R
v ]

M

[T R[E

g D elelelede0c0-0 B & -
O .= - = = = = = = & T
[ S, e e i B ) M M, W, R B R 0 [N [wY [0 mw\[
[ g Sy y g Sy y g Sy y g Sy j [ TT TT TT j
e AN P A A A < T o e I |
B He 5 5 5 5 5 5 5 &
O cot e T e o 0 e b e B n Slfls [SHS I« “[SHS I« 'S |
5 {L—u 1 N h‘—u 1 i, h‘—u 1 i, ﬂ:u L] 5 [l SHSH > SHSK > SHSK >SHS ]
| et et et e eor o T (] (k] (s P
do v O] O 0} 0} 0} H+Hh 7 [ — 5& | |
B - g - 5 - 5 - 0 Cio M o W w5
O o L L L L 0 B L i . i L o FJ“\% = 5 |
B Ho g g g g J J J H sHs sHs sHs sHs
sl Tt e s e s s f s e s s e s R E S S{SHS SHS S %
|| = 4 [

o e o P L e o e r}ﬁ% o[ “P(ﬁ B [P [ [rY [ v\ H
o Woal O i {7 [+ L7 {7 tHh 5 O k 110 | M | M | Y] v |
- g - 5 - 5 - ly v 1y
B ta £} £} £ £ £ £ oh B O S SIS S o HS |
d I O P ol P P < S T 2 R ' [ENT T B o Y B
B e [y T B A L i e e A ] — 5
O D e e e et e e B O N\ |l LM M| My LM ]

- i - i - i - ] sHs sHs sHs SHs 5

B Ll 0 - 0 - 0 - o B
E i 3 3 £} £} £} 0} 0} ﬁ% O SHS sHs SHsS SHs O
0o T iy 1 5y s e i s et i R e I | P I | P 1| P H
§ i i i i O E . . . - b
g =B 0] (o | (o | (o | (o | 0
t t | | | | o o 0 N

[ ]
I OUoOoooOooooooooooooooodg

Sponsored by

2ORA

VT

(Hand-out) Proceedings of the

4th Workshop on
Highly Parallel Processing
on a Chip

August 31, 2010, Ischia - Naples, Italy
Organizers Martti Forsell and Jesper Larsson Traff

in conjunction with
the 16th International European Conference on

Parallel and Distributed Computing (Euro-Par)
August 31-September 3, 2010, Ischia - Naples, Italy

Wt Furo-Par




2 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

(Hand-out) Proceedings of the

4th Workshop on
Highly Parallel Processing
on a Chip

August 31, 2010, Ischia - Naples, Italy
http://www.hppc-workshop.org/

in conjunction with

the 16th International European Conference on Parallel and Distributed Computing (Euro-Par)
August 31-September 3, 2010, Ischia - Naples, Italy

August 2010
Handout editors: Martti Forsell and Jesper Larsson Traff
Printed in Finland and Austria



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

CONTENTS
Foreword
Organization
Program
SESSION 1 - Models and memory organizations

Keynote - The Massively Parallel Computing Model GCA - Rolf Hoffmann, Technical University of
Darmstadt

Low-Overhead Organizations for the Directory in Future Many-Core CMPs - Alberto Ros and
Manuel E. Acacio, Technical University of Valencia, University of Murcia

SESSION 2 - Programming multicores

A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores - Marc Tchiboukdjian,
Vincent Danjean, Thierry Gautier, Fabien Le Mentec and Bruno Raffin, CNRS - CEA/DAM, DIF,
Grenoble University, INRIA

Resource-agnostic programming for many-core microgrids - Thomas Bernard, Clemens Grelck,
Michael Hicks, Christopher Jesshope and Raphael Poss, University of Amsterdam

Programming Heterogeneous Multicore Systems using Threading Building Blocks - George Russell,
Paul Keir, Alastair Donaldson, Uwe Dolinsky, Andrew Richards and Colin Riley, Codeplay Software,
University of Glasgow, Oxford University

SESSION 3 - Applications and optimizations

Fine-grained parallelization of a Vlasov-Poisson application on GPU - Guillaume Latu, CEA, IRFM

Highly Parallel Implementation of Harris Corner Detector on CSX SIMD Architecture - Fouzhan
Hosseini, Amir Fijany and Jean-Guy Fontaine, Italian Institute of Technology

Static Speculation as Post-Link Optimization for the Grid Alu Processor - Ralf Jahr, Basher Shehan,
Sascha Uhrig and Theo Ungerer, University of Augsburg

SESSION 4 - Networks and clouds
A Multi-Level Routing Scheme and Router Architecture to support Hierarchical Routing in Large
Network on Chip Platforms - Rickard Holsmark, Shashi Kumar and Maurizio Palesi, Jonképing

University, University of Catainia

Keynote - Intel Lab’s “Single-chip Cloud Computer”, an IA Tera-scale Research Processor - Jim Held,
Tera-Scale Computing Research, Intel

18

28

38

48

58

08

78

88

3



4 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

FOREWORD

Technological developments are bringing parallel computing back into the limelight after some years of absence from
the stage of main stream computing and computer science between the early 1990ties and early 2000s. The driving
forces behind this return are mainly advances in VLSI technology: increasing transistor densities along with hot chips,
leaky transistors, and slow wires make it unlikely that the increase in single processor performance can continue the
exponential growth that has been sustained over the last 30 years. To satisfy the needs for application performance,
major processor manufacturers are instead planning to double the number of processor cores per chip every second
year (thus reinforcing the original formulation of Moore's law). We are therefore on the brink of entering a new era
of highly parallel processing on a chip. However, many fundamental unresolved hardware and software issues remain
that may make the transition slower and more painful than is optimistically expected from many sides. Among the
most important such issues are convergence on an abstract architecture, programming model, and language to easily
and efficiently realize the performance potential inherent in the technological developments.

This is fourth time we organize the Workshop on Highly Parallel Processing on a Chip (HPPC). Again, it aims to be a
forum for discussing such fundamental issues. It is open to all aspects of existing and emerging/envisaged multi-core
processors with a significant amount of parallelism, especially to considerations on novel paradigms and models and
the related architectural and language support. To be able to relate to the parallel processing community at large,
which we consider essential, the workshop has been organized in conjunction with Euro-Par, the main European
(and international) conference on all aspects of parallel processing.

The Call-for-papers for the HPPC workshop was launched early in the year, and at the passing of the submission
deadline we had received 18 submissions, which were relevant to the theme of the workshop and of good quality.
The papers were swiftly and expertly reviewed by the program committee, all of them receiving 3-4 qualified reviews.
We thank the whole of the program committee for the time and expertise they put into the reviewing work, and for
getting it all done within the rather strict timelimit. Final decision on acceptance was made by the program chairs
based on the recommendations from the program committee. This year the themes of manuscripts matched well to
the scope of the workshop and we were able to accept full 8 contributions, resulting in an acceptance ratio of about
44%. The 8 accepted contributions will be presented at the workshop today, together with two forward looking invited
talks by Rolf Hoffmann and Jim Held on he massively parallel computing model GCA and Intel Lab’s Single-chip
Cloud Computer.

This handout includes the workshop versions of the HPPC papers and the abstracts of the invited talks. Final versions
of the papers will be published as post proceedings in a Springer LNCS volume containing material from all the Euro-
Par workshops. We sincerely thank the Euro-Par organization for giving us the opportunity to arrange the HPPC work-
shop in conjunction with the Euro-Par 2010 conference. We also warmly thank our sponsors VTT, University of Vienna
and Euro-Par for the financial support which made it possible for us to invite Rolf Hoffmann and Jim Held, both of
whom we also sincerely thank for accepting our invitation to come and contribute.

Finally, we welcome all of our attendees to the Workshop on Highly Parallel Processing on a Chip in the beautiful
city of Ischia, Ttaly. We wish you all a productive and pleasant workshop.

HPPC organizers
Martti Forsell, VIT, Finland
Jesper Larsson Tréff, University of Vienna, Austria



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

ORGANIZATION

Organized in conjuction with the 16th International European Conference on Parallel and Distributed Computing

WORKSHOP ORGANIZERS

Martti Forsell, VIT, Finland
Jesper Larsson Tréff, University of Vienna, Austria

PROGRAM COMMITTEE

Martti Forsell, VIT, Finland

Jim Held, Intel, USA

Peter Hofstee, IBM, USA

Chris Jesshope, University of Amsterdam, The Netherlands
Ben Juurlink, Technical University of Berlin, Germany
Jorg Keller, University of Hagen, Germany

Christoph Kessler, University of Linkdping, Sweden
Dominique Lavenier, IRISA - CNRS, France

Ville Leppinen, University of Turku, Finland

Lasse Natvig, NTNU, Norway

Sabri Pllana, University of Vienna, Austria

Jirgen Teich, University of Erlagen-Ntrnberg, Germany
Jesper Larsson Triff, University of Vienna, Austria

Theo Ungerer, University of Augsburg, Germany

Uzi Vishkin, University of Maryland, USA

SPONSORS
VTT, Finland http://www.vtt.fi
University of Vienna http://www.univie.ac.at

Euro-Par http://www.euro-par.org



0 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

PROGRAM

4th Workshop on Highly Parallel Processing on a Chip (HPPC 2010)

TUESDAY AUGUST 31, 2010 Ischia - Naples
SESSION 1 - Models and memory organizations

09:30-09:35 Opening remarks - Jesper Larsson Trdff and Martti Forsell, University of Vienna, VIT

09:35-10:35 Keynote - The Massively Parallel Computing Model GCA - Rolf Hoffmann, Technical University of
Darmstadt

10:35-11:00 Low-Overhead Organizations for the Directory in Future Many-Core CMPs - Alberto Ros and Manuel
E. Acacio, Technical University of Valencia, University of Murcia

11:00-11:30 -- Break -
SESSION 2 - Programming multicores

11:30-11:55 A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores - Marc Tchiboukdjian, Vin-
cent Dangjean, Thierry Gautier, Fabien Le Mentec and Bruno Rajfin, CNRS - CEA/DAM, DIF, Grenoble University,
INRIA

11:55-12:20 Resource-agnostic programming for many-core microgrids - Thomas Bernard, Clemens Grelck,
Michael Hicks, Christopher Jesshope and Raphael Poss, University of Amsterdam

12:20-12:45 Programming Heterogeneous Multicore Systems using Threading Building Blocks - George Russell,
Paul Keir, Alastair Donaldson, Uwe Dolinsky, Andrew Richards and Colin Riley, Codeplay Software, University of
Glasgow, Oxford University

12:45-15:30 -- Lunch -
SESSION 3 - Applications and optimizations

15:30-15:55 Fine-grained parallelization of a Vlasov-Poisson application on GPU - Guillaume Latu, CEA, IREM
15:55-16:20 Highly Parallel Implementation of Harris Corner Detector on CSX SIMD Architecture - Fouzhan Hos-
seini, Amir Fijany and Jean-Guy Fontaine, Iltalian Institute of Technology

16:20-16:45 Static Speculation as Post-Link Optimization for the Grid Alu Processor - Ralf Jahr, Basher Shehan,
Sascha Uhrig and Theo Ungerer, University of Augsburg

16:45-17:30 -- Break --
SESSION 4 - Networks and clouds

17:30-17:55 A Multi-Level Routing Scheme and Router Architecture to support Hierarchical Routing in Large Net-
work on Chip Platforms - Rickard Holsmark, Shashi Kumar and Maurizio Palesi, Jonkdping University, University
of Catainia

17:55-18:55 Keynote - Intel Lab’s “Single-chip Cloud Computer”, an IA Tera-scale Research Processor - Jim Held,
Tera-Scale Computing Research, Intel

18:55-19:00 Closing remarks - Jesper Larsson Trdff and Martti Forsell, University of Vienna, VIT



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 7

KEYNOTE

The Massively Parallel Computing Model GCA

Rolf Hoffmann, Professor, Technical University of Darmstadt, Germany

Abstract: The Global Cellular Automata Model (GCA) is an extension of the Cellular Automata Model (CA). Whereas
in the CA model each cell is connected via fixed links to its local neighbors, in the GCA model each cell is connected
via data dependant dynamic links to any (global) cells of the whole array. The GCA cell state does not only contain
data information but also link information. The cell state is synchronously updated according to a local rule, modifying
the data and the link information. Similar to the CA model, only the own cell state is modified. Thereby write conflicts
cannot occur. The GCA model is related to the CROW (concurrent read owners write) model and it can be used to
describe a large range of applications. GCA algorithms can be described in the language GCA-L which can be compiled
into different target platforms: a generated data parallel multi-pipeline architecture, a NIOS II multi-softcore architecture
and a NVIDIA GPU.

Bio: Rolf Hoffmann is Professor and leader of the Computer Architecture Group in the Computer Science Department
of the Technical Unversity of Darmstadt Germany since 1978. He graduated 1970 at TU Berlin (Dipl.-Ing. Electrical
Engineering), and received there 1974 the Ph.D. in Computer Science. He published a book on Microprogramming
and Computer Design and many papers on special computer architectures and their FPGA implementations. Since
1994 several accelerators for Cellular Automata (CEPRA series) were implemented in his group. He is mainly working
on novel massively parallel computing models; in particular he proposed the Global Cellular Automata model.



8 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Low-Overhead Organizations for the Directory in Future
Many-Core CMPs*

Alberto Ros! and Manuel E. Acacio?

'Dpto. de Informitica de Sistemas y Computadores
Universidad Politécnica de Valencia, 46022 Valencia (Spain)
2Dpto. de Ingenierfa y Tecnologia de Computadores
Universidad de Murcia, 30100 Murcia (Spain)
aros@gap.upv.es, meacacio@ditec.um.es

Abstract. If current trends continue, today’s small-scale general-purpose CMPs will soon
be replaced by multi-core architectures integrating tens or even hundreds of cores on-chip.
These many-core CMPs will implement the hardware-managed, implicitly-addressed, co-
herent caches memory model. Cache coherence in these designs will be maintained through
a directory-based cache coherence protocol implemented in hardware. The organization of
the directory structure will be a key design point due to the requirements in area that it
will pose. In this work we study the effects on performance, network traffic and area that
the use of compressed sharing codes for the directory will have in many-core CMPs. In
particular, we select two compressed sharing codes previously proposed by us in the con-
text of large-scale shared-memory multiprocessors that have very small area requirements.
Simulation results of 32-core CMPs show that degradations of up to 32% in performance
and 350% in network traffic are experienced. Additionally, since some proposals for effi-
cient multicast support in on-chip networks have recently appeared, we also consider the
case of using this kind of support in combination with the compressed sharing codes. Un-
fortunately, we found that multicast support is not enough to remove all the performance
degradation that the compressed sharing codes introduce and barely can reduce network
traffic.

1 Introduction

In the last years we have witnessed the substitution of single-core processors by multi-core ones.
Following the Moore’s Law that establishes that the number of transistors doubles every 18
months, it is expected that current small-scale general-purpose chip-multiprocessors (CMPs)
will soon be followed by multi-core architectures integrating tens or even hundreds of cores on-
chip [3]. Architectures of this type are usually known as many-core CMPs.

Many-core CMPs will be probably designed as arrays of identical or close-to-identical building
blocks (tiles) connected over a switched direct network [12,16]. Tiled architectures provide a
scalable solution for supporting families of products with varying computational power, managing
the design complexity, and effectively using the resources available in advanced VLSI technologies.
As an example, Intel has recently announced the 48-core Single-chip Cloud Computer [1], an
experimental research microprocessor that has been developed in the context of the Tera-scale
Computing Research Program. More specifically, the Single-chip Cloud Computer consists of 24
tiles with two IA cores per tile, which are interconnected by means of a 24-router mesh network
providing 256 GB/s bisection bandwidth.

* This research was supported by the Spanish MEC and MICINN;, as well as European Commission
FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04, and PROMETEO from Gen-
eralitat Valenciana (GVA) under Grant PROMETEQ/2008/060.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 9

40.07

Area required (mm2)
n
o
9

0.0~ T T T T T T T
2 4 8 16 32 64 128 256

Number of cores

Fig. 1: Area (mm?) required for a IMB cache module when the bit-vector sharing code is used

On the other hand, if current trends continue, future many-core CMP architectures will
implement the hardware-managed, implicitly-addressed, coherent caches memory model [6]. With
this memory model, all on-chip storage is used for private and shared caches that are kept coherent
in hardware by using a cache coherence protocol. In this way, each tile contains at least one level
of cache memory that is private to the local core (the L1 in this work), and the first level of
shared cache (commonly, the L2 cache) is physically distributed between the tiles of the system.

The cache coherence protocol will be a key design issue in these architectures since it will add
requirements of area and energy consumption to the final design, and therefore, could restrict
severely its scalability. When the number of cores is large, as is the case of many-core CMPs, the
best way of keeping cache coherence is by implementing a directory-based protocol, which reduces
energy consumption compared to broadcast-based protocols by keeping track of the caches that
hold copies of each block in a directory structure. In tiled CMPs, the directory structure is
distributed between the L2 cache banks, usually included into the L2 tags’ portion [16]. In this
way, each tile keeps the sharing information of the blocks mapped to the L2 cache bank that
it contains. This sharing information comprises two main components!': the state bits used to
codify one of the three possible states the directory can assign to the line (Uncached, Shared and
Private), and the sharing code, that holds the list of current sharers. Most of the bits of each
directory entry are devoted to codifying the sharing code. Since the directory must be stored as
part of the on-chip L2 cache, it is desirable that its size be kept as low as possible. Moreover, a
hard to scale directory organization could require to re-design the L2 cache to adapt the tile to
the range of cores that is expected for the CMP.

In a traditional directory organization, each directory entry keeps track of the sharers of the
corresponding memory block through a simple bit-vector (one bit per private cache). In Figure 1,
we plot the area (in mm?) that one 1MB 4-way L2 module would take as the number of cores
grows from 2 to 256 (area estimations are based on CACTI. Refer to Section 4 for more details).
As it can be seen, while the number of cores keeps below 16 the bit-vector sharing code barely
impacts area requirements. However, from 16 cores on, the use of bit-vectors would entail too
much area overhead and more area efficient sharing codes would be required.

One approach for reducing directory area requirements in the context of traditional shared-
memory multiprocessors is the use of compressed sharing codes. Compressed sharing codes store
the full directory information in a compressed way to use fewer number of bits, introducing a loss
of precision compared to ezact ones?. This means that when this information is reconstructed,
some of the cores codified in the sharing code are real sharers and must receive the coherence

! Apart from other implementation-dependent bits.
2 Bit-vector is an example of ezact sharing code.



10 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

L2$ (Data) 5 o i i i i s

Lus [ ros aan

g
g

£ |-

CPU Core

LID$ u L2$ (Tags)

L2$ (Data) ' A A O A S

Fig. 2: Organization of the tile assumed in this work and a 4x8 tiled CMP

messages, whereas some other cores are not sharers actually and unnecessary coherence messages
will be sent to them. Unnecessary coherence messages lead to increased miss latencies, since more
messages are required to resolve caches misses. Moreover, unnecessary coherence messages also
entail extra traffic in the interconnection network and useless cache accesses, which will increase
energy consumption. Conversely, a bit-vector directory does not generate unnecessary coherence
messages and thus shows the best results in terms of both performance and energy consumption.

In this work we study the effects on performance, network traffic and area required by the
directory structure that the use of compressed sharing codes will have in many-core CMPs. In
particular, we select two compressed sharing codes previously proposed by us in the context of
large-scale shared-memory multiprocessors, Binary Tree (BT) and Binary Tree with Symmetric
Nodes (BT-SN) [2], and that have very small area requirements. Simulation results of 32-core
CMPs show that degradations of up to 32% in performance and 350% in network traffic are
experienced. Additionally, since some proposals for efficient multicast support in on-chip net-
works have recently appeared [11], we also consider the case of using this kind of support in
combination with the compressed sharing codes. Unfortunately, multicast support is not enough
to remove completely the performance degradation that the compressed sharing codes introduce
(performance degradations of 10% on average are still observed when BT is used) and barely can
reduce network traffic.

