel kernel with a high arithmetic
intensity, AI1 = 0.48. It has 7 local accesses to the same array data by different
threads. If this locality can be exploited, then AI2 = 0.5 FLOPs/Byte from off-
chip memory. Matrix-matrix product (MM, Livermore kernel 21) has significant
non-local access to data, in that every result is a combination of all input data.
MM is based on multiple inner products and hence AI1 = 0.29. However, for
cache bound problems and best case for problems that exceed the cache size,
AI2 = 3 FLOPs/Byte from off-chip memory. Finally, FFT lies somewhere be-
tween these two extremes: it has a logarithmic number of stages that can exploit
reuse but has poor locality of access. Here AI1 = 0.33 and for cache-bound
problems 1.6 ≤ AI2 ≤ 2.9 (logarithmic growth with problem size if there are no
evictions). However, with evictions this is defined per FFT stage and AI2 = 0.21.

For ESF, with sufficient threads, the observed single core performance is 0.43
GFLOP/s, i.e. 90% of the expected maximum based on AI1 for this problem (see
Figure 4a). Also, while the problem is cache bound, for cold caches, we see linear
speedup on up to 8 cores, 3.8 GFLOP/s. For 8 cores this problem size has 128
threads per core, reducing to 8 at 64 cores. This is an insufficient number of
threads to tolerate latency and we obtain 6.6 GFLOP/s for 64 cores, 54% of
the maximum limited by AI2 (12.3 GFLOP/s). As the problem size is increased,
cache evictions limit effective I/O bandwidth to 12.3GB/s at the largest problem
sizes, i.e. an AI2 constraint of around 6 GFLOP/s. We see saturation at 67%
of this limit for both warm and cold caches. With warm caches and smaller
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Fig. 4. Performance of the ESF. Working set: 32×#psize bytes.

problem sizes, greater speedups can be achieved (see Figure 4b) and we achieve
9.87 GFLOP/s or 80% of the AI2 constrained limit for a cache bound problem.

 10
 100

 1000
 10000

 10
 20

 30
 40

 50
 60

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

LMK21: Matrix-Matrix product - Performance (GFLOP/s)

(cold caches)

#psize

#cores

per SVP place

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

(a) Performance on cold caches

 10
 100

 1000
 10000

 10
 20

 30
 40

 50
 60

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

LMK21: Matrix-Matrix product - Performance (GFLOP/s)

(warm caches)

#psize

#cores

per SVP place

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

(b) Performance on warm caches

Fig. 5. Performance of the matrix-matrix product. Working set: ≈ 200×#psize bytes.

MM naively multiplies 25×25 matrices by 25×N matrices using a local IP
algorithm. As AI2 = 3.1 FLOPs/Byte, the I/O limit of 75 GFLOP/s exceeds the
theoretical peak performance, namely 18.3 GFLOP/s. Our experiments show an
actual peak of 8.57 GFLOP/s, or 47% of the maximum. As there are sufficient
threads, we suspect the limit is on the COMA ring, as a significant amount of
traffic is required to distribute rows and columns to cores.

For FFT, the observed performance (cf. Figure 6) on one core is 0.23 GFLOP/s,
or 78% of the AI1 limit. When the number of cores and the problem size increase,
the program becomes AI2 constrained, as now every stage will require loads and
evictions, giving an effective bandwidth of 12.3GB/s and as AI2 = 0.21, an I/O
constrained limit of 2.6 GFLOP/s. We observe 2.24 GFLOP/s, or 86% of this.

5 Related work

SVP addresses many-core programming from hardware thread contexts up to
the programming model. In this vertical approach, it relates to XMT [13].
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Fig. 6. Performance of the 1-D FFT. Working set: 8×#psize bytes + a lookup table.

However, the ability to define concurrency hierarchically and its data-driven
scheduling bring it closer to Cilk [4] and the DDM architecture [12]. SVP differs
from DDM mainly in that synchronisation is implemented in registers instead of
cache, and that yet unsatisfied dependencies cause threads to suspend. Register-
based synchronisation can also be found in the WaveScalar architecture [15],
but WaveScalar requires pure dataflow program expression while SVP also al-
lows thread-local sequential schedules using a regular RISC ISA.

6 Conclusion

The results presented in the previous section show efficient use of the hardware
resources of single SVP places by naive implementations of computation kernels.
We are able to analyse performance based on two bandwidth constrained mea-
sures and provided we have sufficient threads we observe performances that are
very close (in the region of 80%) of the observed performance. Even in the worst
cases we are within 50% of these predicted performances.

In conclusion, the SVP concurrency model facilitates the writing and gener-
ation of concurrent programs that need only be written and compiled once but
yet can still exploit the varying parallel resources provided by particular hard-
ware configurations. Programs can thus be expressed in the µTC language free
from the restraints of resource awareness; the program only needs to express the
available concurrency in algorithms and the desired synchronisations.
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Computers (CPC’09), Zürich, Switzerland (2009)

10. Grelck, C., Scholz, S.B.: SAC: a functional array language for efficient multi-
threaded execution. Int. Journal of Parallel Programming 34(4), 383–427 (2006)

11. Kasim, H., March, V., Zhang, R., See, S.: Survey on Parallel Programming Model.
In: Network and Parallel Computing. LNCS, vol. 5245, pp. 266–275. Springer
(2008)

12. Kyriacou, C., Evripidou, P., Trancoso, P.: Data-driven multithreading using con-
ventional microprocessors. IEEE Trans. Parallel Distrib. Syst. 17(10), 1176–1188
(2006)

13. Naishlos, D., Nuzman, J., Tseng, C.W., Vishkin, U.: Towards a first vertical pro-
totyping of an extremely fine-grained parallel programming approach. In: SPAA
’01: Proc. 13th annual ACM symposium on Parallel algorithms and architectures.
pp. 93–102. ACM, New York, NY, USA (2001)

14. Saougkos, D., Evgenidou, D., Manis, G.: Specifying loop transformations for
C2µTC source-to-source compiler. In: 14th Workshop on Compilers for Parallel
Computers (Jan 2009)

15. Swanson, S., Schwerin, A., Mercaldi, M., Petersen, A., Putnam, A., Michelson, K.,
Oskin, M., Eggers, S.J.: The WaveScalar Architecture. ACM Trans. Comput. Syst.
25(2), 4 (2007)

16. Tarjan, D., Thoziyoor, S., Jouppi, N.: Cacti 4.0. Tech. rep., Western Research
Laboratory, Compaq (2006)

17. Vu, T.D., Jesshope, C.R.: Formalizing SANE Virtual Processor in Thread Algebra.
In: ICFEM. pp. 345–365 (2007)

18. Zhang, L., Jesshope, C.R.: On-Chip COMA Cache-Coherence Protocol for Micro-
grids of Microthreaded Cores. In: Bouge, et al. (eds.) Euro-Par Workshops. LNCS,
vol. 4854, pp. 38–48. Springer (2007)



38 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Programming Heterogeneous Multicore Systems using
Threading Building Blocks?

George Russell1, Paul Keir2, Alastair F. Donaldson3, Uwe Dolinsky1, Andrew
Richards1 and Colin Riley1

1 Codeplay Software Ltd., Edinburgh, UK
{uwe,andrew,george,colin}@codeplay.com

2 Department of Computing Science, University of Glasgow, UK
pkeir@dcs.gla.ac.uk

3 Oxford University Computing Laboratory, Oxford, UK
alastair.donaldson@comlab.ox.ac.uk,

Abstract. Intel’s Threading Building Blocks (TBB) provide a high-level abstrac-
tion for expressing parallelism in applications without writing explicitly multi-
threaded code. However, TBB is only available for shared-memory, homoge-
neous multicore processors. Codeplay’s Offload C++ provides a single-source,
POSIX threads-like approach to programming heterogeneous multicore devices
where cores are equipped with private, local memories—code to move data be-
tween memory spaces is generated automatically. In this paper, we show that the
strengths of TBB and Offload C++ can be combined, by implementing part of the
TBB headers in Offload C++. This allows applications parallelised using TBB
to run, without source-level modifications, across all the cores of the Cell BE
processor. We present experimental results applying our method to a set of TBB
programs. To our knowledge, this work marks the first demonstration of programs
parallelised using TBB executing on a heterogeneous multicore architecture.

1 Introduction

Concurrent programming of multicore systems is widely acknowledged to be challeng-
ing. Our analysis is that a significant proportion of the challenge is due to the following
phenomena:

Thread management: It is difficult to explicitly manage thread start-up and clear-
down, inter-thread synchronization, mutual exclusion, work distribution and load bal-
ancing over a suitable number of threads to achieve scalability and performance.

Heterogeneity: Modern multicore systems, such as the Cell [1], or multicore PCs
equipped with graphics processing units (GPUs) consist of cores with differing instruc-
tion sets, and contain multiple, non-coherent memory spaces. These heterogeneous fea-
tures can facilitate high-performance, but require writing duplicate code for different
types of cores, and orchestration of data-movement between memory spaces.

Threading Building Blocks (TBB) [2] is a multi-platform library for programming
homogeneous, shared memory multicore processors in C++ using constructs such as
parallel loop and reduction operations, pipelines, and tasks, that capture the parallelism
? This work was supported in part by the EU FP7 STREP project PEPPHER, and by EPSRC

grant EP/G051100/1



39HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

inherent in large classes of applications. These constructs allow the programmer to
specify what can be safely executed in parallel, with parallelisation coordinated behind-
the-scenes in the library implementation, thus addressing the thread management issues
identified above.

Offload C++ [3, 4] extends C++ to address heterogeneity. Essentially, Offload C++
provides single source, thread based programming of heterogeneous architectures con-
sisting of a host plus accelerators. Thread management must be handled explicitly, but
the burden of code duplication and movement of data between memory spaces is han-
dled automatically by the compiler and runtime system. Offload C++ for the Cell pro-
cessor under Linux is freely available [5].

In this paper, we combine the strengths of TBB and Offload C++ by using Offload
C++ to implement an important part of TBB: the parallel for construct. This allows
applications that use these constructs to run, without source-level modifications, across
all cores of the Cell BE architecture.