The rest of the paper is organized as follows. First of all, we will give more details regarding
the target CMP architecture in Section 2. Subsequently, in Section 3 we will present a couple of
compressed sharing codes based on the concept of multilayer clustering that have small overhead
in terms of area. Next, in Section 4, we will describe the evaluation environment that we are
assuming, and the results of the evaluation will be shown in Section 5. Finally, Section 6 closes
the work and points future directions to be explored.

2 Base Architecture

A tiled CMP architecture consists of a number of replicated tiles connected over a switched
direct network. Each tile contains a processing core with primary caches (both instruction and
data caches), a slice of the L2 cache, and a connection to the on-chip network. Cache coherence
is maintained at the L1 caches. In particular, it is employed a directory-based cache coherence
protocol, with directory information stored in the tags’ part of the L2 cache modules. The L2
cache is shared among the different processing cores, but it is physically distributed between
them. Therefore, some accesses to the L2 cache will be sent to the local slice while the rest will
be serviced by remote slices (L2 NUCA architecture [5]). Moreover, for simplicity the L1 and L2
caches are inclusive, that is to say, all the blocks included in any L1 cache keep an entry in the
L2 cache. Figure 2 shows the organization of a tile (left) and a 16-tile CMP (right). From now
on, we will use the terms tile and node interchangeably.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 11

3  Multi-layer Clustering Concept

This section presents two compressed sharing code organizations based on the multi-layer clus-
tering approach previously proposed in [2].

Multi-layer clustering assumes that nodes are recursively grouped into clusters of equal size
until all nodes are grouped into a single cluster. Compression is achieved by specifying the
smallest cluster containing all the sharers (instead of indicating all the sharers). Compression
can be increased even more by indicating only the level of the cluster in the hierarchy. In this
case, it is assumed that the cluster is the one containing the home node for the memory block.
This approach is valid for any network topology.

Although clusters can be formed by grouping any integer number of clusters in the immedi-
ately lower layer of the hierarchy, we analyze the case of using a value equal to two. That is to
say, each cluster contains two clusters from the immediately lower level. By doing so, we simplify
binary representation and obtain better granularity to specify the set of sharers. This recursive
grouping into layer clusters leads to a logical binary tree with the nodes located at the leaves.

Node| Node|
1 2

Node| Node Node|
5 6

Node| Node| Node|
9 10

Node| Node| Node|
12 13 14

) )

Level4

Level 3

Level2

z
s = X} w%

Z Z z Z
z “g “ °&
—

a) Physical system (b) Logical system

Fig. 3: Multi-layer clustering approach example

As an application of this approach, two compressed sharing codes were previously proposed
in [2]. The sharing codes can be shown graphically by considering the distinction between the
logical and the physical organizations. For example, we have a 16-tile CMP with a mesh as the
interconnection network, as shown in Figure 3(a), and we can imagine the same system as a
binary tree (multi-layer system) with the nodes located at the leaves of this tree, as shown in
Figure 3(b). Note that this tree only represents the grouping of nodes, not the interconnection
between them. In this representation, each subtree is a cluster. Clusters are also shown in Figure
3(a) by using dotted lines. It can be observed that the binary tree is composed of 5 layers or
levels (logy N + 1, where N is a power of 2). From this, the following two compressed sharing
codes were derived in [2]: Binary tree (BT) and Binary tree with symmetric nodes (BT-SN).

3.1 Binary Tree (BT)

Since nodes are located at the leaves of a tree, the set of nodes (sharers) holding a copy of a
particular memory block can be expressed as the minimal subtree that includes the home node



12 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Table 1: System parameters

32-core CMP
GEMS Parameters SICOSYS Parameters

Processor frequency 4 GHz Network frequency 2 GHz
Cache hierarchy Inclusive Topology 8x4 Mesh
Cache block size 64 bytes Switching technique |Wormhole, Multicast
Split L1 I & D caches |128KB, 4 ways, ||Routing technique Deterministic X-Y

4 hit cycles Message size 4 flits data, 1 flit control
Shared unified L2 cache|1MB/tile, 4 ways,||Routing time 2 cycles

7 hit cycles Link latency (one hop)|2 cycles
Memory access time 300 cycles Link bandwidth 1 flit/cycle

and all the sharers. This minimal subtree is codified using the level of its root (which can be
expressed using just [log, (logy N + 1)] bits). Intuitively, the set of sharers is obtained from the
home node identifier by changing the value of some of its least significant bits to don’t care. The
number of modified bits is equal to the level of the above mentioned subtree. It constitutes a
very compact sharing code (observe that, for a 128-node system, only 3 bits per directory entry
are needed). For example, consider a 16-node system such as the one shown in Figure 3(a), and
assume that nodes 1, 4 and 5 hold a copy of a certain memory block whose home node is 0. In
this case, node 0 would store 3 as the tree level value, which is the one covering all sharers (see
Figure 3(b)). Unfortunately, this would include as well nodes 0, 2, 3, 6 and 7 that do not have
copy of such memory block and that, thus, would receive unnecessary coherence messages on a
subsequent coherence event.

3.2 Binary Tree with Symmetric Nodes (BT-SN)

We also introduce the concept of symmetric nodes of a particular home node. Assuming that
3 additional symmetric nodes are assigned to each home node, they are codified by different
combinations of the two most-significant bits of the home node identifier (note that one of these
combinations represents the home node itself). In other words, symmetric nodes only differ from
the corresponding home node in the two most significant bits. For instance, if 0 were the home
node, its corresponding symmetric nodes would be 4, 8 and 12. Now, the process of choosing
the minimal subtree that includes all the sharers is repeated for the symmetric nodes. Then, the
minimum of these subtrees is chosen to represent the sharers. The intuitive idea is the same as
before but, in this case, the two most significant bits of the home identifier are changed to the
symmetric node used. Therefore, the size of the sharing code of a directory entry is the same as
before plus the number of bits needed to codify the symmetric nodes (for 3 sym-nodes, 2 bits).
In the previous example, nodes 4, 8 and 12 are the symmetric nodes of node 0. The tree level
could now be computed from node 0 or from any of its symmetric nodes. In this way, the one
which encodes the smallest number of nodes and includes nodes 1, 4 and 5 is selected. In this
particular example, the tree level 3 must be used to cover all sharers, computed from node 0 or
node 4.

4  Evaluation environment

We perform the evaluation using the full-system simulator Virtutech Simics [8] extended with
Multifacet GEMS 1.3 [9], that provides a detailed memory system timing model. Since the



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

>¢Bit-vector
OBT-SN
BT

B ._E:-_--_-g-_- FRE N SO N N =R

@ 6.6 A~

T T T l l T T
2 4 8 16 32 64 128 256

Number of cores

Fig. 4: Area (mm?) required for a IMB cache module when bit-vector, BT or BT-SN are used

network modeled by GEMS 1.3 is not very precise, we have extended it with SICOSYS [10], a
detailed interconnection network simulator. We simulate a 32-tile CMP architecture as the one
described in Section 2. The values of the main parameters used for the evaluation are shown in
Table 1. Cache latencies have been calculated using the CACTI 5.3 tool [13] for 45nm technology.
We also have used CACTI to measure the area of a 1MB 4-way L2 cache bank that includes
the different sharing codes assumed in this work. In this study, we assume that the length of the
physical address is 44 bits, like in the SUN UltraSPARC-IIT architecture [4].

The ten applications used in our simulations cover a variety of computation and commu-
nication patterns. Barnes (8192 bodies, 4 time steps), FEF'T (256K points), Ocean (258x258
ocean), Radiz (1M keys, 1024 radix), Raytrace (teapot), Volrend (head) and Water-Sp (512
molecules, 4 time steps) are scientific applications from the SPLASH-2 benchmark suite [15].
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics application. MPGdec
(525_tens_040.m2v) and MPGenc (output of MPGdec), are multimedia applications from the
APLBench suite [7]. We account for the variability in multithreaded workloads by doing multi-
ple simulation runs for each benchmark in each configuration and injecting random perturbations
in memory systems timing for each run.

5 Evaluation results

We start this section by comparing the area overhead introduced by the different organizations
for the sharing code considered in this work (i.e., bit-vector, BT and BT-ST). Next, we study the
impact that the compressed sharing codes have on network traffic. For that, we consider both an
interconnection network with and without multicast support. Finally, we end with a comparison
between the three directory organizations in terms of the execution times that they obtain for
the ten applications described in the last section.

5.1 Impact on area overhead

Figure 4 plots the total area (in mm?) that would be required by a 1MB 4-way cache module
when bit-vector, BT and BT-SN sharing codes are used. Due to the limited number of cores used
in our simulations (32), we evaluate BT-SN assuming only one symmetric node. In this way,
the size of BT-SN is equal to the size of BT plus 1 bit to codify whether the home node or the
symmetric node is being used in the codification.

As shown in Figure 4 (and discussed in the introduction of this work), the area overhead
that the bit-vector sharing code entails does not scale with the number of cores. Obviously,

13



14 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

050
£45
F 4.0
x
5 3.5
230
225
Bl
E 1:
So0s5
0.0 4 .
3 S 0 of S 0 o © a0 &k ° G = - B
R («é géec’ @e“c' & & @ \;x‘?"\(‘e“ R 07 ¢ N ce® 0d RSO A
s P78 O S o ot e s WG 0T R o ot e
(a) Without multicast (b) With multicast

Fig. 5: Normalized network traffic for bit-vector, BT and BT-SN

the size of the bit-vector (in bits) increases linearly with the number of cores. For this reason,
the bit-vector could be a good option for a small number of cores. However, from 16 cores on
the increase in area that the bit-vector conveys makes it unfeasible (the area overhead becomes
almost 100% for the 64-core configuration). On the other hand, the size of BT and BT-SN barely
increases with the number of cores. Moreover, the total number of bits needed by BT and BT-SN
is very small in all cases ([logy (logy N + 1)] bits and [log, (logy N 4 1)| + 1 bits, respectively).
In this way, the area overhead of BT and BT-SN is very low (less than 5% for the 256-core
configuration) and keeps almost constant with the number of cores. This makes that BT and
BT-SN can be considered as promising alternatives to bit-vector for future may-core CMPs, since
besides introducing very small overheads in terms of area, these sharing codes would allow to
support families of CMPs with varying number of cores and using exactly the same tile (without
requiring any modifications in the directory structure).

5.2 Impact on network traffic

Although compressed sharing codes can drastically reduce the size of the directory, their coun-
terpart is that they could increase the number of coherence messages as a consequence of the
in-excess codification of the sharers that they perform. Increasing the number of coherence mes-
sages leads to more traffic being injected in the interconnection network of the CMP. Since
previous works have identified the interconnection network as one of the most important ele-
ments of the CMP from the point of view of energy consumption (consuming almost 40% of the
total energy budget in the Raw processor [14]), more traffic at the end means more energy.

Figure 5 shows the amount of network traffic that would be generated for bit-vector, BT and
BT-SN for the 32-core CMP configuration assumed in this work. In particular, each bar plots
the number of bytes transmitted through the interconnection network (the total number of bytes
transmitted by all the switches of the interconnect) normalized with respect to the bit-vector
case. We present results considering both a network with unicast support (a) and with multicast
support (b).

As shown in Figure 5(a), the use of BT has severe impact on the amount of network traffic
and degradations ranging from approximately 50% for MPGenc to 350% for Unstructured are
found. The problem with BT is that when one of the sharers is far from the home node in the
logical tree structure illustrated in Figure 3(b), the root of the tree is selected as the minimum
tree level covering both the home node and the sharer, which results in all cores being actually
codified. We have found that this situation occurs frequently in most applications, which explains
the significant amount of extra traffic for BT. In particular, the average number of coherence



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Normalized Execution Time

Normalized Execution Time

e
o =\ e"‘ﬁ

W

- | | \ - | | \
o oG e 3 o oG
%,&t\e q(‘ “\?Gdi‘\\,@e‘\ Ooe’b ?@ *\‘ 0\0& 0\‘ \N'Zi\e‘ R o o %@“\e (X‘ “\?Gdi‘\\,ae‘\ Ooe’b ?@ ?@*\@ o\‘)‘ o\‘e
o«

(a) Without multicast (b) With multicast

Fig. 6: Execution time for 32 cores

messages that are sent on a coherence event? increases from 2 in bit-vector to more than 20 in
BT. On the contrary, when BT-SN is considered the tree level that covers all the sharers can be
computed from either the home node or its symmetric node. This leads to noticeable reductions
in the average number of coherence messages (12 in BT-SN), which leads to important savings
in network traffic when compared with BT. Unfortunately, BT-SN does not mitigate completely
the extra traffic introduced by BT and degradations of approximately 100% on average are still
observed. Again, when two or more cores, distant in the logical tree, share a memory block, the

root of the tree would be codified by BT-SN.

Obviously, the provision of multicast support at the interconnection network level can alleviate
the levels of extra traffic. More specifically, in Figure 5(b) we show the results obtained when we
take advantage of multicast support for sending coherence messages (invalidations and cache-to-
cache transfer commands). Efficient implementations of such kind of multicast support in on-chip
networks have recently been proposed [11]. Unfortunately, using multicast support for factorizing
efficiently also the response messages is not a trivial issue. So, in this work we assume that
responses to coherence commands are unicast messages. As it can be seen, the use of multicast
support is an step forward in achieving the network traffic levels obtained by bit-vector, and it is
especially useful when BT is considered (average traffic overhead is reduced from 200% without
multicast support to 150%). Anyway, the fact that multicast support is available just for the

coherence commands and not for their associated responses limits its benefits.

5.3 Impact on execution time

The degradations previously reported in terms of network traffic finally translate into increases in
terms of execution time. In Figure 6 we show how the use of BT and BT-SN impacts applications’
execution times, considering an interconnection network with and without multicast support, (a)
and (b) respectively. Again, all results have been normalized with respect to the bit-vector case.

As observed in Figure 6(a), the use of BT without multicast support has important conse-
quences on performance. In particular, the execution time grows from less than 10% for Barnes
and Water-Sp to more than 30% for Raytrace (19% on average). In general, the greater number
of messages that are needed with BT to resolve every coherence event leads to longer cache miss
latencies, and therefore, execution times. Obviously, the extent of the degradation in execution
time will depend on the particular characteristics of each application (L1 cache miss rate, average
number of coherence messages per cache miss, kind of synchronization used, etc.). This is why
there is no direct correlation between the amount of extra traffic reported in Figure 5(a) and the

3 By coherence event we refer to a situation where the home node must use the sharing code to send

coherence messages (invalidations or cache-to-cache transfer commands).



16 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Normalized Execution Time
1.2

...... Bit-vector
--- BT-SN
— BT

% 90

3.0

Normalized Network Traffic Area Requirements (mm?)

Fig. 7: Trade-off between area, performance and network traffic for BT, BT-SN and bit-vector
(32 cores and multicast support are assumed)

degradation in execution time shown in Figure 6(a). On the other hand, when BT-SN is used
instead of BT, the average overhead in terms of execution time is reduced to a half (10%). In this
case, significant reductions in execution time are observed for most applications. The exceptions
are Barnes and Water-Sp, that hardly see their execution times reduced when BT-SN is used,
even when significant savings in terms of network traffic were reported.

The effects of using multicast support with BT and BT-SN are analyzed in Figure 6(b). As
before, multicast support has significant impact on execution time when BT is assumed. In this
case, average degradation falls from 19% to less than 10%. Although all applications benefit
from multicast support, FFT, MPGdec, Radix, Raytrace and Unstructured are the most affected
(in all these cases performance degradation entailed by BT is reduced to more than a half).
Finally, and as it was reported for network traffic, multicast support does not help much in
reducing performance overhead when BT-SN is considered. In this case, what dominates cache
miss latencies is the time taken to collect all responses to a coherence event, which is not optimized
with the assumed multicast support.

6 Conclusions and Future Work

The organization of the directory needed to maintain cache coherence will be a key design
point in future many-core CMPs. In this work we have analyzed the effects that the BT and
BT-SN compressed sharing codes have on area, network traffic (as representative of the energy
consumed in the interconnection network) and performance in the context of many-core chip-
multiprocessors. In particular, we have found that although very area-efficient directories could be
derived based on these two sharing codes (with area overheads of less than 5%), the degradations
in terms of network traffic (200% for BT and 100% for BT-SN) as well as execution time (20%
for BT and 10% for BT-SN) that they entail could preclude them from being employed in future
many-core CMPs. Moreover, we have studied the case of having an interconnection network with
multicast support, and have found that although BT can significantly benefit from such kind
of support (degradations in execution time and network traffic are reduced to 8% and 150%
respectively), BT-SN barely finds any benefits from it. The reasons why multicast support is
unable to hide the degradation that BT and BT-SN introduce are two. First, multicast support
is only used for sending coherence commands but not for collecting the responses. An second, even
when an efficient mechanism able to provide combined responses were used, more destinations for
the coherence commands still implies more traffic and longer cache miss latencies. As a summary
of the results, Figure 7 shows the trade-off between area, performance and network traffic for the
sharing codes evaluated in this work.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Our future work includes new organizations for the sharing code aimed at reducing the amount

of unnecessary coherence messages that BT-SN entails but having similar requirements in terms
of area. Additionally, we are studying the possibility of including support in the interconnection
network for discarding unnecessary coherence messages as they travel to their destination. Finally,
we are extending our simulation tools to compare the different directory organizations in terms
of their energy requirements (considering both static and dynamic energy consumption).

References

10.

11.

12.

13.

14.

15.

16.

Single-chip Cloud Computer. http://techresearch.intel.com/articles/Tera-Scale/1826.htm.

M. E. Acacio, J. Gonzdlez, J. M. Garcia, and J. Duato. A new scalable directory architecture for
large-scale multiprocessors. In 7th Int’l Symp. on High-Performance Computer Architecture (HPCA),
pages 97-106, Jan. 2001.

S. Borkar. Thousand core chips: A technology perspective. In /4th Annual Design Automation
Conference, pages 746-749, June 2007.

T. Horel and G. Lauterbach. UltraSPARC-III: Designing third-generation 64-bit performance. IEEE
Micro, 19(3):73-85, May 1999.

. C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache structure for wire-delay

dominated on-chip caches. In 10th Int. Conf. on Architectural Support for Programming Language
and Operating Systems (ASPLOS), pages 211-222, Oct. 2002.

J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M. Horowitz, and C. Kozyrakis. Com-
paring memory systems for chip multiprocessors. In 34th Int’l Symp. on Computer Architecture
(ISCA), pages 358-368, June 2007.

M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The ALPBench benchmark suite for
complex multimedia applications. In Int’l Symp. on Workload Characterization, pages 3445, Oct.
2005.

. P. S. Magnusson, M. Christensson, and J. Eskilson, et al. Simics: A full system simulation platform.

IEEE Computer, 35(2):50-58, Feb. 2002.

M. M. Martin, D. J. Sorin, and B. M. Beckmann, et al. Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. Computer Architecture News, 33(4):92-99, Sept. 2005.
V. Puente, J. A. Gregorio, and R. Beivide. SICOSYS: An integrated framework for studying inter-
connection network in multiprocessor systems. In 10th Furomicro Workshop on Parallel, Distributed
and Network-based Processing, pages 1522, Jan. 2002.

S. Rodrigo, J. Flich, J. Duato, and M. Hummel. Efficient unicast and multicast support for CMPs.
In 41st IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages 364-375, Nov. 2008.

M. B. Taylor, J. Kim, and J. Miller, et al. The raw microprocessor: A computational fabric for
software circuits and general purpose programs. IEEE Micro, 22(2):25-35, May 2002.

S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI 5.1. Technical Report
HPL-2008-20, HP Labs, Apr. 2008.

H. Wang, L.-S. Peh, and S. Malik. Power-driven design of router microarchitectures in on-chip
networks. In 86th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), pages 105-111, Dec.
2003.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs: Character-
ization and methodological considerations. In 22nd Int’l Symp. on Computer Architecture (ISCA),
pages 24-36, June 1995.