We also discuss data-movement optimisations for Offload C++, and describe the
design of a portable template-library for bulk data-transfers. We show that this template-
library can be integrated with TBB applications, providing optimized performance when
Offload C++ is used on Cell, and default performance otherwise. We evaluate our ap-
proach experimentally using a range of benchmark applications. In summary, we make
the following contributions:

– We describe how an important fragment of TBB implemented using Offload C++
allows a large class of programs to run across all the cores of the Cell architecture

– We show how performance of TBB programs on Cell can be boosted using a
portable template-library to optimize data-movement

– We demonstrate the effectiveness of our techniques experimentally

To our knowledge, this work marks the first demonstration of portable code paral-
lelised with TBB executing on a heterogeneous multicore architecture.

2 Background

2.1 The TBB parallel_for construct

We illustrate the parallel_for construct using an example distributed with TBB that
simulates seismic effects. Figure 1 shows a serial loop. In Figure 2 the loop body is ex-
pressed as a C++ function object, UpdateVelocityBody, which defines an operator()
method to operate on elements in a given range. The parallel_for function template
takes as parameters a function object and an iteration space. When invoked, the func-
tion object is applied to each element in the iteration space, and multiple elements of
the iteration space can be processed in parallel. The programmer does not determine
how many tasks are to be created, nor how many threads are to be used.

2.2 Offload C++

The central construct of Offload C++ is the offload block, a lexical scope prefixed with
the __offload keyword. In the Cell BE implementation of Offload C++, code outside
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void SerialUpdateVelocity() {
for(int i=1; i<Height-1; ++i)
for(int j=1; j<Width-1; ++j)

V[i][j] = D[i][j]*(V[i][j]+L[i][j]*
(S[i][j]-S[i][j-1]+T[i][j]-T[i-1][j]));

}

Fig. 1: A serial simulation loop

struct UpdateVelocityBody {
void operator()(const blocked_range<int>& r) {
for(int i=r.begin(); i!=r.end(); ++i)

for(int j=1; j<Width-1; ++j)
V[i][j] = D[i][j]*(V[i][j]+L[i][j]*

(S[i][j]-S[i][j-1]+T[i][j]-T[i-1][j]));
}

};
void ParallelUpdateVelocity() {

parallel_for( blocked_range<int>(1, Height-1),
UpdateVelocityBody() );

}

Fig. 2: Simulation loop body as a C++ function object, executable using parallel_for

an offload block is executed by the host processor (PPE). When an offload block is
reached, the host creates an accelerator (SPE) thread that executes the code inside the
block. This thread runs asynchronously, in parallel with the host thread. Multiple SPE
threads can be launched concurrently via multiple offload blocks. Each offload block
returns a handle, which can be used to wait for completion of the associated SPE thread.

3 Offloading TBB parallel loops on the Cell BE architecture

The example of Figure 2 shows that TBB makes it easy to parallelise regularly struc-
tured loops. However, TBB does not support heterogeneous architectures with multiple
memory spaces, such as the Cell BE.

We now show that, by implementing the parallel_for construct in Offload C++
we can allow the code of Figure 2 to execute across all cores of the Cell. The key obser-
vation is that TBB tasks are an abstraction over a thread-based model of concurrency,
such as that provided by Offload C++ for heterogeneous architectures.

We implement the parallel loop templates of TBB to distribute loop iterations across
both the SPE and PPE cores of the Cell. These template classes are included in a small
set of header files compatible with the Offload C++ compiler. Figure 3 shows a simple
version of parallel_for implemented using Offload C++; parallel_reduce can
be implemented similarly.

The implementation in Figure 3 performs static work division. Multiple distinct im-
plementations with different static and dynamic work division strategies over various
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subsets of the available cores can be implemented via additional overloads of the run
function. Dynamic work division is achieved by partitioning the iteration space dynam-
ically to form a work queue, guarded by a mutex, from which the worker threads obtain
units of work to perform. This provides dynamic load balancing, as workers with less
challenging work units are able to perform more units of work. Overloaded versions of
parallel_for allow the user to select a specific work partitioner, e.g. to select static
or dynamic work division.

Work division between the SPE cores and the PPE core is performed in the run

method of the internal::start_for template. Offload’s automatic call graph du-
plication makes this straightforward, despite the differences between these cores: in
Figure 3, local_function is called on both the SPE (inside the offload block) and
PPE (outside the offload block) without modification to the client code.

template<typename Range, typename Body>
void parallel_for( const Range& range, const Body& body ) {

internal::start_for<Range,Body>::run(range,body);
}

template<typename Range, typename Body>
class start_for<Range, Body> {
public:

static void run( const Range& range, const Body& body ) {
typedef Range::const_iterator iter;

// Query the runtime for the number of SPE cores we may use
unsigned NUM_SPES = num_available_spes();
offloadThread_t handles[NUM_SPES];
iter start = range.begin(); // Simple 1D range work division
iter end = range.end();
iter size = (end - start);
// NUM_SPES+1 because the PPE will do some work
iter chunksize = size/(NUM_SPES+1);

const Body local_body = body;

for (int i = 0; i < NUM_SPES; ++i) {
iter local_begin = start + chunksize*i;
iter local_end = local_begin + chunksize;

if(local_end > end)
local_end = end;

// Partition iterations into sub-range
Range local_range(local_begin,local_end);
// Spawn asynchronous SPE thread for sub-range
handles[i] = __offload(local_body, local_range) {

local_body(local_range);
};

}
{ // PPE also executes a sub-range

iter local_begin = start + chunksize*NUM_SPES;
Range local_range(local_begin,end);
local_body(local_range);

}
for (int i = 0; i < NUM_SPES; i++)

offloadThreadJoin(handles[i]); // Await completion of SPE threads
}

};

Fig. 3: An Offload C++ implementation of parallel_for for the PPE and SPE cores
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In Figure 3, NUM_SPES holds the number of SPEs available to user programs in
addition to the PPE core. To use all the cores, we divide work between NUM_SPES+1

threads. One thread executes on the PPE, the others on distinct SPEs. The body of run
spawns offload threads parameterised with a single sub-range and the function object to
apply; it then also applies the function object to a sub-range on the PPE, before finally
awaiting the completion of each offload thread.

When passing function objects into template classes and template functions, the
functions to invoke are all statically known. Therefore, the Offload C++ compiler is
able to automatically compile the function object operator() routine for the SPE and
for the PPE, generating the data transfer code needed to move data between global and
SPE memory [3].

4 Portable tuning for performance

Offload C++ enables code written for a homogeneous shared memory multi-core archi-
tecture to run on heterogeneous multi-core architectures with fast local memories. A
consequence of this is that the relative cost of data access operations differs, depend-
ing on the memory spaces involved. Thus the performance characteristics of code may
change when offloaded.

We discuss the default data-movement strategy employed by Offload, a software
cache (§4.1). We then discuss portable optimisations that can be applied: local shadow-
ing (§4.2), and bulk transfers (§4.3). While these optimisations are generic to Offload
C++, we demonstrate in §5 that they can improve the performance of TBB applications
running on the Cell via Offload C++.

4.1 Default data-movement: software cache

The Offload C++ compiler ensures that access to data declared in host memory results
in generation of appropriate data-movement code. The primary mechanism for data-
movement on Cell is DMA. However, issuing a DMA operation each time data is read
or written tends to result in many small DMA operations. This can lead to inefficient
code, since providing standard semantics for memory accesses requires synchronous
DMA transfers, introducing latency into data access.

A software cache is used to avoid this worst-case scenario. When access to host
memory is required, the compiler generates a cache access operation. At runtime, a
synchronous DMA operation is only issued if the required data is not in the software
cache. Otherwise, a fast local store access is issued. When contiguous data is accessed,
or the same data is accessed repeatedly, the overhead associated with cache-lookups is
ameliorated by eliminating the much greater overhead associated with DMA. Writes to
global memory can be buffered in the cache and delayed until the cache is flushed or
the cache-entry is evicted to make room for subsequent accesses.

The software cache is small: 512 bytes by default. The cache is both a convenience
and, in many cases, an optimisation. However, it is not suited to bulk data transfers
where each cache-line is evicted without being reused. In such a case, the cache leads
to overhead without benefit. We discuss mechanisms for bypassing the cache where
appropriate in §4.2 and §4.3.
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4.2 Local shadowing

Although use of a software cache can significantly improve performance over naı̈ve use
of DMA, accessing the cache is significantly more expensive than performing a local
memory access, even when a cache hit occurs.

A common feature of code offloaded for Cell without modification is repeated ac-
cess to the same region of host memory by offloaded code. In this case, rather than
relying on the software cache, a better strategy can be to declare a local variable or ar-
ray, copy the host memory into this local data structure once, and replace accesses to the
host memory with local accesses throughout the offloaded code. If the offloaded code
modifies the memory then it is necessary to copy the local region back to host memory
before offload execution completes. We call this manual optimisation local shadowing:
host data is shadowed by local data to improve performance.

We illustrate local shadowing with the following code, a fragment of the raytracer
discussed in §5.1:

Sphere spheres[sphereCount]; // Allocated in host memory
...
__offload { ...
RadiancePathTracing(&spheres[0], sphereCount, ... );

... };

Scene data allocated in host memory (the spheres array, declared outside the
__offload block), and passed into the RadiancePathTracing function. This func-
tion repeatedly accesses elements of spheres via the software cache. We can apply
local shadowing by copying the scene data from spheres into a locally-allocated ar-
ray, local, declared inside the __offload block:

Sphere spheres[sphereCount]; // Allocated in host memory
...
__offload { ...

Sphere local[sphereCount]; // Allocated in local memory
for (int i = 0; i < sphereCount; ++i)
local[i] = spheres[i];

RadiancePathTracing(&local[0], sphereCount, ... );
... };

A pointer to local is now passed to RadiancePathTracing, redirecting accesses
to scene data to fast, local memory. This optimisation reduces access to scene data via
the software cache to the “copy-in” loop; after this, accesses are purely local. Since
scene data is not modified during raytracing, there is no need for a “copy-out” loop.

Local shadowing does not compromise portability: in a system with uniform mem-
ory the copy-in and copy-out are unnecessary, but yield equivalent semantics. Assuming
that the code using the locally shadowed data is substantial, the performance hit associ-
ated with local shadowing when offloading is not applied is likely to be negligible.

4.3 Bulk data transfers

Offload C++ provides a header-file library of portable, type-safe template classes and
functions to wrap DMA intrinsics and provide convenient support for various data ac-
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cess use cases. Templates are provided for read-only (ReadArray), write-only (Write-
Array) and read/write (ReadWriteArray) access to arrays in host memory.

The array templates follow the Resource Acquisition is Initialisation (RAII) pattern
[6], where construction and automatic destruction at end of scope can be exploited
to perform processing. Transfers into local memory are performed on construction of
ReadArray/ReadWriteArray instances, and transfers to host memory are performed
on destruction of ReadWriteArray/WriteArray instances.

struct UpdateVelocityBody {
void operator()(const blocked_range<int>& range ) const {
for( int i=range.begin(); i!=range.end(); ++i ) {

ReadArray<float, Width> lD(&D[i][0]),
ReadArray<float, Width> lL(&L[i][0]);
ReadArray<float, Width> lS(&S[i][0]);
ReadArray<float, Width> lT(&T[i][0]);
ReadArray<float, Width> lpT(&T[i-1][0]);
ReadWriteArray<float, Width> lV(&V[i][0]);
for( int j=1; j < Width-1; ++j )

lV[j] = lD[j]*(lV[j]+lL[j]*(lS[j]-lS[j-1]+lT[j]-lpT[j]));
}

}
};

Fig. 4: Using DMA template wrappers for efficient data transfer

Figure 4 illustrates optimising the example of Figure 2 with bulk transfers. The
declaration ReadArray<float, Width> lD(&D[i][0]) declares lD a local float
array, of size Width, and issues a synchronous DMA to fill ld with data from host array
D (hence lD stands for “local D”). The ReadWriteArray instance lV is similar, except
that when destroyed (on scope exit), a synchronous DMA restores the contents of lV to
V. Velocity update is now performed with respect to local arrays only.

Bulk transfer templates share similarities with local shadowing (§4.2). However,
they hide details of copy-in and copy-out operations from the programmer, and by-
pass the software cache completely, which is often significantly more efficient than an
element-by-element copy would be.

At compile time, when targetting the PPE, an implementation of the templates de-
signed so that no performance penalty is incurred is selected. This implementation is
also usable on systems with single memory spaces, maintaining portability of code us-
ing the templates. Additional data-movement use cases can be implemented by users
using the same template functions abstracting transfer operations used to implement
the array templates.
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5 Experimental Evaluation

We demonstrate the effectiveness of our approach to offloading TBB programs to run
on the Cell using a set of parallel TBB programs. Experiments are performed on a Sony
PlayStation 3 (with six SPEs accessible), running Fedora Core 10 Linux and IBM Cell
SDK v3.0. Parallel benchmarks are compiled using Offload C++ v1.0.4, optimisation
level -03. Serial versions of the benchmarks are compiled using both GCC v4.1.1, and
Offload C++ v1.0.4. The faster of the two serial versions is taken as the baseline for
measuring the speedup obtained via parallelisation.

– Seismic simulation Simulation discussed in §2.1 for a 1120×640 pixel display
– SmallPT-GPU Raytracer A global illumination renderer generating 256×256

pixel images from scenes with between 3 and 783 spheres, computing sphere-ray
intersections with specular, diffuse, and glass reflectance with soft shadows and
anti-aliasing [7]

– Image processing kernels A set of 8 kernels operating on a 512×512 pixel im-
age, performing black-and-white median, colour median and colour mean filtering;
embossing; sharpening; greyscale conversion; Sobel and Laplacian edge detection

– PARSEC Black-Scholes Partial differential equations modelling the pricing of
financial options, from the PARSEC benchmark suite [8] using the large data set

– PARSEC Swaptions Simulates pricing a portfolio of swaptions using the Heath-
Jarrow-Morton and Monte Carlo methods; from PARSEC using the large data set

5.1 Results

We present results showing the performance increases obtained by parallelising each
benchmark across all available cores of the Cell (6 SPEs + PPE), compared with PPE-
only execution. We note that in some cases, the speedup using all cores is more than
7×. The SPE cores are significantly different to the PPE, so we would not expect them
to be directly comparable; a specific program may run faster across the SPEs due to
higher floating point performance, or efficient use of scratch-pad memory.

Seismic Simulation: After an initial offload of the original code, we found that the
data transfer intensive nature of this code results in non-optimal performance on the
SPE as the data being processed is still held in the global memory, and not in fast SPE
local store. To address this, we used the ReadArray and ReadWriteArray templates,
as shown in Figure 4. We then obtained a 5.9× performance increase in the simulation
over using the PPE alone.

Image Processing Kernels: Figure 5 shows performance results. We used local
shadowing (§4.2) to hold input pixel rows in stack allocated arrays, implementing a
sliding window over the input image, in which a new pixel row is fetched to over-write
the local buffer storing the oldest row. Row fetches were then replaced with bulk data
transfer template operations (§4.3), and writes of individual output pixels were buffered
and written out via bulk transfer.

SmallPT-GPU Raytracer: Figure 6 shows performance results for three versions
of the SmallPT raytracer in raytracing six scenes compared to the serial baseline. The
first version uses parallel_for to execute on the SPEs and PPE. The second version
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uses local shadowing of the scene data, as discussed in §4.2. Finally, the third version
uses a dynamic scheduling implementation of parallel_for where the SPEs and
PPEs threads dequeue work from a shared queue, and thereby load balance amongst
themselves.

Kernel B&W Median Col. Mean Col. Median Emboss Laplacian Sharpen Sobel Greyscale
Speedup 7.7× 7.4× 4.5× 3.6× 3.1× 5.3× 5.7× 3×

Fig. 5: Speedup for Image Kernels.
Scene caustic caustic3 complex cornell large cornell simple
Global scene data 2.5× 2.6× 1.4× 4.5× 4.4× 2.7×
Local scene data 2.8× 3.0× 7.1× 7.2× 7.1× 3.1×
Dynamic parallel for 4.9× 5.2× 10.1× 8.9× 8.5× 5.1×

Fig. 6: Speedup for SmallPT Raytracer using parallel_for.

PARSEC Black-Scholes: Conversion of the Black-Scholes benchmark was straight-
forward. A single parallel_for template function call represents the kernel of the
application. We obtained a speedup of 4.0× relative to the serial version on PPE.

PARSEC Swaptions: It was necessary to refactor the codes in two stages. First,
dynamic memory allocations were annotated to distinguish between memory spaces.
Secondly, unrestricted pointer usage was replaced with static arrays. The local shad-
owing technique described in §4.2 was also employed as an optimisation. After these
modifications, a speedup of 3.0× was obtained. This may rise with the incorporation of
bulk data transfer optimisations as described in §4.3.

6 Related Work

OpenCL [9] is a language and interface for programming in a heterogeneous parallel
environment. e.g. GPUs, homogeneous multi-core systems, and Cell [10]. Unlike Of-
fload, OpenCL introduces “boilerplate” code to transfer data between distinct memory
spaces via an API, and requires accelerator code to be written in the OpenCL language.

OpenMP targets homogeneous shared-memory architectures, although distributed
and heterogeneous implementations do exist [11–13]. In contrast to OpenMP on Cell,
the Offload compiler can use C++ templates to reify information obtained statically
from the call graph, allowing users to optimise code using “specialised” template strate-
gies selected for a specific target architecture e.g. the SPE.

7 Conclusions

We have shown how, using Offload C++, the TBB parallel loop construct parallel_for
can be readily used to distribute work across the SPE and PPE cores of the Cell proces-
sor. Our proof of concept implementation provides both static and dynamic work divi-
sion and supports a subset of the TBB library; parallel_for and parallel_reduce;
the associated blocked_range templates, and the spin_mutex class.
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We have also demonstrated that data transfer operations can be portably imple-
mented, exploiting target-specific DMA transfer capabilities when instantiated in the
context of code to be compiled for the SPE processors.

The parallel loop constructs we have implemented are facades over a more general
task based model of programming, provided for ease of use and to support common pat-
terns of parallelism directly. The fully general model of fork-join parallelism is more
challenging to implement. However, it does not seem unfeasible, although a consider-
able task.We plan to investigate the extent to which such an implementation is feasible.

In addition, we are keen to assess the performance of offloaded TBB code on more
highly parallel Cell-based systems, such as the IBM Cell Blade, which has 16 available
SPEs.

We are interested in extending Offload C++ to massively parallel systems, such as
GPUs. However, GPU-like architectures are not a good fit for the current Offload C++
programming model, which is generally applicable to heterogeneous multicore systems
as long as some means of random access to a shared global store is provided. Adapting
existing application code and Offload C++ to work with the restricted programming
models associated with GPUs will be a significant research challenge.
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Abstract. Understanding finely turbulent transport in magnetised plas-
mas is a subject of major importance to optimise experiments in present
and future tokamak fusion reactor. The Vlasov equation provides a useful
framework to perform experimental study and modelling of such devices.
In this paper, we focus on the parallelization of a 2D semi-Lagrangian
solver dedicated to plasma physics on GPGPU. The originality of the
approach lies in the needed overhaul of both numerical scheme and al-
gorithms, in order to compute accurately and efficiently in the CUDA
framework. Two main topics are addressed. First, we show how to deal
with 32-bit floating point precision, and we look at accuracy issues when
employing the GPU in this kind of application. Second, we exhibit a
very fine grain parallelization that fits well on a many-core architecture.
A speed-up of almost 80 has been obtained by using a GPU instead
of one CPU core. As far as we know, this work presents the first semi-
Lagrangian solver dedicated to plasma physics ported on GPGPU. Simu-
lations of fusion plasma consume a great amount of CPU time on today’s
supercomputers; thus, we provide design insights for future plasma sim-
ulators running on GPU clusters.