M. Zhang and K. Asanovi¢. Victim replication: Maximizing capacity while hiding wire delay in tiled
chip multiprocessors. In 82nd Int’l Symp. on Computer Architecture (ISCA), pages 336-345, June
2005.

17



18 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

A Work Stealing Algorithm for Parallel Loops
on Shared Cache Multicores

Marc Tchiboukdjian, Vincent Danjean, Thierry Gautier*,
Fabien Lementec, and Bruno Raffin

MOALIS Project, INRIA- LIG
ZIRST 51, avenue Jean Kuntzmann
38330 Montbonnot Saint Martin, France
(marc.tchiboukdjian, vincent.danjean, fabien.lementec,
bruno.raffin)@imag.fr thierry.gautier@inrialpes.fr

Abstract. Reordering instructions and data layout can bring significant
performance improvement for memory bounded applications. Paralleliz-
ing such applications requires a careful design of the algorithm in order
to keep the locality of the sequential execution. In this paper, we aim
at finding a good parallelization of memory bounded applications on
multicore that preserves the advantage of a shared cache. We focus on
sequential applications with iteration through a sequence of memory
references. Our solution relies on an adaptive parallel algorithm with a
dynamic sliding window that constrains cores sharing the same cache to
process data close in memory. This parallel algorithm induces the same
number of cache misses as the sequential algorithm at the expense of
an increased number of synchronizations. Experiments with a memory
bounded application confirm that core collaboration for shared cache ac-
cess can bring significant performance improvements despite the incurred
synchronization costs. On quad cores Nehalem processor, our algorithms
are 10% to 30% faster than algorithms not optimized for shared cache
thanks to a reduced number of last level cache misses.

1 Introduction

Many applications in scientific computing are memory bounded. Favoring the
locality of access patterns through data and computation reordering can bring
significant performance benefits. When designing parallel algorithms, one must
be extra careful not to lose the locality of the sequential application, which is
the key for good performance.

In most last generation multicores, the last level of cache is shared among
all cores of the chip. For instance the Intel Nehalem, the AMD Phenom and
Opteron (only for the quadcores and hexacores) and the IBM Power7 all have a
shared L3 cache. Recent GPU architectures also adopt this cache design: the L
cache of a NVIDIA Fermi streaming multiprocessor is shared among 32 cores.

In this paper, we focus on one specific aspect of the parallelization of memory
bounded applications: how to adapt the scheduling to take advantage of the shared

* Part of this work was done while the second author was visiting the ArTeCS group
of the University Complutense, Madrid, Spain.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 19

caches of multicore processors. The goal is to propose a scheduling algorithm that
improves performance by reducing cache misses, compared to parallel algorithms
that do not take into account the shared cache amongst several cores. We propose
to have cores working on independent but close (regarding the memory layout)
data sets that can all fit in the shared cache. If a core needs a data that is not in
its data set, there is a good chance it will find it in the data set loaded in the
cache by one of its neighbors, thus saving cache misses. The algorithm behaves
as if each core would benefit from a full-size private cache, at the price of a few
extra synchronizations required to ensure a proper collaboration between cores.

This paper focuses on algorithms that take an input sequence to produce an
output sequence of results. Such algorithms encompass many of the C++ Standard
Template Library (STL) functions like for_each or transform. Moreover, many
parallel libraries such as Intel TBB or the GNU STL parallel mode provide parallel
implementations of the STL. Thus providing shared cache aware parallelizations
of these algorithms can improve performance of many applications running on
multicores.

We provide a cache constraint that parallel algorithms should respect to
induce no more cache misses than the sequential algorithms. We present two new
algorithms respecting this cache constraint and two implementations, one based
on PThread and the other one based on work-stealing allowing efficient dynamic
load balancing. We also implement those new algorithms with the parallel library
TBB and the GNU parallel STL and compare them with our implementations
on the for_each function.

The paper is organized as follows. In section 2, we present the cache constraint
and the associated algorithms. In section 3, we detail the implementation of
these two algorithms using the work-stealing based framework KAAPI. Finally,
we introduce the application we use to benchmark our algorithms in section 4
and the experimental data in section 5 before the conclusions.

2 Scheduling for Efficient Shared Cache Usage
2.1 Review of Work-Stealing and Parallel Depth First Schedules

Work Stealing (WS) is a scheduling algorithm that is very efficient both in theory
and in practice. It has been implemented in many languages and parallel libraries
including Cilk [1] and TBB [2]. In WS, each processor manages its own list of
tasks. When a processor becomes idle, it becomes a thief, randomly chooses
another processor, the victim, and try to steal some work. For an efficient load
balancing, the thief should choose a task that represents a big amount of work
far in memory from the work of the victim. This reduces the number of steal
operations and thus synchronization costs. Unfortunately, stealing such tasks may
not be optimal if one takes into account the shared cache of recent multicores.
Contrary to WS, the Parallel Depth First (PDF) schedule of [3] tries to
optimize shared cache usage. This schedule is based on the sequential order
of execution, which is supposed to be cache-efficient. When several tasks are
available, a processor will preferably execute the earliest task in the sequential
order. The authors showed that a PDF schedule induces no more cache misses



20 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

than the sequential execution when the parallel execution uses a slightly bigger
cache. However, computing and maintaining such a schedule is costly in practice.

Informally, one could think of the PDF scheduler as a WS scheduler where
the thieves would choose the closest task in the victim list inducing lots of steal
operations. This is not as simple as all processors, not only a victim and its thief,
should work on data close in memory. In addition to the steal close operation,
another mechanism is needed to prevent processors to deviate from each other
after the steal operation. The cache constraint we present in the next section
serves exactly this purpose. The processing order we proposed is a trade-off
between WS and PDF. Processors work on data just close enough in memory to
fit in the shared cache. This way the parallel application should not make more
cache misses than the sequential application. The number of synchronizations
is better than PDF but not as good as WS. However, as the number of cache
misses is reduced, the overall performance should be improved over WS.

2.2 Window Algorithms for Sequence Processing

We consider algorithms that take an input sequence i1, s, .. ., 4, (different input
elements can share some data) and a function op to be applied on all elements
of the input producing an output sequence 01,03, ...,0, . Notice that treating

one element may produce a different number of elements in the output sequence.
Most STL algorithms are variations over this model. The sequential algorithm
processes the sequence in order from i; to i,,. We assume that the sequential
algorithm already performs well with respect to temporal locality of data accesses.
Data processed closely in the sequential execution are also close in memory. We
focus on the case where all elements of the sequence can be processed in parallel.

We introduce two parallel algorithms to process such a sequence in parallel.
These two algorithms are parameterized by m, the maximum distance between
the threads. In the first one, denoted static-window, the sequence is first divided
into n/m chunks of m contiguous elements. Then, each chunk is processed in
parallel by the p processors sharing the same cache. Several strategies can be
used to parallelize the processing of each chunk. The m elements could be
statically partitioned into p groups of m/p elements, one per processor, or a
work-stealing scheme can be used to dynamically balance the load. The second
parallel algorithm, denoted sliding-window, is a relaxed version of the static-
window algorithm. At the beginning of the algorithm, the first m elements of
the sequence are ready and can be processed in any order. Each time the first
element 7; not yet processed in the sequence is treated by a processor, it enables
the element iy, at the end of a window of size m. These two algorithms will
be compared with an algorithm denoted no-window that do not respect the
cache constraint. All the elements of the sequence can be processed in any order.
This algorithm induces more cache misses than the sequential algorithm and the
window algorithms, but it requires fewer synchronizations.

2.3 Cache Performance of Window Algorithms

The re-use distance captures the temporal locality of a program [4]. Let consider
a series of memory references (zy)i>0. When a reference xj access an element



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 21

for the first time, the re-use distance of x is infinite. If the element has been
previously accessed, x;, = xp with k' > k, the re-use distance of xy/ is equal to
the number of distinct elements accessed between these two references x; and
xp . Let hy denote the number of memory references with a re-use distance d.
The number of cache misses of a fully associative LRU cache of size C' is equal
to Mseq = ZZOZC 41 ha. We can extend this definition to sequence processing
algorithms: if processing ij and 45 uses similar data, the re-use distance is k&’ — k.
We consider now p processors sharing the same cache that process the se-
quence in parallel in distant places like the no-window algorithm. As we assumed
the sequence has good temporal locality, elements far-away in the sequence use
distinct data. In this case, the re-use distance is multiplied by p as to each access
of one processor corresponds p — 1 accesses of the others to distinct elements.
Thus, the number of cache misses is Myo-win = Z;o:cﬂ hd/p =~ ZZO:C'/p+1 hg.
The no-window algorithm induces as many cache misses as the sequential al-
gorithm with a cache p times smaller. We now restrain the processors to work
on elements at distance less than m like in the window algorithms. Let r(m)
be the maximum number of distinct memory references when processing m — 1
consecutive elements of the input sequence. In the worst case, when processing
element iy, all elements ix41,...,%%+m—1 have already been processed accessing
at most 7(m) additional distinct elements compared to the sequential order. Thus
the re-use distance is increased by at most r(m). The number of cache misses
is Myindow < Z;OZC_H Pa—r(m)y = Mseq + ZdC:C+1—7-(m) hgq. As we assumed the
sequence has good temporal locality, 7(m) is small compared to m and hgy is small
for large d. Therefore Zgzc H1—r(m) hg is small and the window algorithms induce
approximately the same number of cache misses as the sequential algorithm.

2.4 PThread Parallelization of Window Algorithms

We present here the implementation of the no-window and static-window algo-
rithms using PThreads. The PThread implementation allows a fine grain control
on synchronizations with very little overhead.

For the no-window algorithm, the sequence is statically divided into p groups.
Each group is assigned to one thread bound to one processor and all threads
synchronize at the end of the computation. For the static-window algorithm, the
sequence is first divided into chunks of size m. Then each chunk is statically
divided into p groups and all threads synchronize at the end of each chunk before
starting to compute the next one. Each synchronization is implemented with a
pthread_barrier. Threads wait at the barrier and are released when all of them
have reached the barrier. Although we expect the threads in the static-window
algorithm to spend more time waiting for other threads to finish their work, the
reduction of cache misses should compensate this extra synchronization cost.
The sliding-window algorithm has not been implemented in PThread because it
would require a very complex code. We present in the next section a work-stealing
framework allowing to easily implement all these algorithms.



22 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

typedef struct { void splitter( Work_t *victim, int count,
InputIterator ibeg; kaapi_request_t* request ) {
InputlIterator iend; int i = 0;
OutputIterator obeg; size_t size = victim->iend - victim->ibeg;
size_t osize; size_t bloc = size / (l+count);
} Work_t ; Inputlterator local_end = victim->iend;
Work_t *thief;
void dowork(...) {
complete_work: if (size < gain)
while (iend != ibeg) { return;
kaapi_stealpoint (..., &splitter); while (count >0) {
for(i=0; i<grain; ++i, ++ibeg) if (kaapi_request_ok(&request[i])) {
op(ibeg, obeg, &osize); thief->iend = local_end;
kaapi_preemptpoint (..., &reducer); thief->ibeg = local_end - bloc;
thief->obeg = intermediate_buffer;
if ( kaapi_preempt_next_thief(...) ) thief->osize = 0;
goto complete_work ; local_end -= bloc;
} // no more work -> become a thief kaapi_request_reply_ok(thief,
&request[i]);
void reducer(Work_t *victim, Work_t *thief) { --count;
memmove ( victim->obeg, thief->obeg, }
thief->osize ); ++i;
victim->osize += thief->osize; }
victim->ibeg = thief->ibeg; victim->iend = local_end;
victim->iend = thief->iend; } // victim and thieves -> dowork
} // victim -> dowork / thief -> try to steal

Fig. 1. C implementation of the adaptive no-window algorithm using the Kaaprr APIL.

3 Work-Stealing Window Algorithms with Kaapi

In this section, we present the low level API of KAAPI [5] and detail the imple-
mentation of the windows algorithms.

3.1 Kaapi Overview

KAAPI is a programming framework for parallel computing using work-stealing.
At the initialization of a KAAPI program, the middleware creates and binds one
thread on each processor of the machine. All non-idle threads process work by
executing a sequential algorithm (dowork in fig. 1). All idle threads, the thieves,
send work requests to randomly selected victims. To allow other threads to
steal part of its work, a non-idle thread must regularly check if it received work
requests using the function kaapi_stealpoint. At the reception of count work
requests, a splitter is called and divides the work into count+1 well-balanced
pieces, one for each of the thieves and one for the victim.

When a previously stolen thread runs out of work, it can decide to preempt
its thieves with the kaapi_preempt_next_thief call. For each thief, the victim
merges part of the work processed by the thief using the reducer function and
takes back the remaining work. The preemption can reduce the overhead of storing
elements of the output sequence in an intermediate buffer when the final place of
an output element is not known in advance. To allow preemption, each thread
regularly checks for preemption requests using the function kaapi_preemptpoint.

To amortize the calls to the KAAPI library, each thread should process several
units of work between these calls. This number is called the grain of the algorithm.
In particular, a victim thread do not answer positively to a work request when it
has less than grain units of work.

Compared to classical WS implementations, tasks (Work_t) are only created
when a steal occurs which reduces the overhead of the parallel algorithm compared



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 23

to the sequential one [6]. Moreover, the steal requests are treated by the victim
and not by the thieves themselves. Although the victim has to stop working
to process these requests, synchronization costs are reduced. Indeed, instead of
using high-level synchronization functions (mutexes, etc.) or even costly atomic
assembly instructions (compare and swap, etc.), the thieves and the victim can
communicate by using standard memory writes followed by memory barriers, so
no memory bus locking is required. Additionally, the splitter function knows
the number count of thieves that are trying to steal work to the same victim.
Therefore, it permits a better balance of the workload. This feature is unique to
KAAPI when compared to other tools having a work-stealing scheduler.

3.2 Work-Stealing Algorithm for Standard (no-window) Processing

It is straightforward to implement the no-window algorithm using KaaApi. The
work owned by a thread is described in a structure by four variables: ibeg and
iend represents the range of elements to process in the input sequence, obeg is
an iterator on the output sequence and osize is the number of elements written
on the output. At the beginning of the computation, a unique thread possesses
the whole work: ibeg=0 and iend=n. Each thread processes its assigned elements
in a loop. Code of Fig. 1 shows the main points of the actual implementation.

3.3 Work-Stealing Window Algorithms

The static-window algorithm is very similar to the no-window algorithm of the
previous section. The first thread owning the total work has a specific status,
it is the master of the window. Only the master thread has knowledge of the
remaining work outside the m-size window. When all elements of a window have
been processed, the master enables the processing of the new window by updating
its input iterators ibeg = iend and iend += m. This way, when idle threads
request work to the master thread, the stolen work is close in the input sequence.
Moreover, all threads always work on elements at distance at most m.

The sliding-window algorithm is a little bit more complex. In addition to
the previous iterators, the master also maintains ilast an iterator on the first
element after the stolen work in the input sequence (see Fig. 2). When the master
does not receive any work request, then iend == ilast == ibeg+m. When the
master receives work requests, it can choose to give work on both sides of the
stolen work. Distributing work in the interval [ibeg,iend] corresponds to the
previous algorithm. The master thread can also choose to distribute work close
to the end of the window, in the interval [ilast,ibeg+m]. We implemented
several variants of the splitter. The local_splitter gives in priority work
in the interval [ibeg,iend]. It favors processing elements at the beginning
to fast-forward the window thus enabling new elements to be processed. The
distant_splitter gives in priority work in the interval [ilast,ibeg+m]. By
distributing work at the end of the window, it should reduce the number of
preemptions. The last one, balanced_splitter try to give well-balanced amount
of work to all thieves by dividing the union of both intervals into equal size
pieces. No piece of work can contains elements on both sides of the window as
the resulting work would not be an interval.



24 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

ibeg iend ilast

I
Processed Elements Master Work Stolen Work Remaining Elements 1
I
I

m-size window

Fig. 2. Decomposition of the input sequence in the sliding-window algorithm.

4 Marching Tetrahedra for Isosurface Extraction

Isosurface extraction is one on the most classical filters of scientific visualization. It
provides a way to understand the structure of a scalar field in a three dimensional
mesh by visualizing surfaces of same scalar value. The marching tetrahedrons
(MT) is an efficient algorithm for isosurface extraction [7]. For one cell of a mesh,
the MT algorithm reads the point coordinates and scalar values and computes
a linear approximation of the isosurface going through this cell. Applied on all
mesh cells sequentially, it leads to a cost linear in the number of cells.

We now look at cache misses induced by MT. The mesh data structure usually
consists of two multidimensional arrays: an array storing point attributes (e.g.
coordinates, scalar values, etc.) and an array storing for each cell its points
and attributes (e.g. type of the cell, scalar values, etc.). Points are accessed by
following a reference from the cell array, e.g. reading coordinates of a point. As
cells close in the cell array often use common points or points with close indices,
processing cells in the same order as the sequential algorithm induces fewer cache
misses when accessing the point array due to an improved temporal locality.

When implementing the window algorithms, the window size m should be
chosen such that a sub-part of m cells of the mesh fits in the shared cache. Each
point is coded on four doubles and each tetrahedron with four references (64bit
integers) to points. On average, meshes have six times more tetrahedrons than
points. So, for an 8MB cache, we approximately have m = 225, 000. The same
reasoning could apply to other mesh processing applications.

5 Experiments

We present experiments using the MT algorithm for isosurface extraction. We
first calibrate the grain for the work-stealing implementation and the window
size m for the window algorithms. Then, we compare the KAAPI framework
with other parallel libraries on a central part of the MT algorithm which can be
written as a for_each. Finally we compare the no-window, static-window and
sliding-window algorithms implementing the whole MT.

All the measures reported are averaged over 20 runs and are very stable. The
numbers of cache misses are obtained with PAPI [8]. Only last level cache misses
are reported as the lower level cache misses are the same for all algorithms. Two
different multicores are used, a quadcore Intel Xeon Nehalem E5540 at 2.4Ghz
with a shared 8MB L3 cache and a dualcore AMD Opteron 875 at 2.2Ghz with
two 1IMB Ly private caches. If the window algorithms reduce the number of cache
misses on the Nehalem but not on the Opteron, one can conclude that this is
due to the shared cache.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 25

—e— Static —m— Seq. —— No ‘ ’ —— KAAPI static-window

107

T
o O 1+ {1,040
2
g = ~41,020 @
=} ,
o 5l iy &
S - 11,000 ¢
3 B=
© -
S 4t . B 980

! - ! ! - \ B ! ! | 1960

910 915 920 925 922 26 910 9l4
window size m grain size

Fig. 3. (Left) Number of Lz cache misses for the PThread implementation of the
static-window algorithm —e— for various window sizes compared to the sequential
algorithm —m— and the no-window —— algorithm. (Right) Parallel time for the KAAPI
implementation of the static-window algorithm —— with various grain sizes. (Both)
All parallel algorithms use the 4 cores of the Nehalem processor.

5.1 Calibrating the Window Algorithms

Fig. 3(left) shows the number of Lg cache misses for the static-window algorithm
compared to the sequential algorithm and the no-window algorithm. The static-
window algorithm is very close to the sequential algorithm for window sizes less
than 22°. It does not exactly match the sequential performance due to additional
reduce operations for managing the output sequence in parallel. With bigger
windows, L3 misses increase and tend to the no-window algorithm. For the
remaining experiments, we set m = 2'9.

Fig. 3(right) shows the parallel time of the static-window algorithm with the
KAAPI implementation for various grain sizes. Performance does not vary much,
less than 10% on the tested grains. For small grains, the overhead of the KAAPI
library becomes significant. For bigger grains, the load balancing is less efficient.
For the remaining experiments, we choose a grain size of 128. We can notice that
the KAAPI library allows very fine grain parallelism: processing 128 elements
takes approximately 3us on the Nehalem processor.

5.2 Comparison of Parallel Libraries on for_each

Table 1 compares KAAPI with the GNU parallel library (from gcc 4.3) (denoted
GNU) and Intel TBB (v2.1) on a for_each used to implement a central sub-part
of the MT algorithm. The GNU parallel library uses the best scheduler (parallel
balanced). TBB uses the auto partitioner with a grain size of 128. TBB is faster
than GNU on Nehalem and it is the other way around on Opteron. KAAPI shows
the best performance on both processors. This can be explained by the cost of
the synchronization primitives used: POSIX locks for GNU, compare and swap
for TBB and atomic writes followed by memory barriers for KAAPI.



26 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Time (ms) Nehalem Opteron
Algorithms #Cores STL GNU TBB Kaapt STL GNU TBB KaAPrI
1 3,987 4,095 3,975 4,013 9,352 9,154 10,514 9,400

no-window 4 1,158 1,106 1,069 2,514 2,680 2,431
tatic-window 1 3,990 4,098 3,981 4,016 9,353 9,208 10,271 9,411
4 1,033 966 937 2,613 2,776 2,508

Table 1. Performance of the no-window and static-window algorithms on a for_each
with various parallel libraries. GNU is the GNU parallel library. Time are in ms.

5.3 Performance of the Window Algorithms

We now compare the performance of the window algorithms. Table 1 shows
that the static-window algorithm improves over the no-window algorithm for all
libraries on the Nehalem processor. However, on the Opteron with only private
caches, performances are in favor of the no-window algorithm. This was expected
as the Opteron has only private caches and the no-window algorithm has less
synchronizations. We can conclude that the difference observed on Nehalem is
indeed due to the shared cache.

Fig. 4(left) presents speedup of all algorithms and ratio of cache misses
compared to the sequential algorithm. The no-window versions induces 50% more
cache misses whereas the window versions only 13% more. The window versions
are all faster compared to the no-window versions. Work stealing implementations
with KAAPI improves over the static partitioning of the PThread implementations.
The sliding-window (with the best splitter: balanced_splitter) shows the best
performance.

Fig. 4(right) focus on the comparison of the sliding-window and static-window
algorithms. Due to additional parallelism, the number of steal operations are
greatly reduced in the sliding-window algorithm (up to 2.5 time less for bigger
windows) leading to an additional gain around 5%.

6 Related works

Previous experimental approaches have shown the interest of efficient cache
sharing usage, on a recent benchmark in [9] and on data mining applications
in [10]. In this paper, we go beyond those specific approaches by providing general
algorithms for independent tasks parallelism which respect the sequential locality.

Many parallel schemes have been proposed to achieve good load balancing for
isosurface extraction [11]. However, none of these techniques take into account the
number of cache misses and the shared cache of multicore processors. Optimization
of sequential locality for mesh applications has been studied through mesh layout
optimization in [12].

7 Conclusions

This paper focuses on exploiting the shared cache of last generation multicores. We
presented new algorithms to parallelize STL-like sequence processing. Experiments
on several parallel libraries confirm that these techniques increase performance
from 10% to 30% thanks to a reduced number of last level cache misses.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

—— Speedup Tstatic/Tsliding
—m— Steals Ratio Sstatic/Sstiding

B Speedup Tseq/Tpar
[ L3 misses ratio Cpar/Cseq

10%,\ T T T ]

5%*.*‘\‘\‘_*\._.*

0% L \ ! ! ]
2.5 I
9l i
1.5 -

1 | | | |
No  Static No Static Sliding 212 ol4 916 218

PThread Kaap1 window size m

Fig. 4. (Left) Speedup Il and ratio of increased cache misses ] over the sequen-
tial algorithm for the no-window, static-window and sliding-window algorithms with
PThread and KAAPI implementations. (Right) Speedup —e— and ratio of saved steal
operations —#— for the sliding-window algorithm over the static-window algorithm with
the KAAPI implementation. (Both) All algorithms run on the 4 cores of the Nehalem.

References

1.

10.

11.

12.

Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk:
An efficient multithreaded runtime system. Journal of Parallel and Distributed
Computing 37(1) (1996) 55-69

Robison, A., Voss, M., Kukanov, A.: Optimization via reflection on work stealing
in TBB. In: IPDPS. (2008)

Blelloch, G.E., Gibbons, P.B.: Effectively sharing a cache among threads. In: SPAA.
(2004)

Cascaval, C., Padua, D.A.: Estimating cache misses and locality using stack
distances. In: Proc. of ICS. (2003)

Gautier, T., Besseron, X., Pigeon, L.: KAAPI: A thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: PASCO. (2007)
Traoré, D., Roch, J.L., Maillard, N., Gautier, T., Bernard, J.: Deque-free work-
optimal parallel stl algorithms. In: Euro-Par. (2008)

Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, An Object-
Oriented Approach To 3D Graphics, 3rd ed. Kitware Inc. (2004)

Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. The International
Journal of High Performance Computing Applications 14 (2000)

Zhang, E.Z., Jiang, Y., Shen, X.: Does cache sharing on modern CMP matter to
the performance of contemporary multithreaded programs? In: PPoPP. (2010)
Jaleel, A., Mattina, M., Jacob, B.: Last level cache (LLC) performance of data
mining workloads on a CMP - a case study of parallel bioinformatics workloads. In:
HPCA. (2006)

Zhang, H., Newman, T.S., Zhang, X.: Case study of multithreaded in-core isosurface
extraction algorithms. In: EGPGV. (2004)

Tchiboukdjian, M., Danjean, V., Raffin, B.: Binary mesh partitioning for cache-
efficient visualization. Visualization and Computer Graphics, IEEE Transactions
on 16(5) (sept.-oct. 2010) 815 —828

27



28 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Resource-agnostic programming
for many-core microgrids !

T.A.M. Bernard, C. Grelck, M.A. Hicks, C.R. Jesshope, R. Poss

University of Amsterdam, Informatics Institute, Netherlands
{t.bernard,c.grelck,m.a.hicks,c.r.jesshope,r.c.poss}@uva.nl

Abstract. Many-core architectures are a commercial reality, but pro-
gramming them efficiently is still a challenge, especially if the mix is het-
erogeneous. Here granularity must be addressed, i.e. when to make use of
concurrency resources and when not to. We have designed a data-driven,
fine-grained concurrent execution model (SVP) that captures concur-
rency in a resource-agnostic way. Our approach separates the concern
of describing a concurrent computation from its mapping and schedul-
ing. We have implemented this model as a novel many-core architecture
programmed with a language called pTC. In this paper we demonstrate
how we achieve our goal of resource-agnostic programming on this target,
where heterogeneity is exposed as arbitrarily sized clusters of cores.

Keywords: Concurrent execution model, many core architecture, resource-
agnostic parallel programming.

1 Introduction

Many-core architectures provide the only solution to the various barriers oppos-
ing advances in mainstream computing performance [8]. However, programming
applications on such platforms is still notoriously difficult [6,1,7]. Concurrency
must be exposed, and in most programming paradigms it must be also explicitly
managed [11]. For example, low-level constructs must be carefully assembled to
map computations to hardware threads and achieve the desired synchronisation
without introducing deadlocks, livelocks, race conditions, etc. From a perfor-
mance perspective, any overhead associated with concurrency creation and syn-
chronisation must be amortised with a computation of a sufficient granularity.
The difficulty of the latter is under-estimated and in this paper we argue that
this mapping task is too ill-defined statically and too complex to remain the
programmer’s responsibility. With widely varying resource characteristics, gen-
erality is normally discarded in favour of performance on a given target, requiring
a full development cycle each time the concurrency granularity evolves.

! This work is supported by the European Union through the Apple-CORE project,
grant no. FP7-ICT-215216.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 29

We have addressed these issues in our work on SVP (for Self-adaptive Virtual
Processor), which combines fine-grained threads with both barrier and dataflow
synchronisation. Concurrency is created hierarchically and dependencies are cap-
tured explicitly. Hierarchical composition aims to capture concurrency at all
granularities, without the need to explicitly manage it. Threads are not mapped
to processing resources until run-time and the concurrency exploited depends
only on the resources made available dynamically. Dependencies are captured
using dataflow synchronisers and threads are only scheduled for execution when
they have data to proceed. In this way, we automate thread scheduling and
support asynchrony in operations. More detail on the model can be found in [3].

Asynchrony is exposed at the function level by delegating a unit of com-
putation to independent processing resources where it can execute concurrently
with its parent. It is also exposed in the dependencies captured between threads.
In the context of this paper, where the model is implemented in a processor’s
ISA [5], we have efficient concurrency creation and synchronisation, requiring
just a few processor cycles to distribute an arbitrary number of identical, indexed
threads to a cluster of cores. Moreover, asynchronous operations are supported
at a granularity of individual instructions and we can therefore tolerate latency
in long-latency operations, such as loads from a distributed shared memory. The
mapping of threads to a cluster of cores in our Microgrid chip architecture is
automatic, and the compiled code may also express more concurrency than is
available in a cluster. To resolve this mismatch, cores automatically switch from
space scheduling to time scheduling when all hardware thread slots are in use.
Hence, the minimal resource requirement for any SVP program is a single thread
slot on a single core, which implies pure sequential execution, even though the
code is expressed concurrently. It is through this technique and the latency tol-
erance that we achieve resource-agnostic code with predictable performance.

The main contribution of this paper is that we show simply implemented,
resource agnostic SVP programs adapt automatically to the concurrency effec-
tively available in hardware and can achieve extremely high execution efficiency.
We also show that we can predict the performance of these programs based on
simple throughput calculations even in the presence of non-deterministic instruc-
tion execution times. This demonstrates the effectiveness of the self-scheduling
supported by SVP. In other words, we promote our research goal:

“Implement once, compile once, run anywhere.”

2 The SVP concurrency model

We have built an implementation of SVP into a system language pTC and
a compiler that maps this code to the Microgrid implementation. uTC is not
intended as an end-user language; work is ongoing to target yTC from a data-
parallel functional language (SaC [10]) and a parallelising C compiler [14,9].

In SVP programs create multiple threads at once as statically homogeneous,
but dynamically heterogeneous families. The parent thread can then perform a
barrier wait on termination of a named family using a sync action. This fork-join



30 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

pattern captures concurrency hierarchically, from software component composi-
tion down to inner loops. A family is characterised by its index sequence, the
initial PC for threads and the definition of unidirectional dataflow channels from,
to and within the family. Channels are I-structures [2], i.e. blocking reads and
single non-blocking writes; either from parent to all children (“globals”) or side-
ways in the family (“shareds”). For more details see [5].

In the Microgrid implementation, the number of active threads per core is
constrained by a block size specified for each family or by exhaustion of thread
contexts. Additional expressed concurrency is then scheduled by reusing thread
contexts non-preemptively. Deadlock freedom is guaranteed by restricting com-
munication to forward-only dependency chains [17].

A key characteristic of SVP is the separation of concerns between the program
and its scheduling onto computing nodes. Space scheduling is achieved by binding
a collection of computing nodes, called a place, to a family upon its creation.
This can happen at any level in the hierarchy, dynamically. Although in principle,
SVP can be implemented at any level of granularity, we focus in this paper on
the finest granularity, where clusters of cores implement an SVP run-time system
in hardware. The SVP create distributes families equally to all cores in a cluster
or locally depending on the place specifier. Clusters of cores are connected in
rings and may be configured either at design-time or run-time.

On the Microgrid, SVP channels are mapped onto the cores’ registers. De-
pendencies between threads mapped to the same core share the same physi-
cal registers to allow fast communication and when distributed between cores,
communication is induced automatically upon register access. The latter is still
a low-latency operation since constraints on dependency patterns ensure that
communicating cores are adjacent on chip. Implementing I-structures on the
registers also enforces scheduling dependencies between consumers and produc-
ers. Hence, long-latency operations may be allowed to complete asynchronously
giving out-of-order completion with non-deterministic delay. Examples include
memory operations, floating point operations (with FPU sharing between cores)
and family synchronisation. This mechanism, together with support for a large
number of threads per core provides the latency tolerance necessary to achieve a
high utilisation of the cores’ pipeline cycles. More information is available in [5].

3 An SVP implementation

The Microgrid evaluated in this paper comprises 128 cores sharing 64 FPUs with
separate add, mul, div and sqrt pipelines. Each core supports up to 256 threads
in 16 families using up to 1024 integer and 512 floating-point registers. On-chip
memory comprises a modest 32x32KB L2 caches, shared in groups of 4 cores.
There are 4 rings of 8 L2 caches; the 4 directories are connected in a top-level
ring subordinated to a master directory. Two DDR3-1600 channels connect the
master directory to external storage. The on-chip memory network implements
a Cache-Only Memory Architecture (COMA) protocol with synchronisation at
family creation, termination and on communication between threads. A cache



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 31

line has no home location and migrates to the point of most recent use. This is
described in more detail in [18].

— Cluster
fing

E 1FPU+
2 cores
[ L2 cache
m cow

directory

coma
| ring

Fig. 1. Functional diagram of a 128 core Microgrid.

The following parameters are relevant to the numerical results: the two
DDR channels provide 1600 million 64-bit transfers/s, i.e. a peak bandwidth
of 25.6GB/s overall; each COMA ring provides a total bandwidth of 64GB/s,
shared among its participants; the bus between cores and L2 caches provides
64GB/s of bandwidth; the SVP cores are clocked at 1GHz.

The Microgrid runs a minimal operating system. This includes initialisation,
collection of system metrics, heap allocation, input of data from the environ-
ment through memory, and text output. A software SVP place allocation service
allows to select dynamic cluster sizes, to subject benchmarks to heterogeneous
concurrency parameters. We highlight that compiled program code is indepen-
dent from all the architectural parameters of the Microgrid.

4 Experiments and results

Our aim in this paper is to show how we can obtain deterministic performance
figures, even though the code is compiled from naive uTC code, with no knowl-
edge of the target. We evaluate results from executing a range of benchmarks
across a range of problem sizes on clusters of size 1-64 cores. These include both
sequential and parallel algorithms with various data access patterns. The results
are presented with performance on cold and warm caches. In order to analyse the
performance, we need to understand the constraints on performance. For this
we define two measures of arithmetic intensity (AI). The first AI; is the ratio
of floating point operations to instructions issued. For a given kernel that is not
I/O bound, this limits the floating point performance. For P cores at 1 GHz, the
peak performance we can expect therefore is P x AI;. In some circumstances,
we know that execution is constrained by dependencies between floating point
operations and here we modify AI; to take this into account giving an effec-
tive intensity AI{. The second measure of arithmetic intensity is the ratio of
Floating point operations to I/O operations, AI; FLOPs/Byte. I/O bandwidth
IO is usually measured at the chip boundary (25.6GB/s) unless we can identify
bottlenecks internally on the COMA rings (64GB/s). As these I/O bandwidths



32 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

are independent of the number of cores used, this measure will provide a hard
performance limit when P x AI; > Al x I10.

The results presented in this paper are produced using cycle-accurate emu-
lation of a Microgrid chip that implements SVP in the ISA. It assumes custom
silicon with current technology [5]. It defines all states that would exist in a
silicon implementation and captures cycle-by-cycle interactions in all pipeline
stages. We have used realistic multi-ported memory structures, with queueing
and arbitration where we have more channels than ports. The timing assump-
tions are based on evaluation using CACTI [16]. We also simulate the timing
of standard DDR3 channels. As details of the architecture have been described
elsewhere we include only sufficient detail here to support the discussion.

4.1 Sequential code

The first kernel we consider is DNRM2 from the BLAS library, which computes
the Euclidean norm of a vector. Here we do not parallelise the loop, which uses
a carried dependency to calculate the sum. We are interested in how well the
Microgrid tolerates the memory latency of hundreds of cycles. Branch prediction
and out-of-order instruction issue can provide some latency tolerance, typically
tens of cycles, which is sufficient to optimise performance when working from
on-chip cache but not for larger data sets. Prefetching can do better on constant-
stride accesses but as memory latencies rise, the probability that prefetched data
will remain in cache diminishes. In our approach, the hardware provides latency
hiding through interleaving multiple threads in the pipeline. In this kernel, a
memory load and a mul form an independent prefix to the dependent add which
computes the sum using a shared variable.

The thread code compiles to 4 instructions of which two are FP operations.
So A} = 0.5. However, every thread must wait for its predecessor to produce
its result before computing its FP add. The cost of communicating the result
from thread to thread requires between 6 and 11 cycles per add depending on
the scheduling of threads, with the difference representing the cost of waking
up a waiting thread and getting it to the read stage of the pipeline, which may
be overlapped by other independent instructions in the pipeline. This implies
0.14 < AI7 < 0.22, i.e. an expected single core performance of 0.14 to 0.22
GFLOP/s. As Figure 2 shows, provided we have enough threads we observe just
under 0.20 GFLOP/s on one core.

We do not expect to see any performance increase by increasing the number
of cores, because the independent prefix instructions that can be scheduled inde-
pendently represent less than one third of the cycles required by the thread, i.e.
3+ AI{. Even with ideal scheduling and no overhead, Amdah!’s law would limit
speedup to a factor 1.5. The fact that we see a 10% increase is testament to the
low overhead in this architecture of managing concurrency and communication.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

BLAS1-DNRM2 - Performance (GFLOP/s) BLAS1-DNRM2 - Performance (GFLOP/s)
(cold caches) (warm ~mstet
+ S & +
4L
-

090 o000 o
009 LLLON
[SI-ENN NI

40
30 #cores

40
30  #cores 20
10~ Pper SVP place

20 ber SVP place 100
10 1000 e
100000 #psize 100000

(a) Cold caches (b) Warm caches

1000
#psize 10000

Fig. 2. Performance of DNRM2 on one SVP place. Working set: 8 x #psize bytes.

LMK3: Inner prod. - Performance (GFLOP/s) LMK3: Inner prod. - Performance (GFLOP/s)
(cold caches) (warm caches)
v S 1.4

1.4 1'2 8
1.2 08 7

: = g
0.8 4 02 2 %
0.6 0 3
0.4 60 > 60
0.2 50 s 50

0 30  #cores 0 30  #cores

1

1020 per SVP place 1020 per SVP place

000 00
#psize 10000 #psize 10000

100000 100000

(a) Cold caches (b) Warm caches

Fig. 3. IP performance, using N/P reduction. Working set: 16 x #psize bytes.

4.2 Reductions

Any reduction can be parallelised for commutative and associative operations.
The second benchmark is parallelised inner product (IP, Livermore kernel 3).
The code is a straightforward extension of the naive implementation in pTC. It
relies on the number of cores in the ‘current place’ being exposed to programs
as a language primitive and splits the reduction into two stages, the first creates
a family of one thread per core, which performs a local reduction and then
completes the reduction between cores. When the number of threads per core
is significantly larger than the number of cores, the cost of the final reduction
is small and the performance should scale linearly with the number of cores.
Figure 3 shows the experimental results for this code.

For IP, Al; = 0.29; however, again we must consider the effective intensity:
0.12 < AI] < 0.17, i.e. an expected single core performance of 0.12 to 0.17
GFLOP/s. The outer loop is parallel and hence we would expect a maximum
performance of 0.15 x 64 or 9.6 GFLOP/s. However, for this code Al = 0.125
FLOPs/byte and so performance would be memory limited to 3.2 GFLOP/s.

We achieve only 1.4 GFLOP/s, dropping to 0.88 GFLOP /s, for cold caches
with the largest problem size. This deviation occurs when the working set does
not fit in the L2 caches, because then loads to memory must be interleaved
with line evictions. Even though evictions do not require I/O bandwidth, they



34 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

do consume COMA ring bandwidth. It is more difficult to reason about ring
bandwidth under such circumstances. In the worst case a single load may evict a
cache line where the loaded line is used only by one thread before being evicted
again. A single 8 byte load could require as much as two 64-byte line transfers,
i.e. a perceived bandwidth for loads of 4 GB/s rising to 32GB/s if all 8 words are
used. This translates into a peak performance of between 0.5 and 4 GFLOP/s
with ATy = 0.125 FLOPs/Byte, when the caches become full. Note also, at a
problem size of 20K on 64 cores, between 17 and 22% of the cycles required are
for the sequential reduction, a large overhead and at a problem size of 100K,
when this overhead is significantly smaller, only 1/6th of the problem fits in
cache for up to 32 cores (1/3 for 64 cores).