1 INTRODUCTION

The present paper highlights the porting of a semi-Lagrangian Vlasov-Poisson
code on a GPU device. The work, described herein, follows a previous study
made on the loss code described in other papers [CLS06]. A classical approach
in the Semi-Lagrangian community involves the use of cubic splines to achieve
the many interpolations needed by this scheme. The application we describe here,
uses a local spline method designed specifically to perform decoupled numerical
interpolations, while preserving classical cubic spline accuracy. In previous pa-
pers (see [CLS06,CLS07,CLS09,LCGS07]), this scalable method was integrated
in MPI codes and a set of simulators based on that scheme were described and
benchmarked. Both one-dimensional and two-dimensional domain decomposi-
tions were considered in order to decouple computations on many processors.
Only relatively small MPI inter-processor communication costs were induced
and these codes scaled well over hundreds of cores.
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We will describe how to enrich the existing algorithm and numerical scheme
included in the loss code, in order to obtain a tuned algorithm that fits well in
the CUDA framework. This research is performed in an interdisciplinary team
of physicists, mathematicians and computer scientists within the INRIA CALVI
project and the French Atomic Energy Authority (CEA). In the rest of the
paper, the numerical scheme and the accuracy issues are briefly introduced and
the parallelization of the main algorithm with CUDA is described. The speedup
and accuracy of the simulations are reported and discussed.

2 MATHEMATICAL MODEL

In the present work, we consider a reduced model for two physical dimensions (in-
stead of six in the general case), corresponding to x and vx such as (x, vx) ∈ R2.
The 1D variable x represents the configuration space and the 1D variable vx

stands for the velocity along x direction. Moreover, the self consistent magnetic
field is neglected because vx is considered to be small in the physical configura-
tions we are looking at. The Vlasov-Poisson system then reads:

∂f

∂t
+ vx .∇xf + (E + vx × B) .∇vx

f = 0, (1)

E(x, t) = −∇φ, (2)

−ε0∇2φ = ρ(x, t) = q

∫
f(x, vx, t)d vx. (3)

where f(x, vx, t) is the particle density function, ρ is the charge density, q is
the charge of a particle (only one species is considered) and ε0 is the vacuum
permittivity.

Equations (1) and (3) are solved successively at each time step. Equation (2)
gives the self-consistent electrostatic field E(x, t) generated by particles. The
density ρ of Eq. (3) is evaluated in integrating f over vx. Our work focuses on the
resolution of Equation (1) using a backward semi-Lagrangian method [SRBG99].
The physical domain is defined as D2

p = {(x, vx) ∈ [xmin, xMax] × [vxmin , vxMax ]}.
For the sake of simplicity, we will consider that the size of the grid mapped on this
physical domain is a square indexed on D2

i = [0, 2j − 1]2. To have a rectangular
logical grid, it is easy to break this assumption and to consider different values
for j depending on the dimension. Concerning the type of boundary conditions,
a choice should be made depending on the test cases under investigation. At the
time being, only periodic extension is implemented.

3 ALGORITHMIC ANALYSIS

3.1 Global numerical scheme

The Vlasov Equation (1) can be decomposed by splitting. It is possible to solve
it, through the following elementary advection equations:

∂tf + vx∂xf = 0, (x̂ operator)
∂tf + v̇x∂vx

f = 0. (v̂x operator)
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Each advection consists in applying a shift operator. A splitting of Strang [CK76]
is employed to keep a scheme of second order accuracy in time. We took the
sequence (x̂/2, v̂x, x̂/2), where the factor 1/2 means a shift over a reduced time
step ∆t/2. Algorithm 1 shows how the Vlasov solver of Eq. (1) is interleaved
with the field solver of Eq. (3).

Algorithm 1: One time step
Input : ft

Output: ft+∆t

// Vlasov solver, part 1
1D Advection, operator x̂

2 on f(., ., t)1

// Field solver
Integrate f(., ., t+∆t/2) over vx2

to get density ρ(., t+∆t/2)3

Compute Φt+∆t/2 with Poisson solver4

using ρ(., t+∆t/2)5

// Vlasov solver, part 2
1D Advection, operator v̂x (use Φt+∆t/2)6

1D Advection, operator x̂
27

Algorithm 2: Advection in x dir., dt time step
forall vx do1

a(.)← spline coeff. of sampled function f(., vx)2

forall x do3

x0 ← x− vx.dt4

f?(x, vx)← interpolate f(x0, vx) with a(.)5

3.2 Local spline method

Each 1D advection (along x or vx) consists in two substeps. First, the density
function f is processed in order to derive the cubic spline coefficients. Hence, we
get a continuous representation of f over dimension x or vx. The specificity of
the local spline method is that a set of spline coefficients covering a given subdo-
main can be computed concurrently with other subdomains. Thus, it improves
the standard approach that unfortunately needs a coupling between all coeffi-
cients along one direction. Second, spline coefficients are used to interpolate the
function f at specific points. This substep is intrinsically parallel wether with
the standard spline method or with the local spline method: one interpolation
involves only a linear combination of four neighbouring spline coefficients.

Algorithm 2 details one advection and shows how interpolations are inte-
grated. In this algorithm xo is called the origin of the characteristic. With the
local spline method, we gain concurrent computations during the spline coef-
ficient derivation (line 2 of the algorithm). Our main goal in this paper is to
convert the algorithm into an form adapted to the CUDA framework.

3.3 Floating point precision

Usually, semi-Lagrangian codes make extensive use of double precision floating
point operations. The double precision is required because pertubations of small
amplitude often play a central role during plasma simulation. For example, we
focus on the very classical linear Landau damping test case with k=0.5, α=0.01.
The initial distribution function is given by

f(x, vx, 0) =
e−

vx
2

2

√
2 π

(1 + α cos(k x)) .
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Let us mention that other test cases are available in our implementation (like
strong Landau damping, or two stream instability). We incorporated essentially
classical problems picked to test the numerical algorithm and benchmark the
code. Herafter, we focus on the linear Landau damping which highlights the
accuracy problem one can expect in Vlasov-Poisson simulations.

The problem arising with simple precision computations is shown on Figure 1.
The loss code (written in Fortran 90 and using MPI) is used to perform linear
Landau simulation. The L2 norm of electric potential is shown on the picture
(electric energy) with logarithmic scale along the Y-axis. The double precision
curve represents the reference simulation. Obviously, the difference between the
two curves indicates clearly that simple precision is not enough to get the right
result; especially for long-time simulation. With an accurate look at the figure,
one can notice that the double precision simulation is accurate until reaching a
plateau value near 10−20. To go beyond this limit, one shoud have even more
accurate interpolation scheme.
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Fig. 1. Electric energy for Landau test
case 1024×1024 with 32-bit precision ad-
vection versus advection with 64-bit pre-
cision (depending on time measured as a
number of plasma period ωc

−1)
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Fig. 2. Electric energy for Landau test
case 1024 × 1024 using δf representation
or standard representation. The float-
ing precision is 32-bit or 64-bit accu-
racy.

3.4 Improvement of numerical precision

For the time being, one has to consider mostly simple precision (SP) computa-
tions to get maximum performance out of a GPGPU (General-Purpose Process-
ing on Graphics Processing Units). The double precision (DP) is much slower
than simple precision (SP) on today’s devices. Furthermore, the memory band-
width constraint is lighter with SP than with DP, considering the same number
of elements to be transfered to floating point units.

The previous paragraph shows that SP leads to unacceptable numerical re-
sults. It turns out that our numerical scheme could be modified to reduce nu-
merical errors even with only SP operations during the advection steps. In order
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to do so, we will introduce a new function

δf(x, vx, t) = f(x, vx, t) − fref(x, vx).

Working on the δf function could improve accuracy if the values that we are
working on are sufficiently close to zero. Then, the reference function fref should
be chosen such that the δf function remains relatively small (in L∞ norm). As
we will see hereafter, it is convenient to assume that fref is a constant along the
x dimension. For the Landau test case, we choose

fref(vx) =
1√
2 π

e−
vx

2

2 .

As the function fref is constant along x, the x-advection applied on fref leaves
fref unchanged. Then, it is equivalent to apply x̂ operator either on function δf or
on function f . Working on δf is very worthwile: for the same number of floating
point operations, we increase accuracy in working on small differences instead of
large values. Concerning the v̂x operator however, both fref and f are modified.
For each advected grid point (x, vx) of the f? function, we have (vo

x is the foot
of the characteristic):

f?(x, vx) = f(x, vo
x) = δf(x, vo

x) + fref(vo
x),

δf?(x, vx) = f?(x, vx) − fref(vx),
δf?(x, vx) = δf(x, vo

x) − (fref(vx) − fref(vo
x)).

Working on δf instead of f changes the operator v̂x. To advect in the vx

direction, we are looking for all values f?(x, vx) found thanks to the previous
equations. To compute these values, we need to interpolate both f(x, vo

x) and
(fref(vx)−fref(vo

x)). In doing so, we increase the number of computations ; because
in the original scheme we had only one interpolation per grid point (x, vx),
whereas we have two in the new scheme. In spite of doubling the number of
operations for evaluting the vx operator, we expect the numerical accuracy to
be enhanced using δf representation. Here is a sketch of the proposed δf based
scheme that replaces that of Algorithm 1:

Algorithm 3: One time step with δf scheme
Input : δf t

Output: δf t+∆t

// Vlasov solver, part 1
1D advection on δf , operator x̂

21

// Field solver
Integrate δf(., ., t+∆t/2) + fref(.) to get ρ(., t+∆t/2)2

Compute Φt+∆t/2, with Poisson solver on ρ(., t+∆t/2)3

// Vlasov solver, part 2
1D advection on δf , operator v̂x (using Φt+∆t/2)4

→ stored into δf5

Interpolations of fref(vx) − fref(vo
x) (using Φt+∆t/2)6

→ results added into δf7

1D advection on δf , operator x̂
28
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4 CUDA ALGORITHMS

4.1 CUDA Framework

Designed for NVIDIA GPUs (Graphics Processing Units), CUDA is a C-based
general-purpose parallel computing programming model. Using the CUDA pro-
gramming model, GPUs can be regarded as computation devices operating as
coprocessors to the central processing unit (CPU). GPUs communicate with the
CPU through fast PCI-Express ports. Over the past few years, a lot of successful
experiments with GPGPU have been reported in the literature. An overview of
the CUDA language and architecture will not be given here (for an introduction,
see for example [NVI09]). Our reference implementation of loss used for com-
parison is written in Fortran 90 langage and uses the MPI library. The CUDA
version of loss presented here mixes Fortran 90 code and external C calls (to
launch CUDA kernels).