With warm caches, this transition to on-chip bandwidth limited performance
is delayed and more abrupt. For P = 32 the maximum in-cache problem size
is N=16K and for P = 64, N=32K (ignoring code etc.). As would be expected
for ring-limited performance, we see peak performance at N=10K and 20K resp.
for these two cases. Any increase in problem size beyond this increases ring
bandwidth to the same level as with cold caches.

4.3 Data-parallel code

We show here the behaviour of three data-parallel algorithms which exhibit dif-
ferent, yet typical communication patterns. Again, our pTC code is a straight-
forward parallelisation of the obvious sequential implementation and do not at-
tempt any explicit mapping to hardware resources. The equation of state frag-
ment (ESF, Livermore kernel 7) is a data parallel kernel with a high arithmetic
intensity, AI; = 0.48. It has 7 local accesses to the same array data by different
threads. If this locality can be exploited, then Al = 0.5 FLOPs/Byte from off-
chip memory. Matrix-matrix product (MM, Livermore kernel 21) has significant
non-local access to data, in that every result is a combination of all input data.
MM is based on multiple inner products and hence Al; = 0.29. However, for
cache bound problems and best case for problems that exceed the cache size,
Aly = 3 FLOPs/Byte from off-chip memory. Finally, FFT lies somewhere be-
tween these two extremes: it has a logarithmic number of stages that can exploit
reuse but has poor locality of access. Here AI; = 0.33 and for cache-bound
problems 1.6 < Al < 2.9 (logarithmic growth with problem size if there are no
evictions). However, with evictions this is defined per FFT stage and Al = 0.21.

For ESF, with sufficient threads, the observed single core performance is 0.43
GFLOP/s, i.e. 90% of the expected maximum based on Al for this problem (see
Figure 4a). Also, while the problem is cache bound, for cold caches, we see linear
speedup on up to 8 cores, 3.8 GFLOP/s. For 8 cores this problem size has 128
threads per core, reducing to 8 at 64 cores. This is an insufficient number of
threads to tolerate latency and we obtain 6.6 GFLOP/s for 64 cores, 54% of
the maximum limited by Als (12.3 GFLOP/s). As the problem size is increased,
cache evictions limit effective I/O bandwidth to 12.3GB/s at the largest problem
sizes, i.e. an Al constraint of around 6 GFLOP/s. We see saturation at 67%
of this limit for both warm and cold caches. With warm caches and smaller



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

LMK?7: Eqn. of state frag. - Performance (GFLOP/s) LMK?: Egn. of state frag. - Performance (GFLOP/s)
(cold caches) | (warm caches) .
.

r—

+ + +

(S AR NG X RN

[SENNISENG TSN}
O=NWAUIHNEOO

40
30 #cores
1020 per SVP place

2030 #cores
SVP pl
1000 10 persyFplace 100 " 1000

#psize 10000 155600 #psize 10000~ 460000

(a) Cold caches (b) Warm caches

=)
o

100

Fig. 4. Performance of the ESF. Working set: 32x#psize bytes.

problem sizes, greater speedups can be achieved (see Figure 4b) and we achieve
9.87 GFLOP/s or 80% of the Al constrained limit for a cache bound problem.

LMK21: Matrix-Matrix product - Performance (GFLOP/s) LMK21: Matrix-Matrix product - Performance (GFLOP/s)
(coldcaches) ., et
s + +

.

O=NWAUIDN®O

O=NWAUION®O

40
2030 #cores
10~ per SVP place

100 100
#psize 1000 10000 #psize 1000 10000

(a) Performance on cold caches (b) Performance on warm caches

Fig. 5. Performance of the matrix-matrix product. Working set: &~ 200 x #psize bytes.

MM naively multiplies 25x25 matrices by 25xN matrices using a local IP
algorithm. As Al = 3.1 FLOPs/Byte, the I/O limit of 75 GFLOP /s exceeds the
theoretical peak performance, namely 18.3 GFLOP/s. Our experiments show an
actual peak of 8.57 GFLOP/s, or 47% of the maximum. As there are sufficient
threads, we suspect the limit is on the COMA ring, as a significant amount of
traffic is required to distribute rows and columns to cores.

For FFT, the observed performance (cf. Figure 6) on one core is 0.23 GFLOP /s,
or 78% of the AI; limit. When the number of cores and the problem size increase,
the program becomes Al constrained, as now every stage will require loads and
evictions, giving an effective bandwidth of 12.3GB/s and as AI; = 0.21, an I/0
constrained limit of 2.6 GFLOP /s. We observe 2.24 GFLOP/s, or 86% of this.

5 Related work

SVP addresses many-core programming from hardware thread contexts up to
the programming model. In this vertical approach, it relates to XMT [13].

35



36 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

FFT 1D (small lookup table) - Performance (GFLOP/s) FFT 1D (small lookup table) - Performance (GFLOP/s)
(cold caches) (warm caches)
+

40
30 #cores

40
30  #cores 0
10~ per SVP place

1020 per SVP place 100 1000 i
100000 #psize 100000

(a) Cold caches (b) Warm caches

1000
#psize 10000

Fig. 6. Performance of the 1-D FFT. Working set: 8 X #psize bytes + a lookup table.

However, the ability to define concurrency hierarchically and its data-driven
scheduling bring it closer to Cilk [4] and the DDM architecture [12]. SVP differs
from DDM mainly in that synchronisation is implemented in registers instead of
cache, and that yet unsatisfied dependencies cause threads to suspend. Register-
based synchronisation can also be found in the WaveScalar architecture [15],
but WaveScalar requires pure dataflow program expression while SVP also al-
lows thread-local sequential schedules using a regular RISC ISA.

6 Conclusion

The results presented in the previous section show efficient use of the hardware
resources of single SVP places by naive implementations of computation kernels.
We are able to analyse performance based on two bandwidth constrained mea-
sures and provided we have sufficient threads we observe performances that are
very close (in the region of 80%) of the observed performance. Even in the worst
cases we are within 50% of these predicted performances.

In conclusion, the SVP concurrency model facilitates the writing and gener-
ation of concurrent programs that need only be written and compiled once but
yet can still exploit the varying parallel resources provided by particular hard-
ware configurations. Programs can thus be expressed in the pTC language free
from the restraints of resource awareness; the program only needs to express the
available concurrency in algorithms and the desired synchronisations.

Acknowledgements

The development of SVP, the Microgrid architecture and the pTC compiler was
initially supported by the NWO Microgrids project, then by the EU Apple-
CORE project. SVP and its implementation is a group effort of the CSA group
at the University of Amsterdam. The authors would like to thank especially Mike
Lankamp for his work on emulation.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Amarasinghe, S.: (How) can Programmers Conquer the Multicore Menace? In:
PACT ’08: Proceedings of the 17th international conference on Parallel architec-
tures and compilation techniques. pp. 133-133. ACM, New York, NY, USA (2008)
Arvind, Nikhil, S.; R., Pingali, K.K.: I-Structures: Data Structures for Parallel
Computing. ACM Trans. Program. Lang. Syst. 11(4), 598-632 (1989)

Bernard, T., Bousias, K., Guang, L., Jesshope, C.R., Lankamp, M., van Tol, M.W .,
Zhang, L.: A General Model of Concurrency and its Implementation as Many-core
Dynamic RISC Processors. In: Proc. Intl. Conf. on Embedded Computer Systems:
Architecture, Modeling and Simulation, SAMOS-2008. pp. 1-9 (2008)

Blumofe, R.D., Joerg, C.F.,; Kuszmaul, B.C., Leiserson, C.E., et al.: Cilk: an effi-
cient multithreaded runtime system. SIGPLAN Not. 30(8), 207216 (1995)
Bousias, K., Guang, L., Jesshope, C., Lankamp, M.: Implementation and Evalua-
tion of a Microthread Architecture. J. Systems Architecture 55(3), 149-161 (2009)
Chapman, B.M.: The Multicore Programming Challenge. In: Advanced Parallel
Processing Technologies. p. 3 (2007)

Gabb, H., Mattson, T., Breshears, C.: Thinking in Parallel - Three engineers’
Viewpoints. Intel Software Insight Magazine 16, 24—-26 (Feb 2009)

Geer, D.: Industry Trends: Chip Makers Turn to Multicore Processors. Computer
38(5), 11-13 (2005)

Grelck, C., Herhut, S., Jesshope, C., Joslin, C., Lankamp, M., Scholz, S.B., Sha-
farenko, A.: Compiling the Functional Data-Parallel Language SaC for Microgrids
of Self-Adaptive Virtual Processors. In: 14th Workshop on Compilers for Parallel
Computers (CPC’09), Ziirich, Switzerland (2009)

Grelck, C., Scholz, S.B.: SAC: a functional array language for efficient multi-
threaded execution. Int. Journal of Parallel Programming 34(4), 383-427 (2006)
Kasim, H., March, V., Zhang, R., See, S.: Survey on Parallel Programming Model.
In: Network and Parallel Computing. LNCS, vol. 5245, pp. 266-275. Springer
(2008)

Kyriacou, C., Evripidou, P., Trancoso, P.: Data-driven multithreading using con-
ventional microprocessors. IEEE Trans. Parallel Distrib. Syst. 17(10), 1176-1188
(2006)

Naishlos, D., Nuzman, J., Tseng, C.W., Vishkin, U.: Towards a first vertical pro-
totyping of an extremely fine-grained parallel programming approach. In: SPAA
’01: Proc. 13th annual ACM symposium on Parallel algorithms and architectures.
pp- 93-102. ACM, New York, NY, USA (2001)

Saougkos, D., Evgenidou, D., Manis, G.: Specifying loop transformations for
C2uTC source-to-source compiler. In: 14th Workshop on Compilers for Parallel
Computers (Jan 2009)

Swanson, S., Schwerin, A.,; Mercaldi, M., Petersen, A., Putnam, A., Michelson, K.,
Oskin, M., Eggers, S.J.: The WaveScalar Architecture. ACM Trans. Comput. Syst.
25(2), 4 (2007)

Tarjan, D., Thoziyoor, S., Jouppi, N.: Cacti 4.0. Tech. rep., Western Research
Laboratory, Compaq (2006)

Vu, T.D., Jesshope, C.R.: Formalizing SANE Virtual Processor in Thread Algebra.
In: ICFEM. pp. 345-365 (2007)

Zhang, L., Jesshope, C.R.: On-Chip COMA Cache-Coherence Protocol for Micro-
grids of Microthreaded Cores. In: Bouge, et al. (eds.) Euro-Par Workshops. LNCS,
vol. 4854, pp. 38-48. Springer (2007)

37



38 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Programming Heterogeneous Multicore Systems using
Threading Building Blocks*

George Russell', Paul Keir?, Alastair F. Donaldson®, Uwe Dolinsky!, Andrew
Richards® and Colin Riley!

1 Codeplay Software Ltd., Edinburgh, UK
{uwe, andrew, george, colin}@codeplay.com
2 Department of Computing Science, University of Glasgow, UK
pkeir@dcs.gla.ac.uk
3 Oxford University Computing Laboratory, Oxford, UK
alastair.donaldson@comlab.ox.ac.uk,

Abstract. Intel’s Threading Building Blocks (TBB) provide a high-level abstrac-
tion for expressing parallelism in applications without writing explicitly multi-
threaded code. However, TBB is only available for shared-memory, homoge-
neous multicore processors. Codeplay’s Offload C++ provides a single-source,
POSIX threads-like approach to programming heterogeneous multicore devices
where cores are equipped with private, local memories—code to move data be-
tween memory spaces is generated automatically. In this paper, we show that the
strengths of TBB and Offload C++ can be combined, by implementing part of the
TBB headers in Offload C++. This allows applications parallelised using TBB
to run, without source-level modifications, across all the cores of the Cell BE
processor. We present experimental results applying our method to a set of TBB
programs. To our knowledge, this work marks the first demonstration of programs
parallelised using TBB executing on a heterogeneous multicore architecture.

1 Introduction

Concurrent programming of multicore systems is widely acknowledged to be challeng-
ing. Our analysis is that a significant proportion of the challenge is due to the following
phenomena:

Thread management: It is difficult to explicitly manage thread start-up and clear-
down, inter-thread synchronization, mutual exclusion, work distribution and load bal-
ancing over a suitable number of threads to achieve scalability and performance.

Heterogeneity: Modern multicore systems, such as the Cell [1], or multicore PCs
equipped with graphics processing units (GPUs) consist of cores with differing instruc-
tion sets, and contain multiple, non-coherent memory spaces. These heterogeneous fea-
tures can facilitate high-performance, but require writing duplicate code for different
types of cores, and orchestration of data-movement between memory spaces.

Threading Building Blocks (TBB) [2] is a multi-platform library for programming
homogeneous, shared memory multicore processors in C++ using constructs such as
parallel loop and reduction operations, pipelines, and tasks, that capture the parallelism

* This work was supported in part by the EU FP7 STREP project PEPPHER, and by EPSRC
grant EP/G051100/1



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 39

inherent in large classes of applications. These constructs allow the programmer to
specify what can be safely executed in parallel, with parallelisation coordinated behind-
the-scenes in the library implementation, thus addressing the thread management issues
identified above.

Offload C++ [3, 4] extends C++ to address heterogeneity. Essentially, Offload C++
provides single source, thread based programming of heterogeneous architectures con-
sisting of a host plus accelerators. Thread management must be handled explicitly, but
the burden of code duplication and movement of data between memory spaces is han-
dled automatically by the compiler and runtime system. Offload C++ for the Cell pro-
cessor under Linux is freely available [5].

In this paper, we combine the strengths of TBB and Offload C++ by using Offload
C++ to implement an important part of TBB: the parallel for construct. This allows
applications that use these constructs to run, without source-level modifications, across
all cores of the Cell BE architecture.

We also discuss data-movement optimisations for Offload C++, and describe the
design of a portable template-library for bulk data-transfers. We show that this template-
library can be integrated with TBB applications, providing optimized performance when
Offload C++ is used on Cell, and default performance otherwise. We evaluate our ap-
proach experimentally using a range of benchmark applications. In summary, we make
the following contributions:

— We describe how an important fragment of TBB implemented using Offload C++
allows a large class of programs to run across all the cores of the Cell architecture

— We show how performance of TBB programs on Cell can be boosted using a
portable template-library to optimize data-movement

— We demonstrate the effectiveness of our techniques experimentally

To our knowledge, this work marks the first demonstration of portable code paral-
lelised with TBB executing on a heterogeneous multicore architecture.

2 Background

2.1 The TBB parallel_for construct

We illustrate the parallel_for construct using an example distributed with TBB that
simulates seismic effects. Figure 1 shows a serial loop. In Figure 2 the loop body is ex-
pressed as a C++ function object, UpdateVelocityBody, which defines an operator ()
method to operate on elements in a given range. The parallel_for function template
takes as parameters a function object and an iteration space. When invoked, the func-
tion object is applied to each element in the iteration space, and multiple elements of
the iteration space can be processed in parallel. The programmer does not determine
how many tasks are to be created, nor how many threads are to be used.

2.2 Offload C++

The central construct of Offload C++ is the offload block, a lexical scope prefixed with
the __offload keyword. In the Cell BE implementation of Offload C++, code outside



40 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

void SerialUpdateVelocity () {
for (int i=1; i<Height-1; ++1i)
for (int j=1; j<Width-1; ++7)
VIi1[3] = DIi][3]* (VL] [3]1+L[i][3]*
(S[i][31-S[i1[3-11+T[1]1[3]1-T[i-11[31))

Fig. 1: A serial simulation loop

struct UpdateVelocityBody {

void operator () (const blocked_range<int>& r) {

for (int i=r.begin(); i'=r.end(); ++1i)
for (int j=1; Jj<Width-1; ++3)
V[i][J] = DIi]l[J1« (V1] [J1+L[i][J]~*
(ST11031-S[11[3-11+T[1]1[J]1-T[i-11[31));

}
}i
void ParallelUpdateVelocity () {

parallel_for( blocked_range<int> (1, Height-1),

UpdateVelocityBody () );

Fig. 2: Simulation loop body as a C++ function object, executable using parallel_ for

an offload block is executed by the host processor (PPE). When an offload block is
reached, the host creates an accelerator (SPE) thread that executes the code inside the
block. This thread runs asynchronously, in parallel with the host thread. Multiple SPE
threads can be launched concurrently via multiple offload blocks. Each offload block
returns a handle, which can be used to wait for completion of the associated SPE thread.

3 Offloading TBB parallel loops on the Cell BE architecture

The example of Figure 2 shows that TBB makes it easy to parallelise regularly struc-
tured loops. However, TBB does not support heterogeneous architectures with multiple
memory spaces, such as the Cell BE.

We now show that, by implementing the parallel_for construct in Offload C++
we can allow the code of Figure 2 to execute across all cores of the Cell. The key obser-
vation is that TBB tasks are an abstraction over a thread-based model of concurrency,
such as that provided by Offload C++ for heterogeneous architectures.

We implement the parallel loop templates of TBB to distribute loop iterations across
both the SPE and PPE cores of the Cell. These template classes are included in a small
set of header files compatible with the Offload C++ compiler. Figure 3 shows a simple
version of parallel_for implemented using Offload C++; parallel_reduce can
be implemented similarly.

The implementation in Figure 3 performs static work division. Multiple distinct im-
plementations with different static and dynamic work division strategies over various



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

subsets of the available cores can be implemented via additional overloads of the run
function. Dynamic work division is achieved by partitioning the iteration space dynam-
ically to form a work queue, guarded by a mutex, from which the worker threads obtain
units of work to perform. This provides dynamic load balancing, as workers with less
challenging work units are able to perform more units of work. Overloaded versions of
parallel_ for allow the user to select a specific work partitioner, e.g. to select static
or dynamic work division.

Work division between the SPE cores and the PPE core is performed in the run
method of the internal::start_for template. Offload’s automatic call graph du-
plication makes this straightforward, despite the differences between these cores: in
Figure 3, local_function is called on both the SPE (inside the offload block) and
PPE (outside the offload block) without modification to the client code.

template<typename Range, typename Body>
void parallel_for( const Range& range, const Body& body ) {
internal::start_for<Range,Body>::run(range, body) ;

}

template<typename Range, typename Body>
class start_for<Range, Body> {
public:
static void run( const Range& range, const Bodyé& body ) {
typedef Range::const_iterator iter;

// Query the runtime for the number of SPE cores we may use
unsigned NUM_SPES = num_available_spes () ;
offloadThread_t handles[NUM_SPES];

iter start = range.begin(); // Simple 1D range work division
iter end = range.end();
iter size = (end - start);

// NUM_SPES+1 because the PPE will do some work
iter chunksize = size/ (NUM_SPES+1);

const Body local_body = body;

for (int i = 0; i < NUM_SPES; ++i) {
iter local_begin = start + chunksizexi;
iter local_end = local_begin + chunksize;

if(local_end > end)
local_end = end;

// Partition iterations into sub-range

Range local_range (local_begin, local_end);

// Spawn asynchronous SPE thread for sub-range

handles[i] = _ _offload(local_body, local_range) {
local_body (local_range);

}i

{ // PPE also executes a sub-range
iter local_begin = start + chunksizexNUM_SPES;
Range local_range (local_begin,end);
local_body (local_range);
}
for (int i = 0; i < NUM_SPES; i++)
offloadThreadJoin (handles[i]); // Await completion of SPE threads

Fig. 3: An Offload C++ implementation of parallel_for for the PPE and SPE cores

41



42 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

In Figure 3, NUM_SPES holds the number of SPEs available to user programs in
addition to the PPE core. To use all the cores, we divide work between NUM_SPES+1
threads. One thread executes on the PPE, the others on distinct SPEs. The body of run
spawns offload threads parameterised with a single sub-range and the function object to
apply; it then also applies the function object to a sub-range on the PPE, before finally
awaiting the completion of each offload thread.