4.2 Data placement

We perform the computation on data δf of size (2j)2. Typical domain size varies
from 128×128 (64 KB) up to 1024×1024 (4 MB). The whole domain fits easily in
global memory of current GPUs. We could even store two data functions in global
memory to avoid using an in-place algorithm. The main computational cost of
our application is located in the four advection steps shown in Algorithm 3. In
order to reduce unnecessary overheads, we decided to avoid transfering 2D data
δf between the CPU and the GPU as far as we can. So we kept data function
δf onto GPU global memory. Computation kernels directly update the 2D data
stored on the GPU global memory. For diagnostics purposes only, the δf function
is transfered to the CPU at a given frequency (a given number of time steps)
and stored on disk. The end-user can then view or postprocess the diagnostic
files.

4.3 Spline coefficients computation

Spline coefficients (of 1D discretized functions) are computed on patches of 32
values of δf . As explained elsewhere [CLS06], a smaller patch would introduce
significant overhead because of the cost of first derivative computations on the
patch borders. A bigger patch would increase the computational grain which is
a bad thing for GPU computing that favors scheduling large number of threads.

The 2D domain is decomposed into small 1D vectors (named ”patches”) of
32 δf values. To derive the spline coefficients, small LU systems are solved. The
assembly of right hand side vector used in this solving step can be summarized as
follows: keep the 32 initial values, add 1 more value of δf at the end of the patch,
and then add two derivatives of δf located at the border of the patch. Once the
right hand side vector is available (35 floatint point numbers), two precomputed
matrices L and U are inverted in order to derive spline coefficients. This step
uses the classical forward and backward substitution. We decided not to try
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to parallelize this small LU solver: a single CUDA thread will be in charge of
computing spline coefficients on one patch taking as input a right hand side
vector, and two constant matrices L and U . That point could be improved in
the future in order to use several threads instead of one.

4.4 Parallel interpolations

On one patch, 32 interpolations need to be done (excluding on domain bound-
aries where periodicity is taken into account). Each interpolation requires com-
bining four spline coefficients. All these interpolations are decoupled. To max-
imize parallelism, one can even try to dedicate one thread per interpolation.
Nevertheless, as some auxiliary computations could be factorized (for example
the shift computed to find the foot of the characteristic), it is relevant to per-
form more than one interpolation per thread to reduce global computation cost.
The exact number of such interpolations per thread is a parameter of our code
and is has an impact on performance. In the following, we named this blocking
factor B.

4.5 Data load

The computational intensity of the advection step is not that high. During the
LU phase (spline coefficients computation), each input data is read and written
twice and generates two multiplications and two additions in average. During
the interpolation step, there are four reads and one write per input data and
also four multiplications and four additions.
The low computational intensity implies that we could expect shortening the
execution time in reducing loads and writes from GPU global memory to the
floating point units. So, there is a benefit to group the spline computation and
the interpolations in a single kernel. Several benchmarks have confirmed that
with two distinct kernels (one for building splines and one for interpolations)
instead of one, the price of load/store in the GPU memory increases. Thus, we
now describe the solution with only one kernel that maximizes the computational
intensity.

4.6 Domain decomposition and fine grain algorithm

To fit into the CUDA environment, the 2D computational domain is split into
grids and blocks. We have designed three main kernels. Here is their short de-
scription:

KernVA operator v̂x on δf(x, vx)
KernVB adding fref(vx) − fref(vo

x) to δf(x, vx)
KernX operator x̂ on δf(x, vx)

These kernels are very similar. Each of the three kernels begins with a load of
a 2D rectangular shape of data into shared memory. Hence, the block of threads
can share these data along the following computations. At the end of kernels,
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writes are performed in the GPU global memory in a rectangular 2D area. The
main steps of an advection kernel (KernVA or KernX) are given in Algorithm 4.
The computations of 8n threads acting on 32n real number values are described
(which means that B=4 was hardcoded for this particular example).

Algorithm 4: Skeleton of an advection kernel
Input : ft in global memory of GPU
Output: ft+dt in global memory of GPU

// A) Load from global mem. to shared mem.
Each thread loads 4 floats from global mem.1

Floats loaded are stored in shared memory2

Boundary conditions are set (extra floats are read)3

Synchro.: each block of threads owns n vectors of 32 floats4

// B) LU Solver
1 thread over 8 solves a LU system5

7 threads over 8 are idle6

Synchro.: one block has n vectors containing spline coeff.7

// C) Interpolations
Each thread computes 4 interpolations8

// D) Writing to GPU global memory
Each thread writes 4 floats to global mem.9

In Algorithm 4, the first A) substep reads floats from GPU global memory and
puts them into fast GPU shared memory. Then, a synchronization point waits
for completion of all threads within one block of threads. When entering the B)
substep, all input data have been copied into shared memory. Concurrently in
the block of threads, small LU system are solved. During this small computation
step, 87% of the threads are idle. Spline coefficients are finally known and stored
in shared memory. In substep C), each thread computes 4 interpolations (because
B=4 in this example) using spline coefficients. This task is the most computation
intensive part we have to tackle in the Vlasov-poisson solver. Finally, substep D)
writes results into global memory.

5 PERFORMANCE

5.1 Machines

In order to develop the code and perform small benchmarks, a cheap personal
computer has been used. The characteristic of the CPU are the following: Dual
core E2200 Intel processor (2.2Ghz), 2 GB of RAM, 4GB/s peak bandwidth,
4 GFLOPS peak, 1 MB L2 cache. The GPU is a GTX260 Nvidia card: 1.24 Ghz
clock speed, 0.9GB of global memory, 95 GB/s peak bandwidth, 750 GFLOPS
peak, 27 multiprocessors, 8 cores per multiprocessor (for a total of 216 cores).
The CPU-GPU transfer bandwidth is as small as 1 GB/s.

Another computer (at CINES, Montpellier, FRANCE) has been used for
our benchmarks. The CPU part is a bi-socket quad-core E5472 (Harpertown),
Xeon Intel 3 Ghz, 1GB RAM , peak bandwidth 5 GB/s, 12 GFLOPS peak, L2
cache 2×6 MB. Concerning the GPU, the machine is connected to a Tesla S1070,
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1.44Ghz, 4 GB global memory, 100 GB/s peak bandwidth, 1000 GLOPS peak,
30 multiprocessors, 8 cores per multiprocessor (for a total of 240 cores).

5.2 Small test case

Let us first have a look on execution time of the δf scheme on CPU or on GPU.
We consider the small testbed (Dual core E2200 - GTX 260), and a reduced
test case (data size = 2562). The simulation ran on a single CPU core. Timing
results are shown in the first column of Table 1. Then we ran the GPU version
of the code on the same physical problem on the 216 cores of the GTX260 card.
Timing results and speedup (reference execution time is the CPU single core
timing) are given in the second column of the table.

Substeps in one time

step

CPU (deltaf 4B) GPU (deltaf 4B)

X Advection 5123 µs (1.0 ) 172 µs (29.7 )

V Advection 4850 µs (1.0 ) 144 µs (33.7 )

Field computation 133 µs (1.0 ) 93 µs (1.4 )

Complete Iteration 10147 µs (1.0 ) 546 µs (18.6 )

Table 1. Computation times inside a time step and
speedup (in parentheses) averaged over 5000 calls - 2562

test case, E2200/GTX260

The speedup is approximately 30 for the two significant computation steps,
but is smaller for the field computation. The field computation part includes two
substeps: first the integral computations over the 2D data distribution function,
second the solving of a 1D poisson equation. The performance of integrals is
bounded up by the loading time of 2D data from global memory of the GPGPU.
This substep is not computationnally intensive, because there is only one addi-
tion to do per loaded float to do. The second substep that solves Poisson equation
is a small 1D problem that could not easily be parallelized. Furthermore, we loose
much time in lauching the poisson kernel on the GPU. We measured approxi-
mately a cost of 25 µs per kernel launch. During launch, no calculation and no
loads takes place.

5.3 Large test case

We now have a look at a larger test case with data size equal to 10242. The two
testbeds described earlier were used. Performance are slightly better using the
Xeon/Tesla1070 compared to the E2200/GTX260.

Substeps in one time

step

CPU (deltaf 4B) GPU (deltaf 4B)

X Advections 79600 µs (1.0 ) 890 µs (90 )

V Advections 89000 µs (1.0 ) 1000 µs (89 )

Field computation 1900 µs (1.0 ) 180 µs (11 )

Complete Iteration 171700 µs (1.0 ) 2250 µs (76 )

Table 2. Computation time and speedups (in paren-
theses) averaged over 5000 calls - 10242 test case -
E2200/GTX260

Substeps in one time

step

CPU (deltaf 4B) GPU (deltaf 4B)

X Advections 67000 µs (1.0 ) 780 µs (86 )

V Advections 42000 µs (1.0 ) 960 µs (43 )

Field computation 1500 µs (1.0 ) 200 µs ( 7 )

Complete Iteration 110000 µs (1.0 ) 2200 µs (50 )

Table 3. Computation time and speedups (in paren-
theses) averaged over 5000 calls - 10242 test case -
Xeon/Tesla1070

Speedups of GPU over CPU are higher than in the previous smaller test
case. The advection kernels reach speedups from 75 to 90 compared to one CPU
single core computation. For this data size, the field computation does represent
a small amount of computation (1D problem) compared to the advection kernels
(2D problems). The relatively low speedup for the field solver does not penalize
t



57HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy
( )
the global simulator performance. A complete iteration of the simulation is per-
formed 76 times quicker on the 216 cores of the GTX260 than on a single core
E2200.

CONCLUSION

We have developed a so-called δf model that tends to be more precise than
the standard model. It turns out to be a valid approach to perform a Semi-
Lagrangian Vlasov-Poisson simulation using only 32-bit floating-point precision
instead of classical 64-bit precision simulations.

We have described the implementation on GPU of the advection opera-
tor used in Semi-Lagrangian simulation, which is subject to architectural con-
straints. We have discussed the kernel structure and the trade-offs made to ac-
commodate the GPU hardware. A very fine grain parallelization of the advection
step is presented that scales well on thousands of threads.

The original MPI application (before the porting to CUDA) is bounded up
by memory bandwidth because computational intensity is small. It is well known
that algorithms of high computational intensity can be efficiently implemented
on the GPGPUs. We have demonstrated in this paper that algorithms of low
computational intensity can also benefit from GPU hardware. We have built
a GPU implementation reaching a significant speedup of overall 76 compared
to a single core CPU computation. This allows solving quickly large Vlasov-
Poisson test cases, on cheap and freely available personal computers. In the
near future, we expect to integrate this solution into a 4D semi-Lagrangian code
(with 2 dimensions both in space and velocity). The memory constraint imposed
by such 4D simulations implies that we shall design a code that runs on multiple
GPUs; it will allow for the enlargement of the available memory space. We are
now targeting the design of a MPI+CUDA code that could run on a GPU cluster.
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[SRBG99] E. Sonnendrücker, J. Roche, P. Bertrand, and A. Ghizzo. The semi-

lagrangian method for the numerical resolution of the Vlasov equations. J.
Comput. Phys., 149:201–220, 1999.



Highly Parallel Implementation of Harris Corner
Detector on CSX SIMD Architecture

Fouzhan Hosseini, Amir Fijany, and Jean-Guy Fontaine

Tele Robotics and Applications Department, Italian Institute of Technology,
Via Morego 30, Genova, Italy

{fouzhan.hosseini,amir.fijany,jean-guy.fontaine}@iit.it

http://www.iit.it

Abstract. We present a much faster than real-time implementation of
Harris Corner Detector (HCD) on a low-power, highly parallel, SIMD ar-
chitecture, the ClearSpeed CSX 700, with application for mobile robots
and humanoids. HCD is a popular feature detector due to its invariance
to rotation, scale, illumination variation and image noises. Considering
the CSX architecture, we have developed strategies for efficient paral-
lel implementation of HCD, and we have achieved a performance of 465
frames per second (fps) for images of 640x480 resolution and 142 fps for
1280x720 resolution. For a typical real-time application with 30 fps, our
fast implementation represents a very small fraction (less than %10) of
available time for each frame and thus allowing enough time for perform-
ing other computations. Our results indicate that the CSX architecture
is indeed a good candidate for achieving low-power supercomputing ca-
pability, as well as flexibility.

1 Introduction

Mobile robots and humanoids represent an interesting and challenging example
of embedded computing applications. On one hand, in order to achieve a large
degree of autonomy and intelligent behavior, these systems require a very sig-
nificant computational capability to perform various tasks. On the other hand,
they are severely limited in terms of size, weight, and particularly power con-
sumption of their embedded computing system since they should carry their own
power supply. The limitation of conventional computing architectures for these
types of applications is twofold: first, their low computing power, second, their
high power consumption. Emerging highly parallel and low-power SIMD and
MIMD architectures provide a unique opportunity to overcome these limitations
of conventional computing architectures. Exploiting these novel parallel archi-
tectures, our current objective is to develop a flexible, low-power, lightweight
supercomputing architecture for mobile robots and humanoid systems for per-
forming various tasks and, indeed, for enabling new capabilities.

Computer vision and image processing techniques are very common in robotic
applications, e.g. motion detection, tracking, 3D reconstruction and object recog-
nition. Feature detection is a low-level image processing task which is usually
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performed as the first step in many computer vision applications such as ob-
ject tracking [1] and object detection/recognition [2]. Harris Corner Detector
(HCD) [3] is a popular feature detector due to its invariance to rotation, scale,
illumination variation and image noises.

Fast implementation of HCD has been considered on various architectures.
Teixeira et al. [4] have implemented HCD on a graphics processing units (GPU).
For an image of 640x480 resolution, the HCD is computed in 10.1 ms. They real-
ized that the large number of memory accesses degrade performance. Therefore,
by compressing each 2×2 pixels in the original image as one pixel, they reduced
the computation time to 3.3 ms with one pixel imprecision. Another way to
improve performance is to employ Field Programmable Gate Arrays (FPGAs).
Dietrich [5] has implemented HCD on FPGA as part of a stereo vision system.
The developed FPGA is capable of calculating HCD for images of the resolution
358 × 288 at the speed of 60 fps. Also, Cheng et al. [6] have proposed an ASIC
implementation of HCD as part of a vision processor. The proposed architecture
is capable of computing HCD for images of the resolution 128 × 128 at the speed
of 1367 fps. Moreover, Saidani et al. [7] have employed Harris corner detector
on Cell processor. ASICs and FPGAs could be used to design custom hardware
for low-power high performance applications. GPU and Cell processor are more
flexible, but the main limitation is the rather prohibitive power consumption.
None of the above mentioned solutions satisfies our requirements for mobile sys-
tem vision processing including low power consumption, flexibility, and real time
processing capability simultaneously.

In this paper, we present a fast implementation of HCD on a highly parallel
SIMD architecture, the ClearSpeed CSX 700. The CSX 700 has a peak comput-
ing power of 96 GFOLPS, while consuming less than 9 Watts. In fact, it seems
that CSX provides one of the best (if not the best) performance in terms of
GFLOPS/Watt among available computing architectures. Considering the CSX
architecture, we have developed strategies for efficient parallel implementation of
HCD.We have achieved a performance of 465 fps for images of 640x480 resolution
and 142 fps for 1280x720 resolution. These results indeed represent a much faster
than real-time implementation and better than those previously reported in the
literature. For a typical real-time application with 30 fps, our fast implementa-
tion represents a very small fraction (less than %10) of available time for each
frame and thus allowing enough time for performing other computations. Our
experimental results, presented in this paper, clearly indicate that the SIMD ar-
chitectures such as CSX can indeed be a good candidate for achieving low-power
supercomputing capability, as well as flexibility, for embedded applications.

This paper is organized as follows. In Sect. 2, we briefly discuss the HCD
algorithm. In Sect. 3, we briefly review the CSX architecture with emphasis on
its salient features which have been exploited in our parallel implementation
of HCD. In Sect. 4, our approach for parallel implementation of HCD on CSX
architecture is described and experimental results are discussed in Sect. 5. Finally
some concluding remarks and direction for our future works is presented in
Sect. 6.
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2 The Harris Corner Detector Algorithm

To detect corners in a given image, the HCD algorithm [3] proceeds as following.
Let I(x, y) denote the intensity of a pixel located at row x and column y of the
image.

1. For each pixel (x, y) in the input image compute the elements of the Harris

matrix G =
[

gxx gxy

gxy gyy

]
as follows:

gxx =
(

∂I

∂x

)2

⊗ w gxy =
(

∂I

∂x

∂I

∂y

)
⊗ w gyy =

(
∂I

∂y

)2

⊗ w, (1)

where ⊗ denotes convolution operator and w is the Gaussian filter.
2. For all pixel (x, y), compute Harris’ criterion:

c(x, y) = det(G) − k(trace(G))2 (2)

where det(G) = gxx.gyy − g2
xy, k is a constant which should be determined

empirically, and trace(G) = gxx + gyy.
3. Choose a threshold τ empirically, and set all c(x, y) which are below τ to

zero.
4. Non-maximum suppression, i.e. extract points (x, y), which have the maxi-

mum c(x, y) in a window neighborhood. These points represents the corners.

3 The CSX 700 Architecture

In this section, we briefly review the ClearSpeed CSX 700 architecture with
emphasis on some of its salient features that have been exploited in our imple-
mentation (see, for example, [8], [9] for more detailed discussion). As illustrated
in Fig. 1(a), CSX700 has two similar cores, each core has a DDR2 memory inter-
face and a 128KB SRAM, called external memory. Each core also has a standard,
RISC-like, control unit, also called mono execution unit, which is coupled to a
highly parallel SIMD architecture called poly execution unit.

Poly execution unit consists of 96 processing elements (PEs) and performs
parallel computation (see Fig. 1(b)). Each PE has a 128 bytes register file, 6KB of
SRAM, an ALU, an integer multiply-accumulate (MAC) unit, and an IEEE 754
compliant floating point unit (FPU) with dual issue pipelined add and multiply,
as well as support for division and square root.

The CSX700 has clock frequency of 250MHz[10]. Considering one add and
one multiply floating point units working in parallel and generating one result
per clock cycle, the peak performance of each PE is then 500 MFOPS, leading to
a peak performance of 96 GFLOPS for two cores (one chip). However, sequential
(i.e., scalar) operations, wherein single add or multiply is performed, take 4 clock
cycles to be performed [10]. This results to a sequential peak performance of 12
GFLOPS for two cores. This indeed represents a drastic reduction in the peak,
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boundary data, until P (i − 1, j) (P (i, j − 1)) provides the required data. Also,
for processing the last rows (columns) of data, P (i, j) requires data which has
already been sent to P (i+1, j) (P (i, j+1)). For these PEs to provide the bound-
ary data to P (i, j), they need to store this part of data in their memory which
is a limited resource. It should be noted that using block distribution scheme on
the CSX architecture, the distance between P (i, j) and P (i+1, j) which process
two neighboring blocks is d.

Row-strip distribution The first r/p rows are assigned to the first PE, the
second r/p rows are assigned to the second PE, and so on. To handle boundary
data, PE(i) requires last rows of PE(i− 1) and first rows of PE(i + 1). In fact,
like block distribution, boundary data could be transfered from external memory
to both PEs or from one PE to another via swazzling path. The choice of PEs
receiving the boundary data form external memory or via swazzle path depends
on the trade-off between the required PE memory space and the cost of external
memory communication.