When passing function objects into template classes and template functions, the
functions to invoke are all statically known. Therefore, the Offload C++ compiler is
able to automatically compile the function object operator () routine for the SPE and
for the PPE, generating the data transfer code needed to move data between global and
SPE memory [3].

4 Portable tuning for performance

Offload C++ enables code written for a homogeneous shared memory multi-core archi-
tecture to run on heterogeneous multi-core architectures with fast local memories. A
consequence of this is that the relative cost of data access operations differs, depend-
ing on the memory spaces involved. Thus the performance characteristics of code may
change when offloaded.

We discuss the default data-movement strategy employed by Offload, a software
cache (§4.1). We then discuss portable optimisations that can be applied: local shadow-
ing (§4.2), and bulk transfers (§4.3). While these optimisations are generic to Offload
C++, we demonstrate in §5 that they can improve the performance of TBB applications
running on the Cell via Offload C++.

4.1 Default data-movement: software cache

The Offload C++ compiler ensures that access to data declared in host memory results
in generation of appropriate data-movement code. The primary mechanism for data-
movement on Cell is DMA. However, issuing a DMA operation each time data is read
or written tends to result in many small DMA operations. This can lead to inefficient
code, since providing standard semantics for memory accesses requires synchronous
DMA transfers, introducing latency into data access.

A software cache is used to avoid this worst-case scenario. When access to host
memory is required, the compiler generates a cache access operation. At runtime, a
synchronous DMA operation is only issued if the required data is not in the software
cache. Otherwise, a fast local store access is issued. When contiguous data is accessed,
or the same data is accessed repeatedly, the overhead associated with cache-lookups is
ameliorated by eliminating the much greater overhead associated with DMA. Writes to
global memory can be buffered in the cache and delayed until the cache is flushed or
the cache-entry is evicted to make room for subsequent accesses.

The software cache is small: 512 bytes by default. The cache is both a convenience
and, in many cases, an optimisation. However, it is not suited to bulk data transfers
where each cache-line is evicted without being reused. In such a case, the cache leads
to overhead without benefit. We discuss mechanisms for bypassing the cache where
appropriate in §4.2 and §4.3.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 43

4.2 Local shadowing

Although use of a software cache can significantly improve performance over naive use
of DMA, accessing the cache is significantly more expensive than performing a local
memory access, even when a cache hit occurs.

A common feature of code offloaded for Cell without modification is repeated ac-
cess to the same region of host memory by offloaded code. In this case, rather than
relying on the software cache, a better strategy can be to declare a local variable or ar-
ray, copy the host memory into this local data structure once, and replace accesses to the
host memory with local accesses throughout the offloaded code. If the offloaded code
modifies the memory then it is necessary to copy the local region back to host memory
before offload execution completes. We call this manual optimisation local shadowing:
host data is shadowed by local data to improve performance.

We illustrate local shadowing with the following code, a fragment of the raytracer
discussed in §5.1:

Sphere spheres|[sphereCount]; // Allocated in host memory

_ offload {
RadiancePathTracing (&spheres[0], sphereCount, ... );
i

Scene data allocated in host memory (the spheres array, declared outside the
__offload block), and passed into the RadiancePathTracing function. This func-
tion repeatedly accesses elements of spheres via the software cache. We can apply
local shadowing by copying the scene data from spheres into a locally-allocated ar-
ray, local, declared inside the __offload block:

Sphere spheres|[sphereCount]; // Allocated in host memory

_ offload {

Sphere local [sphereCount]; // Allocated in local memory
for (int i = 0; i < sphereCount; ++1i)

local[i] = spheres[i];
RadiancePathTracing(&local[0], sphereCount, ... );

i

A pointer to 1ocal is now passed to RadiancePathTracing, redirecting accesses
to scene data to fast, local memory. This optimisation reduces access to scene data via
the software cache to the “copy-in” loop; after this, accesses are purely local. Since
scene data is not modified during raytracing, there is no need for a “copy-out” loop.

Local shadowing does not compromise portability: in a system with uniform mem-
ory the copy-in and copy-out are unnecessary, but yield equivalent semantics. Assuming
that the code using the locally shadowed data is substantial, the performance hit associ-
ated with local shadowing when offloading is not applied is likely to be negligible.

4.3 Bulk data transfers

Offload C++ provides a header-file library of portable, type-safe template classes and
functions to wrap DMA intrinsics and provide convenient support for various data ac-



44 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

cess use cases. Templates are provided for read-only (ReadArray), write-only (Write-
Array) and read/write (ReadWriteArray) access to arrays in host memory.

The array templates follow the Resource Acquisition is Initialisation (RAII) pattern
[6], where construction and automatic destruction at end of scope can be exploited
to perform processing. Transfers into local memory are performed on construction of
ReadArray/ReadWriteArray instances, and transfers to host memory are performed
on destruction of ReadWriteArray/WriteArray instances.

struct UpdateVelocityBody {
void operator () (const blocked_range<int>& range ) const {
for( int i=range.begin(); i!=range.end(); ++i ) {

ReadArray<float, Width> 1D(&D[i][O0]),

ReadArray<float, Width> lL(&L[l] [0]

ReadArray<float, Width> 1S(&S[1i][0]

ReadArray<float, Width> lT(&T[l] [0]

]

[

)
)I
)i
ReadArray<float, Width> 1pT(&T[i-1
ReadWriteArray<£float, Width> 1V (&V
for( int j=1; j < Width-1; ++3j )
1v[ij] = 1D[J]1*(IV[JI+IL[J]*(1S[3]1-1S[J-1]+1T[3]-1pT([J]));

01);
11000

[
i

Fig. 4: Using DMA template wrappers for efficient data transfer

Figure 4 illustrates optimising the example of Figure 2 with bulk transfers. The
declaration ReadArray<float, Width> 1D(&D[i][0]) declares 1D alocal £loat
array, of size Width, and issues a synchronous DMA to fill 1d with data from host array
D (hence 1D stands for “local D). The ReadWriteArray instance 1V is similar, except
that when destroyed (on scope exit), a synchronous DMA restores the contents of 1V to
v. Velocity update is now performed with respect to local arrays only.

Bulk transfer templates share similarities with local shadowing (§4.2). However,
they hide details of copy-in and copy-out operations from the programmer, and by-
pass the software cache completely, which is often significantly more efficient than an
element-by-element copy would be.

At compile time, when targetting the PPE, an implementation of the templates de-
signed so that no performance penalty is incurred is selected. This implementation is
also usable on systems with single memory spaces, maintaining portability of code us-
ing the templates. Additional data-movement use cases can be implemented by users
using the same template functions abstracting transfer operations used to implement
the array templates.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 45

5 Experimental Evaluation

We demonstrate the effectiveness of our approach to offloading TBB programs to run
on the Cell using a set of parallel TBB programs. Experiments are performed on a Sony
PlayStation 3 (with six SPEs accessible), running Fedora Core 10 Linux and IBM Cell
SDK v3.0. Parallel benchmarks are compiled using Offload C++ v1.0.4, optimisation
level -03. Serial versions of the benchmarks are compiled using both GCC v4.1.1, and
Offload C++ v1.0.4. The faster of the two serial versions is taken as the baseline for
measuring the speedup obtained via parallelisation.

— Seismic simulation Simulation discussed in §2.1 for a 1120x 640 pixel display

— SmallPT-GPU Raytracer A global illumination renderer generating 256 x256
pixel images from scenes with between 3 and 783 spheres, computing sphere-ray
intersections with specular, diffuse, and glass reflectance with soft shadows and
anti-aliasing [7]

— Image processing kernels A set of 8 kernels operating on a 512x512 pixel im-
age, performing black-and-white median, colour median and colour mean filtering;
embossing; sharpening; greyscale conversion; Sobel and Laplacian edge detection

— PARSEC Black-Scholes Partial differential equations modelling the pricing of
financial options, from the PARSEC benchmark suite [8] using the large data set

— PARSEC Swaptions Simulates pricing a portfolio of swaptions using the Heath-
Jarrow-Morton and Monte Carlo methods; from PARSEC using the large data set

5.1 Results

We present results showing the performance increases obtained by parallelising each
benchmark across all available cores of the Cell (6 SPEs + PPE), compared with PPE-
only execution. We note that in some cases, the speedup using all cores is more than
7x. The SPE cores are significantly different to the PPE, so we would not expect them
to be directly comparable; a specific program may run faster across the SPEs due to
higher floating point performance, or efficient use of scratch-pad memory.

Seismic Simulation: After an initial offload of the original code, we found that the
data transfer intensive nature of this code results in non-optimal performance on the
SPE as the data being processed is still held in the global memory, and not in fast SPE
local store. To address this, we used the ReadArray and ReadWriteArray templates,
as shown in Figure 4. We then obtained a 5.9 x performance increase in the simulation
over using the PPE alone.

Image Processing Kernels: Figure 5 shows performance results. We used local
shadowing (§4.2) to hold input pixel rows in stack allocated arrays, implementing a
sliding window over the input image, in which a new pixel row is fetched to over-write
the local buffer storing the oldest row. Row fetches were then replaced with bulk data
transfer template operations (§4.3), and writes of individual output pixels were buffered
and written out via bulk transfer.

SmallPT-GPU Raytracer: Figure 6 shows performance results for three versions
of the SmallPT raytracer in raytracing six scenes compared to the serial baseline. The
first version uses parallel_for to execute on the SPEs and PPE. The second version



46 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

uses local shadowing of the scene data, as discussed in §4.2. Finally, the third version
uses a dynamic scheduling implementation of parallel_for where the SPEs and
PPEs threads dequeue work from a shared queue, and thereby load balance amongst
themselves.

Kernel |B&W Median|Col. Mean|Col. Median|Emboss|Laplacian|Sharpen|Sobel|Greyscale
Speedup 7.7 7.4% 4.5% 3.6 3.1x 53x |5.7x 3%

Fig. 5: Speedup for Image Kernels.

Scene caustic |caustic3|complex [cornell large|cornell|simple
Global scene data 25%x | 2.6x 1.4x 4.5% 44x | 2.7x
Local scene data 2.8%x | 3.0x 7.1% 7.2% 7.1x |3.1x
Dynamic parallel for| 4.9x | 5.2x | 10.1x 8.9% 8.5x% | 5.1x

Fig. 6: Speedup for SmallPT Raytracer using parallel_ for.

PARSEC Black-Scholes: Conversion of the Black-Scholes benchmark was straight-
forward. A single parallel_for template function call represents the kernel of the
application. We obtained a speedup of 4.0 relative to the serial version on PPE.

PARSEC Swaptions: It was necessary to refactor the codes in two stages. First,
dynamic memory allocations were annotated to distinguish between memory spaces.
Secondly, unrestricted pointer usage was replaced with static arrays. The local shad-
owing technique described in §4.2 was also employed as an optimisation. After these
modifications, a speedup of 3.0 x was obtained. This may rise with the incorporation of
bulk data transfer optimisations as described in §4.3.

6 Related Work

OpenCL [9] is a language and interface for programming in a heterogeneous parallel
environment. e.g. GPUs, homogeneous multi-core systems, and Cell [10]. Unlike Of-
fload, OpenCL introduces “boilerplate” code to transfer data between distinct memory
spaces via an API, and requires accelerator code to be written in the OpenCL language.

OpenMP targets homogeneous shared-memory architectures, although distributed
and heterogeneous implementations do exist [11-13]. In contrast to OpenMP on Cell,
the Offload compiler can use C++ templates to reify information obtained statically
from the call graph, allowing users to optimise code using “specialised” template strate-
gies selected for a specific target architecture e.g. the SPE.

7 Conclusions

We have shown how, using Offload C++, the TBB parallel loop construct parallel_for
can be readily used to distribute work across the SPE and PPE cores of the Cell proces-
sor. Our proof of concept implementation provides both static and dynamic work divi-
sion and supports a subset of the TBB library; parallel_for andparallel_reduce;
the associated blocked_range templates, and the spin_mutex class.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 47

We have also demonstrated that data transfer operations can be portably imple-
mented, exploiting target-specific DMA transfer capabilities when instantiated in the
context of code to be compiled for the SPE processors.

The parallel loop constructs we have implemented are facades over a more general
task based model of programming, provided for ease of use and to support common pat-
terns of parallelism directly. The fully general model of fork-join parallelism is more
challenging to implement. However, it does not seem unfeasible, although a consider-
able task.We plan to investigate the extent to which such an implementation is feasible.

In addition, we are keen to assess the performance of offloaded TBB code on more
highly parallel Cell-based systems, such as the IBM Cell Blade, which has 16 available
SPEs.

We are interested in extending Offload C++ to massively parallel systems, such as
GPUs. However, GPU-like architectures are not a good fit for the current Offload C++
programming model, which is generally applicable to heterogeneous multicore systems
as long as some means of random access to a shared global store is provided. Adapting
existing application code and Offload C++ to work with the restricted programming
models associated with GPUs will be a significant research challenge.

References

1. H. P. Hofstee, “Power efficient processor architecture and the Cell processor,” in HPCA.
IEEE Computer Society, 2005, pp. 258-262.

2. Intel, “Threading Building Blocks 2.2 for Open Source,” http://www.
threadingbuildingblocks.org/.

3. P. Cooper, U. Dolinsky, A. Donaldson, A. Richards, C. Riley, and G. Russell, “Offload -
automating code migration to heterogeneous multicore systems,” in HiPEAC’10, ser. LNCS,
vol. 5952.  Springer, 2010, pp. 337-352.

4. A. Donaldson, U. Dolinsky, A. Richards, and G. Russell, “Automatic offloading of C++ for
the Cell BE processor: a case study using Offload,” in MuCoCoS’10. IEEE Computer
Society, 2010, pp. 901-906.

5. Codeplay Software Ltd, “Offload: Community Edition,” http://offload.codeplay.com.

6. B. Stroustrup, The Design and Evolution of C++. Addison-Wesley, 1994.

7. D. Bucciarelli, “SmallPT-GPU,” http://davibu.interfree.it/opencl/smallptgpu/smallptGPU.
html.

8. C.Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite: Characterization
and architectural implications,” in PACT’08. ACM, 2008, pp. 72-81.

9. Khronos Group, “The OpenCL specification,” http://www.khronos.org/.

10. IBM Research, “OpenCL Development Kit for Linux on Power,” http://www.alphaworks.
ibm.com/tech/opencl.

11. “Extending OpenMP to Clusters,” http://www.intel.com/, 2006.

12. K. O’Brien, K. M. O’Brien, Z. Sura, T. Chen, and T. Zhang, “Supporting OpenMP on Cell,”
International Journal of Parallel Programming, vol. 36, no. 3, pp. 289-311, 2008.

13. IBM Research, “XL C/C++ for Multicore Acceleration for Linux,” http://www-01.ibm.com/
software/awdtools/xIcpp/multicore/features/.



48 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Fine-grained parallelization of a
Vlasov-Poisson application on GPU

Guillaume Latu!2

! CEA, IRFM, F-13108 Saint-Paul-lezDurance, France.
guillaume.latu@cea.fr
2 Strasbourg 1 University & INRIA /Calvi project
7 rue Descartes, 67084 Strasbourg Cedex, France

Abstract. Understanding finely turbulent transport in magnetised plas-
mas is a subject of major importance to optimise experiments in present
and future tokamak fusion reactor. The Vlasov equation provides a useful
framework to perform experimental study and modelling of such devices.
In this paper, we focus on the parallelization of a 2D semi-Lagrangian
solver dedicated to plasma physics on GPGPU. The originality of the
approach lies in the needed overhaul of both numerical scheme and al-
gorithms, in order to compute accurately and efficiently in the CUDA
framework. Two main topics are addressed. First, we show how to deal
with 32-bit floating point precision, and we look at accuracy issues when
employing the GPU in this kind of application. Second, we exhibit a
very fine grain parallelization that fits well on a many-core architecture.
A speed-up of almost 80 has been obtained by using a GPU instead
of one CPU core. As far as we know, this work presents the first semi-
Lagrangian solver dedicated to plasma physics ported on GPGPU. Simu-
lations of fusion plasma consume a great amount of CPU time on today’s
supercomputers; thus, we provide design insights for future plasma sim-
ulators running on GPU clusters.

1 INTRODUCTION

The present paper highlights the porting of a semi-Lagrangian Vlasov-Poisson
code on a GPU device. The work, described herein, follows a previous study
made on the LOSs code described in other papers [CLS06]. A classical approach
in the Semi-Lagrangian community involves the use of cubic splines to achieve
the many interpolations needed by this scheme. The application we describe here,
uses a local spline method designed specifically to perform decoupled numerical
interpolations, while preserving classical cubic spline accuracy. In previous pa-
pers (see [CLS06,CLS07,CLS09,LCGS07]), this scalable method was integrated
in MPI codes and a set of simulators based on that scheme were described and
benchmarked. Both one-dimensional and two-dimensional domain decomposi-
tions were considered in order to decouple computations on many processors.
Only relatively small MPI inter-processor communication costs were induced
and these codes scaled well over hundreds of cores.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 49

We will describe how to enrich the existing algorithm and numerical scheme
included in the LOSS code, in order to obtain a tuned algorithm that fits well in
the CUDA framework. This research is performed in an interdisciplinary team
of physicists, mathematicians and computer scientists within the INRIA CALVI
project and the French Atomic Energy Authority (CEA). In the rest of the
paper, the numerical scheme and the accuracy issues are briefly introduced and
the parallelization of the main algorithm with CUDA is described. The speedup
and accuracy of the simulations are reported and discussed.

2 MATHEMATICAL MODEL

In the present work, we consider a reduced model for two physical dimensions (in-
stead of six in the general case), corresponding to z and v, such as (x,v,) € R2.
The 1D variable z represents the configuration space and the 1D variable v,
stands for the velocity along = direction. Moreover, the self consistent magnetic
field is neglected because v, is considered to be small in the physical configura-
tions we are looking at. The Vlasov-Poisson system then reads:

g—{—i—vx.vzf—&—(E—i—vmxB) Vo, f =0, (1)
B(z,t) = —Vé, 2)
—eoV%p = p(z,t) = q/f(m,vm,t)dvx. (3)

where f(z,v,,t) is the particle density function, p is the charge density, ¢ is
the charge of a particle (only one species is considered) and e( is the vacuum
permittivity.

Equations (1) and (3) are solved successively at each time step. Equation (2)
gives the self-consistent electrostatic field E(x,t) generated by particles. The
density p of Eq. (3) is evaluated in integrating f over v,.. Our work focuses on the
resolution of Equation (1) using a backward semi-Lagrangian method [SRBG99].
The physical domain is defined as D2 = {(2,vz) € [Zmin, TMax) X [Vzpmin Vansan) }-
For the sake of simplicity, we will consider that the size of the grid mapped on this
physical domain is a square indexed on D? = [0,27 — 1]2. To have a rectangular
logical grid, it is easy to break this assumption and to consider different values
for j depending on the dimension. Concerning the type of boundary conditions,
a choice should be made depending on the test cases under investigation. At the
time being, only periodic extension is implemented.

3 ALGORITHMIC ANALYSIS

3.1 Global numerical scheme

The Vlasov Equation (1) can be decomposed by splitting. It is possible to solve
it, through the following elementary advection equations:

O f +v.:0,f =0, (& operator)

Orf +Up0y, f =0. (0, operator)



50 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Each advection consists in applying a shift operator. A splitting of Strang [CK76]
is employed to keep a scheme of second order accuracy in time. We took the
sequence (Z/2,7,,2/2), where the factor 1/2 means a shift over a reduced time
step At/2. Algorithm 1 shows how the Vlasov solver of Eq. (1) is interleaved
with the field solver of Eq. (3).

Algorithm 1: One time step
Input : f;
Output: fi4a:
// Vlasov solver, part 1
1 1D Advection, operator % on f(.,.,1)

. forall v, do
Field solve ! @
// Field solver 2 a(.) < spline coeff. of sampled function f(.,v,)

Algorithm 2: Advection in z dir., dt time step

2 Integrate f(.,.,t+At/2) over v, i

3 to get density p(.,t+At/2) 3 foralol z do &t

4 Compute Pya¢/2 With Poisson solver 4 x* —r- Uz: o X

s using p(., t+At/2) 5 f*(x,v;) < interpolate f(2°,v,) with a(.)

// Viasov solver, part 2
1D Advection, operator v, (use @y at)2)

1D Advection, operator g

N o

3.2 Local spline method

Each 1D advection (along z or v,) consists in two substeps. First, the density
function f is processed in order to derive the cubic spline coefficients. Hence, we
get a continuous representation of f over dimension = or v,. The specificity of
the local spline method is that a set of spline coefficients covering a given subdo-
main can be computed concurrently with other subdomains. Thus, it improves
the standard approach that unfortunately needs a coupling between all coeffi-
cients along one direction. Second, spline coefficients are used to interpolate the
function f at specific points. This substep is intrinsically parallel wether with
the standard spline method or with the local spline method: one interpolation
involves only a linear combination of four neighbouring spline coefficients.

Algorithm 2 details one advection and shows how interpolations are inte-
grated. In this algorithm x° is called the origin of the characteristic. With the
local spline method, we gain concurrent computations during the spline coef-
ficient derivation (line 2 of the algorithm). Our main goal in this paper is to
convert the algorithm into an form adapted to the CUDA framework.

3.3 Floating point precision

Usually, semi-Lagrangian codes make extensive use of double precision floating
point operations. The double precision is required because pertubations of small
amplitude often play a central role during plasma simulation. For example, we
focus on the very classical linear Landau damping test case with k=0.5, «=0.01.
The initial distribution function is given by

Vx

F(,0,,0) = £

VoL (1+ «cos(kz)) .



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 51

Let us mention that other test cases are available in our implementation (like
strong Landau damping, or two stream instability). We incorporated essentially
classical problems picked to test the numerical algorithm and benchmark the
code. Herafter, we focus on the linear Landau damping which highlights the
accuracy problem one can expect in Vlasov-Poisson simulations.

The problem arising with simple precision computations is shown on Figure 1.
The LOSS code (written in Fortran 90 and using MPI) is used to perform linear
Landau simulation. The L? norm of electric potential is shown on the picture
(electric energy) with logarithmic scale along the Y-axis. The double precision
curve represents the reference simulation. Obviously, the difference between the
two curves indicates clearly that simple precision is not enough to get the right
result; especially for long-time simulation. With an accurate look at the figure,
one can notice that the double precision simulation is accurate until reaching a
plateau value near 1072°. To go beyond this limit, one shoud have even more
accurate interpolation scheme.

T T T T T T
simple precision - - - simple precision - - -
5 F double precision T -5 F double precision T
deltaf simple precision — — -
deltaf double precision ------

-15 | B -15 | i
-20 |- WW/WM 1 -20 |- 1
-25 |- E 25 | ,
‘ ‘ s s s s ‘ ‘ ‘ RN
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Fig. 1. Electric energy for Landau test Fig. 2. Electric energy for Landau test
case 1024 x 1024 with 32-bit precision ad- case 1024 x 1024 using Jf representation

vection versus advection with 64-bit pre- or standard representation. The float-
cision (depending on time measured as a ing precision is 32-bit or 64-bit accu-
number of plasma period wcfl) racy.

3.4 Improvement of numerical precision

For the time being, one has to consider mostly simple precision (SP) computa-
tions to get maximum performance out of a GPGPU (General-Purpose Process-
ing on Graphics Processing Units). The double precision (DP) is much slower
than simple precision (SP) on today’s devices. Furthermore, the memory band-
width constraint is lighter with SP than with DP, considering the same number
of elements to be transfered to floating point units.

The previous paragraph shows that SP leads to unacceptable numerical re-
sults. It turns out that our numerical scheme could be modified to reduce nu-
merical errors even with only SP operations during the advection steps. In order



52 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

to do so, we will introduce a new function

5f(xava:at) = f(l'ﬂ)x,t) - fref($7vx)~

Working on the §f function could improve accuracy if the values that we are
working on are sufficiently close to zero. Then, the reference function fif should
be chosen such that the df function remains relatively small (in L, norm). As
we will see hereafter, it is convenient to assume that f,. is a constant along the
z dimension. For the Landau test case, we choose

1
= 2

frcf(vz) \/ﬂ € .

As the function fef is constant along x, the z-advection applied on f,ef leaves

fret unchanged. Then, it is equivalent to apply & operator either on function f or

on function f. Working on Jf is very worthwile: for the same number of floating

point operations, we increase accuracy in working on small differences instead of

large values. Concerning the v, operator however, both f..f and f are modified.

For each advected grid point (x,v,) of the f* function, we have (v2 is the foot
of the characteristic):

f*(x,vz) f(ﬂﬁ,’()g) :6f(x7vg)+fref(v;)7
5f*(xvvw) = f*(x7vw) — fret(va),
of* (@, v5) = 0f (#,v3) — (fret(va) = fret(vy))-

Working on df instead of f changes the operator v,. To advect in the v,
direction, we are looking for all values f*(x,v,) found thanks to the previous
equations. To compute these values, we need to interpolate both f(z,v?) and
(fref(Vz)—fret(v2)). In doing so, we increase the number of computations ; because
in the original scheme we had only one interpolation per grid point (x,v,),
whereas we have two in the new scheme. In spite of doubling the number of
operations for evaluting the v, operator, we expect the numerical accuracy to
be enhanced using Jf representation. Here is a sketch of the proposed df based
scheme that replaces that of Algorithm 1:

Algorithm 3: One time step with df scheme
Input : df;
Output: 6f 1 ar

// Vlasov solver, part 1
1 1D advection on df, operator 5
// Field solver
Integrate Of (., ., t+At/2) + fret(.) to get p(., t+At/2)
Compute @4y /2, with Poisson solver on p(.,t+At/2)

@ N

// Vlasov solver, part 2

1D advection on df, operator v, (using ®yya¢/2)
— stored into Jf

Interpolations of fref(ve) — fret(v3) (using Ppyar)2)
— results added into Jf

e IS N

1D advection on ¢§f, operator %




HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 53

4 CUDA ALGORITHMS

4.1 CUDA Framework

Designed for NVIDIA GPUs (Graphics Processing Units), CUDA is a C-based
general-purpose parallel computing programming model. Using the CUDA pro-
gramming model, GPUs can be regarded as computation devices operating as
coprocessors to the central processing unit (CPU). GPUs communicate with the
CPU through fast PCI-Express ports. Over the past few years, a lot of successful
experiments with GPGPU have been reported in the literature. An overview of
the CUDA language and architecture will not be given here (for an introduction,
see for example [NVI09]). Our reference implementation of LOss used for com-
parison is written in Fortran 90 langage and uses the MPI library. The CUDA
version of LOsS presented here mixes Fortran 90 code and external C calls (to
launch CUDA kernels).

4.2 Data placement

We perform the computation on data df of size (27)2. Typical domain size varies
from 128 x 128 (64 KB) up to 1024 x 1024 (4 MB). The whole domain fits easily in
global memory of current GPUs. We could even store two data functions in global
memory to avoid using an in-place algorithm. The main computational cost of
our application is located in the four advection steps shown in Algorithm 3. In
order to reduce unnecessary overheads, we decided to avoid transfering 2D data
of between the CPU and the GPU as far as we can. So we kept data function
df onto GPU global memory. Computation kernels directly update the 2D data
stored on the GPU global memory. For diagnostics purposes only, the §f function
is transfered to the CPU at a given frequency (a given number of time steps)
and stored on disk. The end-user can then view or postprocess the diagnostic
files.

4.3 Spline coefficients computation

Spline coefficients (of 1D discretized functions) are computed on patches of 32
values of Jf. As explained elsewhere [CLS06], a smaller patch would introduce
significant overhead because of the cost of first derivative computations on the
patch borders. A bigger patch would increase the computational grain which is
a bad thing for GPU computing that favors scheduling large number of threads.

The 2D domain is decomposed into small 1D vectors (named ”patches”) of
32 of values. To derive the spline coefficients, small LU systems are solved. The
assembly of right hand side vector used in this solving step can be summarized as
follows: keep the 32 initial values, add 1 more value of §f at the end of the patch,
and then add two derivatives of §f located at the border of the patch. Once the
right hand side vector is available (35 floatint point numbers), two precomputed
matrices L and U are inverted in order to derive spline coefficients. This step
uses the classical forward and backward substitution. We decided not to try



54 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

to parallelize this small LU solver: a single CUDA thread will be in charge of
computing spline coefficients on one patch taking as input a right hand side
vector, and two constant matrices L and U. That point could be improved in
the future in order to use several threads instead of one.

4.4 Parallel interpolations

On one patch, 32 interpolations need to be done (excluding on domain bound-
aries where periodicity is taken into account). Each interpolation requires com-
bining four spline coeflicients. All these interpolations are decoupled. To max-
imize parallelism, one can even try to dedicate one thread per interpolation.
Nevertheless, as some auxiliary computations could be factorized (for example
the shift computed to find the foot of the characteristic), it is relevant to per-
form more than one interpolation per thread to reduce global computation cost.
The exact number of such interpolations per thread is a parameter of our code
and is has an impact on performance. In the following, we named this blocking
factor B.

4.5 Data load

The computational intensity of the advection step is not that high. During the
LU phase (spline coefficients computation), each input data is read and written
twice and generates two multiplications and two additions in average. During
the interpolation step, there are four reads and one write per input data and
also four multiplications and four additions.

The low computational intensity implies that we could expect shortening the
execution time in reducing loads and writes from GPU global memory to the
floating point units. So, there is a benefit to group the spline computation and
the interpolations in a single kernel. Several benchmarks have confirmed that
with two distinct kernels (one for building splines and one for interpolations)
instead of one, the price of load/store in the GPU memory increases. Thus, we
now describe the solution with only one kernel that maximizes the computational
intensity.

4.6 Domain decomposition and fine grain algorithm

To fit into the CUDA environment, the 2D computational domain is split into
grids and blocks. We have designed three main kernels. Here is their short de-
scription:

KernVA operator v,, on Jf (z,v,)
KernVB adding fref(vs) — fret(v2) to Of (z,vz)
KernX operator & on 0f (x,v,)

These kernels are very similar. Each of the three kernels begins with a load of
a 2D rectangular shape of data into shared memory. Hence, the block of threads
can share these data along the following computations. At the end of kernels,



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

writes are performed in the GPU global memory in a rectangular 2D area. The
main steps of an advection kernel (KernVA or KernX) are given in Algorithm 4.
The computations of 8 n threads acting on 32n real number values are described
(which means that B=4 was hardcoded for this particular example).

Algorithm 4: Skeleton of an advection kernel

Input : f; in global memory of GPU
Output: fiyq in global memory of GPU

// A) Load from global mem. to shared mem.

Each thread loads 4 floats from global mem.

Floats loaded are stored in shared memory

Boundary conditions are set (extra floats are read)
Synchro.: each block of threads owns n vectors of 32 floats
// B) LU Solver

5 1 thread over 8 solves a LU system

6 7 threads over 8 are idle

Synchro.: one block has n vectors containing spline coeff.
// C) Interpolations

Each thread computes 4 interpolations

// D) Writing to GPU global memory

Each thread writes 4 floats to global mem.

W N =

@ B

©

In Algorithm 4, the first A) substep reads floats from GPU global memory and
puts them into fast GPU shared memory. Then, a synchronization point waits
for completion of all threads within one block of threads. When entering the B)
substep, all input data have been copied into shared memory. Concurrently in
the block of threads, small LU system are solved. During this small computation
step, 87% of the threads are idle. Spline coefficients are finally known and stored
in shared memory. In substep C), each thread computes 4 interpolations (because
B=41in this example) using spline coefficients. This task is the most computation
intensive part we have to tackle in the Vlasov-poisson solver. Finally, substep D)
writes results into global memory.

5 PERFORMANCE

5.1 Machines

In order to develop the code and perform small benchmarks, a cheap personal
computer has been used. The characteristic of the CPU are the following: Dual
core E2200 Intel processor (2.2Ghz), 2GB of RAM, 4 GB/s peak bandwidth,
4 GFLOPS peak, 1 MB L2 cache. The GPU is a GTX260 Nvidia card: 1.24 Ghz
clock speed, 0.9 GB of global memory, 95 GB/s peak bandwidth, 750 GFLOPS
peak, 27 multiprocessors, 8 cores per multiprocessor (for a total of 216 cores).
The CPU-GPU transfer bandwidth is as small as 1 GB/s.

Another computer (at CINES, Montpellier, FRANCE) has been used for
our benchmarks. The CPU part is a bi-socket quad-core E5472 (Harpertown),
Xeon Intel 3 Ghz, 1 GB RAM , peak bandwidth 5 GB/s, 12 GFLOPS peak, L2
cache 2x6 MB. Concerning the GPU, the machine is connected to a Tesla S1070,

N

N



56 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

1.44Ghz, 4 GB global memory, 100 GB/s peak bandwidth, 1000 GLOPS peak,
30 multiprocessors, 8 cores per multiprocessor (for a total of 240 cores).

5.2 Small test case

Let us first have a look on execution time of the §f scheme on CPU or on GPU.
We consider the small testbed (Dual core E2200 - GTX 260), and a reduced
test case (data size = 2562). The simulation ran on a single CPU core. Timing
results are shown in the first column of Table 1. Then we ran the GPU version
of the code on the same physical problem on the 216 cores of the GTX260 card.
Timing results and speedup (reference execution time is the CPU single core
timing) are given in the second column of the table.

Substeps in one time

CPU (deltaf 4B)

GPU (deltaf 4B)

step

X Advection 5123 ps (1.0) 172 ps (29.7)
V Advection 4850 ps (1.0) 144 ps (33.7)
Field computation 133 ps (1.0) 93 ps (1.4)
Complete Iteration | 10147 ps (1.0) 546 ps (18.6)

Table 1. Computation times inside a time step and
speedup (in parentheses) averaged over 5000 calls - 2562
test case, £2200/GTX260

The speedup is approximately 30 for the two significant computation steps,
but is smaller for the field computation. The field computation part includes two
substeps: first the integral computations over the 2D data distribution function,
second the solving of a 1D poisson equation. The performance of integrals is
bounded up by the loading time of 2D data from global memory of the GPGPU.
This substep is not computationnally intensive, because there is only one addi-
tion to do per loaded float to do. The second substep that solves Poisson equation
is a small 1D problem that could not easily be parallelized. Furthermore, we loose
much time in lauching the poisson kernel on the GPU. We measured approxi-
mately a cost of 25 us per kernel launch. During launch, no calculation and no
loads takes place.

5.3 Large test case

We now have a look at a larger test case with data size equal to 10242. The two
testbeds described earlier were used. Performance are slightly better using the
Xeon/Teslal070 compared to the E2200/GTX260.

Substeps in one time|CPU (deltaf 4B)||GPU (deltaf 4B) Substeps in one time|CPU (deltaf 4B)||GPU (deltaf 4B)
step step

X Advections 79600 ps (1.0) 890 ps (90) X Advections 67000 pus (1.0) 780 ps (86)
V Advections 89000 ps (1.0) 1000 ps (89) V Advections 42000 ps (1.0) 960 ps (43)
Field computation 1900 ws (1.0) 180 ps (11) Field computation 1500 ps (1.0) 200 ps (1 7)
Complete Iteration | 171700 ps (1.0) 2250 ps (76) Complete Iteration | 110000 ps (1.0) 2200 ps (50)

Table 3. Computation time and speedups (in paren-
theses) averaged over 5000 calls - 10242 test case -
Xeon/Teslal070

Table 2. Computation time and speedups (in paren-
theses) averaged over 5000 calls - 10242 test case -
E2200/GTX260

Speedups of GPU over CPU are higher than in the previous smaller test
case. The advection kernels reach speedups from 75 to 90 compared to one CPU
single core computation. For this data size, the field computation does represent
a small amount of computation (1D problem) compared to the advection kernels
(2D problems). The relatively low speedup for the field solver does not penalize



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 57

the global simulator performance. A complete iteration of the simulation is per-
formed 76 times quicker on the 216 cores of the GTX260 than on a single core
E2200.

CONCLUSION

We have developed a so-called §f model that tends to be more precise than
the standard model. It turns out to be a valid approach to perform a Semi-
Lagrangian Vlasov-Poisson simulation using only 32-bit floating-point precision
instead of classical 64-bit precision simulations.

We have described the implementation on GPU of the advection opera-
tor used in Semi-Lagrangian simulation, which is subject to architectural con-
straints. We have discussed the kernel structure and the trade-offs made to ac-
commodate the GPU hardware. A very fine grain parallelization of the advection
step is presented that scales well on thousands of threads.

The original MPT application (before the porting to CUDA) is bounded up
by memory bandwidth because computational intensity is small. It is well known
that algorithms of high computational intensity can be efficiently implemented
on the GPGPUs. We have demonstrated in this paper that algorithms of low
computational intensity can also benefit from GPU hardware. We have built
a GPU implementation reaching a significant speedup of overall 76 compared
to a single core CPU computation. This allows solving quickly large Vlasov-
Poisson test cases, on cheap and freely available personal computers. In the
near future, we expect to integrate this solution into a 4D semi-Lagrangian code
(with 2 dimensions both in space and velocity). The memory constraint imposed
by such 4D simulations implies that we shall design a code that runs on multiple
GPUs; it will allow for the enlargement of the available memory space. We are
now targeting the design of a MPI+CUDA code that could run on a GPU cluster.

References

[CK76] C.Z. Cheng and Georg Knorr. The integration of the Vlasov equation in
configuration space. J. Comput Phys., 22:330, 1976.

[CLS06] N. Crouseilles, G. Latu, and E. Sonnendriicker. Hermite spline interpola-
tion on patches for a parallel solving of the Vlasov-Poisson equation. Tech-
nical Report 5926, Research report INRIA, 2006. http://hal.inria.fr/inria-
00078455 /en/.

[CLS07] N. Crouseilles, G. Latu, and E. Sonnendriicker. Hermite spline interpolation
on patches for parallelly solving the Vlasov-Poisson equation. Applied Mathe-
matics and Computer Science, 17(3):335-349, 2007.

[CLS09] N. Crouseilles, G. Latu, and E. Sonnendriicker. A parallel Vlasov solver based
on local cubic spline interpolation on patches. J. Comput. Phys., 228(5):1429—
1446, 2009.

[LCGS07] G. Latu, N. Crouseilles, V. Grandgirard, and E. Sonnendriicker. Gyroki-
netic semi-lagrangian parallel simulation using a hybrid OpenMP/MPI pro-
gramming. In PVM/MPI, pages 356-364, 2007.

[NVI09] NVIDIA. CUDA Programming Guide, 2.3, 2009.
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs
/NVIDIA_CUDA Programming Guide_2.3.pdf.

[SRBGY99] E. Sonnendriicker, J. Roche, P. Bertrand, and A. Ghizzo. The semi-
lagrangian method for the numerical resolution of the Vlasov equations. J.
Comput. Phys., 149:201-220, 1999.



58 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Highly Parallel Implementation of Harris Corner
Detector on CSX SIMD Architecture

Fouzhan Hosseini, Amir Fijany, and Jean-Guy Fontaine

Tele Robotics and Applications Department, Italian Institute of Technology,
Via Morego 30, Genova, Italy
{fouzhan.hosseini,amir.fijany, jean-guy.fontaine}@iit.it
http://wuw.iit.it

Abstract. We present a much faster than real-time implementation of
Harris Corner Detector (HCD) on a low-power, highly parallel, SIMD ar-
chitecture, the ClearSpeed CSX 700, with application for mobile robots
and humanoids. HCD is a popular feature detector due to its invariance
to rotation, scale, illumination variation and image noises. Considering
the CSX architecture, we have developed strategies for efficient paral-
lel implementation of HCD, and we have achieved a performance of 465
frames per second (fps) for images of 640x480 resolution and 142 fps for
1280x720 resolution. For a typical real-time application with 30 fps, our
fast implementation represents a very small fraction (less than %10) of
available time for each frame and thus allowing enough time for perform-
ing other computations. Our results indicate that the CSX architecture
is indeed a good candidate for achieving low-power supercomputing ca-
pability, as well as flexibility.