Row-cyclic distribution In this scheme, the first row is assigned to the
first PE, the second row to the second PE, and so on. Since one row is assigned
to each PE, each PE needs to communicate with the PEs which are at most
at the distance of (w1)/2. Here, each PE needs data just after its neighbor has
finished processing that same data. So, swazzle path can be utilized without
using extra poly memory space.

The parameters calculated for each data distribution strategy are summa-
rized in Table 1. As can be seen, block and row-strip distribution schemes require
either more PE memory space or more redundant external memory communica-
tions. In fact, for these schemes, the required poly memory space increases lin-
early with ω. Note that, the size of windows in HCD are determined empirically
for each application. For larger ω, e.g. 7 or 11, using these data distributions,
the required PE memory will be larger than poly memory space. Row-cyclic
distribution needs less poly memory space and no redundant external memory
communication. Although row-cyclic distribution uses inter-PE communication
more than row-strip distribution by a factor of ω/2, this overhead will be negli-
gible since communication via swazzle path is very fast (see Sect. 3). Therefore,
row-cyclic distribution scheme is the most efficient for implementing HCD on
the CSX architecture.

4.2 Parallel Implementation of Harris Corner Detector Algorithm

In this section, we discuss parallel implementation of HCD on the CSX architec-
ture, based on row-cyclic distribution scheme. Since, each CSX core includes 96
PEs, the input image is divided into groups of 96 rows. The computation of each
group represents a sweep and sweeps are performed iteratively. Also, to utilize
both cores of CSX700 processor, the input image is divided into two nearly equal
parts. The first dr/2e + (ω − 1)/2 rows are assigned to the first cores and the
last br/2c + (ω − 1)/2 rows are assigned to the second core. Sending boundary
lines to both cores enables each core to perform all computation locally. In the
following, implementation of HCD on one core is explained (for one sweep).
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Table 1. Figure of merit for different data distribution schemes. S indicates that bound-
ary data is shared between PEs by using swazzling path. M indicates that boundary
data is transferred from external memory

Data Dist. Redundant External
Inter-PE Comm. PE Memory Space

Memory Comm.

Block Dist.
M cs(ω − 1) r(ω − 1) ωΠ + m
S - (ω − 1)[cs + r] (ω + ω−1

2
)Π + m

Row-strip Dist.
M pc(ω − 1) - ωΠ + m
S - c(ω − 1) (ω + ω−1

2
)Π + m

Row-cyclic Dist. - cω(ω−1)
2

Π + m

Memory Communication Pattern For our parallel implementation, commu-
nication and computation overlapping can be greatly exploited due to the local
nature of our computation. That is, the fact that there is no need to load the
whole image into the PEs memory to start the computation. In fact, each image
row is divided into segments of almost equal size (32 or 64 pixels, depending on
the image size) and PEs can start the computation as soon as they receive the
first segment of data. After receiving the firs segment of data, each PE initiates
PIO data transfers to and from external memory, and continues to process the
segment of data which is ready in its memory. In the background, PIO transfers
new sets of data from external memory to memories of PEs and transfers the
last sets of results to external memory. When the computation is finished and
data is ready in PEs’ memories, PEs start new PIO data transfers and continue
computation of the new set of data. In our implementation, PEs never wait to
receive data (except the initial phase). This overlapping of computation and
communication significantly reduces the overhead in the parallel computation,
thus enabling a much better performance.

Computation Steps In this section, we present processing of one segment of
data. In our implementation of HCD, we have divided the algorithm into 5 steps:
calculating partial derivation of I in direction x and y, Gaussian smoothing,
computing Harris criterion, non-maximum suppression, followed by thresholding.
Algorithm 1 shows the pseudocode for this processing.

To calculate partial derivation of I, we have used Prewitt operator. Prewitt
operator uses two 3x3 kernels, PX and PY , which are convolved with the origi-
nal image to calculate approximations of the derivatives in x and y directions,
respectively. In our implementation, we take advantages of the fact that convo-
lution kernels used by Prewitt operator are separable, i.e. these kernels can be
expressed as the outer product of two vectors.

PX =



−1 0 1
−1 0 1
−1 0 1


 =




1
1
1


 ∗

[
−1 0 1

]
PY =



−1 −1 −1
0 0 0
1 1 1


 =



−1
0
1


 ∗

[
1 1 1

]
(3)

So, the x and y derivation can be calculated by first convolving in one direction
(using local data), then swazzling data and convolving in the other direction.
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Next step is Gaussian smoothing. Elements of Harris matrix, gxx, gxy, and
gyy are calculated using (1). As stated in Sect. 3, the Gaussian smoothing can
be performed using standard convolution methods. Gaussian kernel is also sep-
arable. Thus, the 2-D convolution can be performed by first convolving with a
1-D Gaussian in the x direction, and then swzzling the calculated values and
convolving with another 1-D Gaussian in the y direction. The y component is
exactly the same as x component but is oriented vertically.Then, Harris’ criterion
is computed using (2).

In the next step, non-maximum suppression, the maximum value of Harris
criterion in each 3x3 neighborhood is determined. First, each PE obtains the
maximum value in 1x3 neighborhood. Then, each PE swazzle the maximum
values to both its neighbors. Receiving the maximal values of two neighboring
rows, the maximum value in 3x3 neighborhood can then be obtained. Using this
strategy, the maximum value of 9 element in a 3x3 neighborhood is obtained by
just 4 comparisons.

Algorithm 1 Pseudocode of Parallelized HCD
ω1: Gaussian window size ω2: NMS window size

PEs in parallel do
1. Derivation of Ix and Iy:

Ix = I ⊗ [−1 0 1] , Ix = [swazzle down(Ix), Ix, swazzle up(Ix)] ⊗ [1 1 1]
Iy = swazzle up(I) − swazzle down(I) , Iy = Iy ⊗ [1 1 1]

2. Guassian Smoothing:
gxx = I2

x ⊗ x − Guassian, gxy = (IxIy2) ⊗ x − Guassian, gyy = I2
y ⊗ x − Guassian

gxx = [swazzle down(gxx), gxx, swazzle up(gxx)] ⊗ y − Guassian
gxy = [swazzle down(gxy), gxy, swazzle up(gxy)] ⊗ y − Guassian
gyy = [swazzle down(gyy), gyy, swazzle up(gyy)] ⊗ y − Guassian

3. Computation Harris Criterion: c = gxxgyy − g2
xy − k(gxx + gyy)

4. Non-maximum suppression:
for k = 1 to m

mx[k] = max{c[l] | k − (ω2 − 1)/2 ≤ l ≤ k + (ω2 − 1)/2}
for k = 1 to m

mx[k] = max{mx[k], swazzle up(mx[k]), swazzle down(mx[k])}

5. Thresholding:
for k = 1 to m

if c[k] ≥ τ and c[k] == mxp[k]
corresponding pixel is corner

∗ swazzle up() and swazzle down() represent communication with left and right
neighbors, respectively.
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5 Results and Performance of Parallel Implementation

To evaluate the performance, we have implemented the following HCDs on the
CSX700 architecture: HCD3×3 and HCD5×5 which uses a 3×3 and 5×5 Gaus-
sian kernel, respectively. Since our proposed parallel approach provides flexibil-
ity, it can be easily applied to images with different sizes, and various sizes of
Gaussian filter or non-maximum suppression window. The performance of imple-
mented algorithms in terms of latency, fps, and sustained GFLOPS for different
image resolutions are summarized in Table 2. As Table 2 shows, for all tested
image resolutions, even for resolution of 1280x720, our implementation is much
faster than real-time.

Table 2. Performance of HCD on CSX700 architecture using 3×3 and 5×5 Gaussian
filter

Image Latency (ms) fps Sustained GFLOPS
Resolution HCD3×3 HCD5×5 HCD3×3 HCD5×5 HCD3×3 HCD5×5

128x128 .165 .224 6060 4464 3.97 4.68

352x288 .8 1.22 1250 819 5.06 5.31

512x512 1.74 2.63 574 380 6.02 6.37

640x480 2.15 3.28 465 304 5.71 5.99

1280x720 7.04 10.89 142 91 5.23 5.41

The arithmetic intensity, i.e., number of operation per pixel, of HCD3×3 and
HCD5×5 is 40 and 64 respectively. As Table 2 shows, the sustained GFLOP de-
pends also on the image size. The reason is that in processing the last sweep
of data, some PEs may be idle, and the number of idle PEs depends on im-
age size. For example, performing HCD3×3 for images of resolution 640x480
and 1280x720, the number of idle PEs are 4 and 32, respectively. Due to more
utilization of PEs, better GFLOPS is achieved for resolution 640x480.

Table 3 compares our implementation results with those reported in the
literature. As can be seen, our approach provides much better performance in
terms of latency or frame per second while providing a high degree of flexibility
in terms of problem size and parameters.

Table 3. Comparison with other implementations in the literature

Image Resolution fps reported in [ref] fps achieved by our approach

128x128 1367 [6] 4464-6060

352x288 60 [5] 819

640x480 99 [4] 304
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6 Conclusion and Future Work

We presented a much faster than real-time implementation of Harris Corner
Detector (HCD) on a low-power, highly parallel, SIMD architecture, the Clear-
Speed CSX 700. Considering the features of the CSX architecture, we presented
strategies for efficient parallel implementation of HCD.We have achieved a per-
formance of 465 fps for images of 640x480 resolution and 142 fps for 1280x720
resolution. These results indeed represent a much faster than real-time imple-
mentation. Our experimental results, presented in this paper, and our previous
work [11] clearly indicate that the CSX architecture is indeed a good candidate
for achieving low-power supercomputing capability, as well as flexibility, for em-
bedded computer vision applications. We are currently implementing other more
complex variants of HCD as well as more sophisticated and computationally
more expensive feature detectors such as SIFT.
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Abstract. In this paper we propose and evaluate a post-link-optimization to in-
crease instruction level parallelism by moving instructions from one basic block
to the preceding blocks. The Grid Alu Processor used for the evaluations com-
prises plenty of functional units that are not completely allocated by the original
instruction stream. The proposed technique speculatively performs operations in
advance by using unallocated functional units.
The algorithm moves instructions to multiple predecessors of a source block. If
necessary, it adds compensation code to allow the shifted instructions to work on
unused registers, whose values will be copied into the original target registers at
the time the speculation is resolved.
Evaluations of the algorithm show a maximum speedup of factor 2.08 achieved
on the Grid Alu Processor compared to the unoptimized version of the same pro-
gram. Reasons are a better exploitation of the instruction level parallelism and an
optimized mapping of loops.

1 Introduction

The Grid Alu Processor (GAP, see Uhrig et al. [15]) was proposed to speed up the ex-
ecution of single threaded sequential instruction streams. In difference to most other
currently discussed designs it uses the available number of transistors not for complete
cores but for a high number of functional units (FUs) set up as two-dimensional ar-
ray. To configure it, a superscalar-like processor frontend loads a standard sequential
instruction stream that is dynamically mapped onto the array by a special configuration
unit. Execution speed is gained very much from the high level of parallelism supplied
by the FUs.

The main influences on the mapping process are control and data flow dependencies
as well as resource conflicts caused by limited resources. These dependencies restrict
the level of instruction level parallelism that can be exploited. Thus, most of the time
not all of the FUs of the GAP can be used although they could execute additional in-
structions at no or only little additional cost in terms of execution time.

The algorithm presented in this paper tackles this by moving parts of a basic block
(source block) to one or more preceding blocks (target blocks). By this, results that
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might be required in the near future, e.g. after upcoming branches, are calculated spec-
ulatively on otherwise unused resources. At the time the reason for the speculation is
resolved, these results are made visible by compensation instructions (if required).

As the GAP shall be able to replace a superscalar processor and, hence, be able
to execute the same binaries, no recompilation would be needed to make use of it.
To preserve this advantage, we suggest using a post-link optimizer to apply platform-
dependent code optimizations because the source code of the program to optimize is
not needed in this case. Therefore, the algorithm has been designed for use in a post-
link-optimizer, hence after instruction selection, register assignment, and scheduling. 1

The algorithm is able to handle all types of control flow independent from
domination- or post-domination-relations or the number of the source block’s predeces-
sors. The only exceptions are basic blocks that are targets of indirect jumps. A binary
analysis together with profiling of the application delivers information about the execu-
tion frequency of basic blocks that can be selected as candidates for the modification.

The paper is organized as follows. Section 2 gives an overview of related approaches
followed by Section 3 which introduces the GAP (GAP) as target processor, with focus
on the mapping of code to the array of FUs and the features exploited by the proposed
algorithm. The algorithm is described in Section 4 followed by an evaluation of its
effects on the execution of selected benchmarks in Section 5. Section 6 concludes the
paper.

2 Related Work

The GAP is a unique approach and no other code optimizations are yet suggested for it.
However, similar challenges arise in compilation for superscalar or VLIW architectures
as well as in hardware design. This section gives an overview.

For VLIW architectures, trace scheduling [5] is used to expose parallelism beyond
basic block boundaries. The Multiflow Trace Scheduling Compiler [9] is an example
for its implementation. This compiler also tries to move instructions above splits in the
control flow graph but does this only if no compensation instructions are necessary.
Compensation code is not used/generated due to the author’s point of view that this
causes too much overhead. As we show later, this is not always correct. Other schedul-
ing techniques for speculation have been introduced and evaluated by e.g. Bergmann [2]
and Mahlke [10]. They work mainly the level of superblocks. These techniques require
sophisticated knowledge of the program to optimize and, therefore, cannot be applied
as post-link optimizations.

For scalar and superscalar architectures, moving of instructions to preceding blocks
is also suggested by Bernstein et al. [1]. The authors also state, that it is possible to
move instructions speculatively, but does not give any details. They focus on moving
single instructions. Similar work is done by Tirumalai et al. [13]. Although this can be
iterated many times it is a difference to the work presented here, because we try to move
as many instructions of a basic block as possible or reasonable at one time. Hence, the

1 Nevertheless, additional implementation effort arises from this and it can happen that the opti-
mization performs not as well as if implemented directly in the compiler. Somehow this is the
price to pay for not having access to the source code.
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overhead for repeatingly executing the analyses, e.g., updating the data dependencies, is
much smaller. Beyond this, we also cope with the duplication of instructions to execute
them speculatively.

Similarities also exist with tail duplication (e.g. [6]), which creates copies of a
basic block merging them with each of its preceding basic blocks. We also try to ex-
pose parallelism by duplicating instructions but handle only the important parts of basic
blocks. Hence, the program is not as heavily rewritten but the modification effort is even
smaller.

As shown in Section 4 our algorithm also has parallels with software pipelining
(e.g., Llosa [8]) because it can split a loop formed by a single block into two parts and
rearrange them (i.e., a prologue is formed). Nevertheless, it does not reach the com-
plexity of most algorithms for software pipelining because we assume that instructions
in blocks have already been scheduled. Accordingly, we do not try to divide the source
block into equal blocks in terms of approximated execution time and support only one
stage.

Regarding processor design techniques, out-of-order execution as implemented by
scoreboarding [11, 12] or Tomasulo’s scheme [14] – both in combination with branch
prediction – executes instructions speculatively, too. The hardware-effort needed to al-
low out-of-order execution is very high and adds new limitations e.g. for the issue unit
of a processor as shown by Cotofana et al. [4].

Hence, the outstanding features of the algorithm presented here are its large number
of instructions which can be handled in one iteration, its ability to handle different con-
stellations of blocks independent of the number of the source block’s predecessors or
the domination and/or post-domination relation between a source block and its prede-
cessors. Beyond this, it is a post-link optimization that uses only information available
from the analysis of the binary file and profiling. This causes also the struggle to modify
only small parts of the program with the aim of achieving maximal effects.

3 Target Platform: Grid Alu Processor

The Grid Alu Processor (GAP) has been developed to speed up the execution of con-
ventional single-threaded instruction streams. To achieve this goal, it combines the ad-
vantages of superscalar processor architectures, those of coarse grained reconfigurable
systems, and asynchronous execution.

A superscalar-like processor front-end consisting of fetch- and decode unit is to-
gether with a novel configuration unit (see Figure 1(a)) used to load instructions and
map them dynamically onto an array of functional units (FUs) accompanied by a branch
control unit and several load/store units to handle memory accesses (see Figure 1(b)).

The array of FUs is organized in columns and rows. Each column is dynamically
and per configuration assigned to one architectural registers. Instructions are then as-
signed to the column whose register matched the instructions output register. The rows
of the array are used to model dependencies between instructions. If an instruction B
is dependent of an instruction A than it must be mapped to a row below the row of
A. This way it is possible for the in-order configuration unit to also “issue” dependent
instructions without the need of complex out-or-order logic. After mapping a branch
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Fig. 1. Architecture of the Grid Alu Processor

the configuration unit continues with the most probable output, for this e.g. a bimodal
branch predictor is used.

Execution starts in the first row of the array. It is done asynchronously between the
FU and synchronously in and with the branch control unit and the L/S units. Synchro-
nization between the FUs and the other elements of the array is controlled by tokens
calculated by the configuration unit; this is similar to data-flow architectures.

When execution reaches the last row of the array, a branch is miss-predicted or there
are no more columns available to map instructions, the array is cleared and the configu-
ration units starts mapping in the first row of the array. To be able to save configurations
for repeated execution all elements of the array are equipped with some memory cells
which form configuration layers. The array is quasi three-dimensional and its size can
be written as columns x rows x layers.

So, before clearing the array it is first checked if the next instruction to execute is
equal to any first instruction in one of the layers. Then, in all cases, the new values of
registers calculated in columns are copied to the register file at the top of the columns. If
a match is found, the corresponding layer is set to active and execution continues there.
If no match is found, the least recently used configuration is cleared and used to map
new instructions. With this technique, the execution of loops can be accelerated very
much because instructions do not have to be re-issued. This favors static speculation,
too, because the maybe speculatively executed instructions are likely to be configured
already on one of the configuration layers due to being often executed parts of the
program.

To evaluate the architecture a cycle-accurate simulator has been developed. It uses
the Portable Instruction Set Architecture (PISA), hence the simulator can execute the
same program files as the SimpleScalar simulation tool set [3].

More detailed information about the processor are given by Uhrig et al. [15].
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A side effect of the static speculation algorithm is that moving instructions over a
loop back branch is similar to software pipelining. In the future we will focus more
on this aspect. As example, it would be possible to add an additional step to resched-
ule the instructions of the source block before modification to increase the number of
instructions that can be moved to the target blocks.

Another topic that we will examine is the real-time capability of the proposed ap-
proach. Speculative execution is also applied within out-of-order processors but, in con-
trast to our approach, its timing behavior is nearly unpredictable because of the dynamic
nature.
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KEYNOTE

Intel Lab’s “Single-chip Cloud Computer”, 
an IA Tera-scale Research Processor 

Jim Held, Intel Fellow, Director Tera-Scale Computing Research, Intel, USA

Abstract: As part of our Tera-scale Computing Research Program, Intel Labs has created a second generation exper-
imental “Single-chip Cloud Computer,” (SCC). It contains the most Intel Architecture cores ever integrated on a silicon
CPU chip – 48 cores. It incorporates technologies intended to scale multi-core processors to 100 cores and beyond,
such as an on-chip network, advanced power management technologies and support for “message-passing.”

Architecturally, SCC is a microcosm of a cloud datacenter. Each core can run a separate OS and software stack and
act like an individual compute node that communicates with other compute nodes over the on-die packet-based net-
work fabric, thus supporting the "scale-out" message passing programming models that have been proven to scale to
1000s of processors in cloud datacenters.

The SCC serves as an experimental platform for a wide range of software research and is currently being used by a
worldwide community of academic and industry co-travelers. This talk will describe the architecture of the SCC plat-
form and discuss its role in the broader context of our Tera-scale research.  

Bio: Jim Held is an Intel Fellow who leads a virtual team of architects conducting Tera-Scale Computing Research
in Intel Labs. Since joining Intel in 1990, he has led research and development in a variety of Intel's labs concerned
with media and interconnect technology, systems software, multi-core processor architecture and virtualization. He
earned a Ph.D. (1988) in Computer and Information Science at the University of Minnesota.
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