1 Introduction

Mobile robots and humanoids represent an interesting and challenging example
of embedded computing applications. On one hand, in order to achieve a large
degree of autonomy and intelligent behavior, these systems require a very sig-
nificant computational capability to perform various tasks. On the other hand,
they are severely limited in terms of size, weight, and particularly power con-
sumption of their embedded computing system since they should carry their own
power supply. The limitation of conventional computing architectures for these
types of applications is twofold: first, their low computing power, second, their
high power consumption. Emerging highly parallel and low-power SIMD and
MIMD architectures provide a unique opportunity to overcome these limitations
of conventional computing architectures. Exploiting these novel parallel archi-
tectures, our current objective is to develop a flexible, low-power, lightweight
supercomputing architecture for mobile robots and humanoid systems for per-
forming various tasks and, indeed, for enabling new capabilities.

Computer vision and image processing techniques are very common in robotic
applications, e.g. motion detection, tracking, 3D reconstruction and object recog-
nition. Feature detection is a low-level image processing task which is usually



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 59

performed as the first step in many computer vision applications such as ob-
ject tracking [1] and object detection/recognition [2]. Harris Corner Detector
(HCD) [3] is a popular feature detector due to its invariance to rotation, scale,
illumination variation and image noises.

Fast implementation of HCD has been considered on various architectures.
Teixeira et al. [4] have implemented HCD on a graphics processing units (GPU).
For an image of 640x480 resolution, the HCD is computed in 10.1 ms. They real-
ized that the large number of memory accesses degrade performance. Therefore,
by compressing each 2x2 pixels in the original image as one pixel, they reduced
the computation time to 3.3 ms with one pixel imprecision. Another way to
improve performance is to employ Field Programmable Gate Arrays (FPGAs).
Dietrich [5] has implemented HCD on FPGA as part of a stereo vision system.
The developed FPGA is capable of calculating HCD for images of the resolution
358 x 288 at the speed of 60 fps. Also, Cheng et al. [6] have proposed an ASIC
implementation of HCD as part of a vision processor. The proposed architecture
is capable of computing HCD for images of the resolution 128 x 128 at the speed
of 1367 fps. Moreover, Saidani et al. [7] have employed Harris corner detector
on Cell processor. ASICs and FPGAs could be used to design custom hardware
for low-power high performance applications. GPU and Cell processor are more
flexible, but the main limitation is the rather prohibitive power consumption.
None of the above mentioned solutions satisfies our requirements for mobile sys-
tem vision processing including low power consumption, flexibility, and real time
processing capability simultaneously.

In this paper, we present a fast implementation of HCD on a highly parallel
SIMD architecture, the ClearSpeed CSX 700. The CSX 700 has a peak comput-
ing power of 96 GFOLPS, while consuming less than 9 Watts. In fact, it seems
that CSX provides one of the best (if not the best) performance in terms of
GFLOPS/Watt among available computing architectures. Considering the CSX
architecture, we have developed strategies for efficient parallel implementation of
HCD.We have achieved a performance of 465 fps for images of 640x480 resolution
and 142 fps for 1280x720 resolution. These results indeed represent a much faster
than real-time implementation and better than those previously reported in the
literature. For a typical real-time application with 30 fps, our fast implementa-
tion represents a very small fraction (less than %10) of available time for each
frame and thus allowing enough time for performing other computations. Our
experimental results, presented in this paper, clearly indicate that the SIMD ar-
chitectures such as CSX can indeed be a good candidate for achieving low-power
supercomputing capability, as well as flexibility, for embedded applications.

This paper is organized as follows. In Sect. 2, we briefly discuss the HCD
algorithm. In Sect. 3, we briefly review the CSX architecture with emphasis on
its salient features which have been exploited in our parallel implementation
of HCD. In Sect. 4, our approach for parallel implementation of HCD on CSX
architecture is described and experimental results are discussed in Sect. 5. Finally
some concluding remarks and direction for our future works is presented in
Sect. 6.



60 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

2 The Harris Corner Detector Algorithm

To detect corners in a given image, the HCD algorithm [3] proceeds as following.
Let I(x,y) denote the intensity of a pixel located at row x and column y of the
image.

1. For each pixel (z,y) in the input image compute the elements of the Harris
9zx Jxy
Jzy Jyy

a1 2@ orary a1 2@ W
b = —_ w 2 = —_— w = R w
Jaa oz Jay Oz Oy Iyy Jy ’
where ® denotes convolution operator and w is the Gaussian filter.
2. For all pixel (x,y), compute Harris’ criterion:

matrix G = as follows:

c(x,y) = det(Q) — k(trace(G))? (2)

where det(G) = guz-gyy — 92y k is a constant which should be determined
empirically, and trace(G) = gzz + gyy-

3. Choose a threshold 7 empirically, and set all ¢(x,y) which are below 7 to
zero.

4. Non-maximum suppression, i.e. extract points (z,y), which have the maxi-
mum c¢(z, y) in a window neighborhood. These points represents the corners.

3 The CSX 700 Architecture

In this section, we briefly review the ClearSpeed CSX 700 architecture with
emphasis on some of its salient features that have been exploited in our imple-
mentation (see, for example, [8], [9] for more detailed discussion). As illustrated
in Fig. 1(a), CSX700 has two similar cores, each core has a DDR2 memory inter-
face and a 128KB SRAM, called external memory. Each core also has a standard,
RISC-like, control unit, also called mono execution unit, which is coupled to a
highly parallel SIMD architecture called poly execution unit.

Poly execution unit consists of 96 processing elements (PEs) and performs
parallel computation (see Fig. 1(b)). Each PE has a 128 bytes register file, 6KB of
SRAM, an ALU, an integer multiply-accumulate (MAC) unit, and an IEEE 754
compliant floating point unit (FPU) with dual issue pipelined add and multiply,
as well as support for division and square root.

The CSX700 has clock frequency of 250M H z[10]. Considering one add and
one multiply floating point units working in parallel and generating one result
per clock cycle, the peak performance of each PE is then 500 MFOPS, leading to
a peak performance of 96 GFLOPS for two cores (one chip). However, sequential
(i.e., scalar) operations, wherein single add or multiply is performed, take 4 clock
cycles to be performed [10]. This results to a sequential peak performance of 12
GFLOPS for two cores. This indeed represents a drastic reduction in the peak,



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

128K 128K
1 SRAM SRAM 1 Poly Execution Unit
Core 1 Core 2 PE; PE, 4| PE; PE..|  |PEss
2 7 7 ! J 7 I 9 alale
] s 4 Mono [ Dawm ins 3 Mono [ Dama o 2812180 |3
= Ib.conuutter P'cache || || cache [-Conuutier fPcache = N RS
= o gz
5 ] 2 52 ¥ ¥ 2 ¥ ke S5 e
= [ Poly Contulier 11 [ Poly Contulier ] = 6a Toa 64
5 ¥ 2 ¥ ¥ 5
£ Poly Executiun Unit Poly Executin Unit £ e, Spl RegsterFile Joh, g o
= = 128 bytes)
| PE, 463 PE, [43 <5t PEsoldl il PE, ki PE, [ <3 PEoo] SRAM
o s » & Kbyies)
le— b Piogranmapiewc | ||| [ Progianmabenic s PIC Unit TIC Buiter
4 bytes)
P s
< Engue
Gn Chip Network % E—— —|
(a) (b)

Fig. 1. (a)Simplified CSX Chip Architecture (b) Poly Execution Unit Architecture [8]

and hence, achievable performance. However, vector instructions which operate
on sets of 4 data are executed much faster, e.g, vector add or multiply instructions
take 4 cycles to be completed [10]. Therefore, vector instructions allow greater
throughput for operations. However, the code generated by compiler may not
be optimized. Therefore, in order to achive the best performance, we have also
written part of our codes in assembly language of the CSX.

Poly execution unit includes a Programmable I/O (PIO) unit (Fig. 1(b))
which is responsible for data transfer between external memory and PEs’ mem-
ories, called poly memory. It is important to note that the architecture of poly
execution unit enables the computational units and the PIO unit to work in
parallel, thus enabling overlapping of communication with computation. This
feature is fully exploited in our implementation to reduce I/O overhead.

Moreover, each PE is capable of communicating with its two neighboring
PEs by using a dedicated bus called swazzle path, which connects the register
files of neighbors PEs (Fig. 1(b)). Consequently, on each cycle, PEs are able to
perform a register-to-register data transfer to either their left or right neighbor,
while simultaneously receiving data from the other neighbor.

4 Proposed Parallel Implementation

Considering the SIMD architecture of CSX, we have employed data parallel
model of computation. Here, we first discuss our data decomposition strategy.
Then, we discuss more details of our parallel implementation.

4.1 Data Decomposition

Having an image and an array of PEs, various data distributions schemes could
be considered. The most obvious schemes are row (column)-stripe distribution,
block distribution, and row (column)-cyclic distribution. Here, we discuss the
effectiveness of each of these data distribution schemes for parallel implementa-
tion of HCD algorithms on the CSX architecture. An important consideration

61



62 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

for the CSX architecture is the size of PE’s memory which is rather limited. For
the CSX architecture, various data distributions should be compared in terms of
the following parameters: (a) required memory space for each PE; (b) redundant
external memory communication; and (c) inter-PE communication time.

In the following, ¢ and r denote the number of columns and rows in image
matrix, respectively. According to the algorithm description in Sect. 2, HCD
performs a set of operations in windows around each pixels. In fact, HCD uses
windows which may have different sizes in 3 stages: calculating partial deriva-
tives, Gaussian smoothing, and non-maximal suppression. Let w be the sum of
these window sizes. Also, let p indicate the number of PEs. Finally, in each mem-
ory communication, each PE reads or writes m bytes of data (pixel) from/into
the external memory. IT is the memory space needed to calculate the elements
of Harris matrix for m pixels.

Block distributions. In this scheme, as illustrated in Figure 2(a), the image
is divided into p = d * s blocks, with each block having ¢/d columns and r/s
rows. The first block is assigned to the first PE, the second one to the second PE,
and so on. Each block can be identified by an ordered pair (i,5) where 1 <i <s
and 1 < j < d. In the following, P(i,j) denotes the PE which is responsible for
processing the block (7, j) and refers to PE ((i — 1)s + j).

Figure. 2(b) depicts the boundary data needed for computation by P(i,7)
and its four immediate neighbors. To handle boundary data, needed by two
neighboring PEs, there are two possible alternatives: transferring boundary data
from external memory to both PEs, hence performing redundant data commu-
nication, or transferring to one PE and then using swazzling path to transfer
it to the other PE. The former takes more time, and the latter requires more
PE memory space to store boundary data as discussed in the following. To pro-
cess first rows (columns), P(i, ) requires the last rows (columns) of P(i — 1, j)
(P(i,j—1)), but these PEs have not yet received the data which P(i, j) requires.
Therefore, if the swazzling path is used then P(i, j) should skip processing these

«cld—> ]

T A T
PL1) | P12) P 1d) | v |

“—F

P21) | P22) P2d)

i
|
|
Pj-1) <> <> Pij+y
|
|
|

Ps1) | Ps2) Psa)

Pi+1,0)

(a) (b)

Fig. 2. (a)Block distribution. P(i, j) refers to PE(i — 1)s + j (b) Boundary data for
each PE in block distribution



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 63

boundary data, until P(i — 1,5) (P(i,j — 1)) provides the required data. Also,
for processing the last rows (columns) of data, P(i,j) requires data which has
already been sent to P(i+1, j) (P(i,j7+1)). For these PEs to provide the bound-
ary data to P(i, ), they need to store this part of data in their memory which
is a limited resource. It should be noted that using block distribution scheme on
the CSX architecture, the distance between P(i,5) and P(i+1, j) which process
two neighboring blocks is d.

Row-strip distribution The first /p rows are assigned to the first PE, the
second r/p rows are assigned to the second PE, and so on. To handle boundary
data, PE(i) requires last rows of PE(i — 1) and first rows of PE(i + 1). In fact,
like block distribution, boundary data could be transfered from external memory
to both PEs or from one PE to another via swazzling path. The choice of PEs
receiving the boundary data form external memory or via swazzle path depends
on the trade-off between the required PE memory space and the cost of external
memory communication.

Row-cyclic distribution In this scheme, the first row is assigned to the
first PE, the second row to the second PE, and so on. Since one row is assigned
to each PE, each PE needs to communicate with the PEs which are at most
at the distance of (wl)/2. Here, each PE needs data just after its neighbor has
finished processing that same data. So, swazzle path can be utilized without
using extra poly memory space.

The parameters calculated for each data distribution strategy are summa-
rized in Table 1. As can be seen, block and row-strip distribution schemes require
either more PE memory space or more redundant external memory communica-
tions. In fact, for these schemes, the required poly memory space increases lin-
early with w. Note that, the size of windows in HCD are determined empirically
for each application. For larger w, e.g. 7 or 11, using these data distributions,
the required PE memory will be larger than poly memory space. Row-cyclic
distribution needs less poly memory space and no redundant external memory
communication. Although row-cyclic distribution uses inter-PE communication
more than row-strip distribution by a factor of w/2, this overhead will be negli-
gible since communication via swazzle path is very fast (see Sect. 3). Therefore,
row-cyclic distribution scheme is the most efficient for implementing HCD on
the CSX architecture.

4.2 Parallel Implementation of Harris Corner Detector Algorithm

In this section, we discuss parallel implementation of HCD on the CSX architec-
ture, based on row-cyclic distribution scheme. Since, each CSX core includes 96
PEs, the input image is divided into groups of 96 rows. The computation of each
group represents a sweep and sweeps are performed iteratively. Also, to utilize
both cores of CSX700 processor, the input image is divided into two nearly equal
parts. The first [r/2] + (w — 1)/2 rows are assigned to the first cores and the
last [r/2] 4+ (w — 1)/2 rows are assigned to the second core. Sending boundary
lines to both cores enables each core to perform all computation locally. In the
following, implementation of HCD on one core is explained (for one sweep).



64 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Table 1. Figure of merit for different data distribution schemes. S indicates that bound-
ary data is shared between PEs by using swazzling path. M indicates that boundary
data is transferred from external memory

Data Dist. Redundant External Inter-PE Comm. | PE Memory Space
Memory Comm.
] M cs(w—1) rw—1) wil +m
Block Dist. S - (wW—Des+r] [ wW+rEHT+m
M pe(w — 1) - wil +m
Row-strip Dist. S - clw—1) (w+ WT—l)H +m
Row-cyclic Dist. - C% o+ m

Memory Communication Pattern For our parallel implementation, commu-
nication and computation overlapping can be greatly exploited due to the local
nature of our computation. That is, the fact that there is no need to load the
whole image into the PEs memory to start the computation. In fact, each image
row is divided into segments of almost equal size (32 or 64 pixels, depending on
the image size) and PEs can start the computation as soon as they receive the
first segment of data. After receiving the firs segment of data, each PE initiates
PIO data transfers to and from external memory, and continues to process the
segment of data which is ready in its memory. In the background, PIO transfers
new sets of data from external memory to memories of PEs and transfers the
last sets of results to external memory. When the computation is finished and
data is ready in PEs’ memories, PEs start new PIO data transfers and continue
computation of the new set of data. In our implementation, PEs never wait to
receive data (except the initial phase). This overlapping of computation and
communication significantly reduces the overhead in the parallel computation,
thus enabling a much better performance.

Computation Steps In this section, we present processing of one segment of
data. In our implementation of HCD, we have divided the algorithm into 5 steps:
calculating partial derivation of I in direction x and y, Gaussian smoothing,
computing Harris criterion, non-maximum suppression, followed by thresholding.
Algorithm 1 shows the pseudocode for this processing.

To calculate partial derivation of I, we have used Prewitt operator. Prewitt
operator uses two 3x3 kernels, Px and Py, which are convolved with the origi-
nal image to calculate approximations of the derivatives in = and y directions,
respectively. In our implementation, we take advantages of the fact that convo-
lution kernels used by Prewitt operator are separable, i.e. these kernels can be
expressed as the outer product of two vectors.

-101 1 -1-1-1 -1
Px=|-101|=[1|%[-101] Py=|0 0 O |=|0 |=*[111]3)
-101 1 111 1

So, the x and y derivation can be calculated by first convolving in one direction
(using local data), then swazzling data and convolving in the other direction.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 65

Next step is Gaussian smoothing. Elements of Harris matrix, gyz, gey, and
gyy are calculated using (1). As stated in Sect. 3, the Gaussian smoothing can
be performed using standard convolution methods. Gaussian kernel is also sep-
arable. Thus, the 2-D convolution can be performed by first convolving with a
1-D Gaussian in the x direction, and then swzzling the calculated values and
convolving with another 1-D Gaussian in the y direction. The y component is
exactly the same as x component but is oriented vertically. Then, Harris’ criterion
is computed using (2).

In the next step, non-maximum suppression, the maximum value of Harris
criterion in each 3x3 neighborhood is determined. First, each PE obtains the
maximum value in 1x3 neighborhood. Then, each PE swazzle the maximum
values to both its neighbors. Receiving the maximal values of two neighboring
rows, the maximum value in 3x3 neighborhood can then be obtained. Using this
strategy, the maximum value of 9 element in a 3x3 neighborhood is obtained by
just 4 comparisons.

Algorithm 1 Pseudocode of Parallelized HCD

w1: Gaussian window size wo: NMS window size

PEs in parallel do

1. Derivation of I, and I,:
I,=I®[-101], I, = [swazzle_-down(Iy), I, swazzle up(l,)] @ [1 1 1]
Iy, = swazzle_up(I) — swazzle_down(I) , y=1I,®[111]

2. Guassian Smoothing:
gow = I2 ® x — Guassian, gy = (Is1,2) ® x — Guassian, gy, = I; ® x — Guassian
Jaz = [swazzle_down(ges ), Gow, Swazzle_ up(gze )] ® y — Guassian
Gy = [swazzle_down(gzy), Jay, SWazzle_up(gzy)] ® y — Guassian
Gyy = [swazzle_down(gyy), gyy, swazzle_up(gyy)] ® y — Guassian

3. Computation Harris Criterion: € = GoaGyy — 9oy — k(Gzz + gyy)

4. Non-maximum suppression:
fork=1tom
ma[k] = max{c[l] | k — (w2 —1)/2 <1 <k+ (w2 —1)/2}
fork=1tom
mx[k] = max{max[k], swazzle_up(mz[k]), swazzle_down(mx[k])}

5. Thresholding:
fork=1tom
if c[k] > 7 and c[k] == map[k]
corresponding pixel is corner

* swazzle_up() and swazzle_down() represent communication with left and right
neighbors, respectively.




66 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

5 Results and Performance of Parallel Implementation

To evaluate the performance, we have implemented the following HCDs on the
CSXT700 architecture: HC D33 and HC D55 which uses a 3 x 3 and 5 x 5 Gaus-
sian kernel, respectively. Since our proposed parallel approach provides flexibil-
ity, it can be easily applied to images with different sizes, and various sizes of
Gaussian filter or non-maximum suppression window. The performance of imple-
mented algorithms in terms of latency, fps, and sustained GFLOPS for different
image resolutions are summarized in Table 2. As Table 2 shows, for all tested
image resolutions, even for resolution of 1280x720, our implementation is much
faster than real-time.

Table 2. Performance of HCD on CSX700 architecture using 3 x 3 and 5 x 5 Gaussian

filter

Image Latency (ms) fps Sustained GFLOPS
Resolution HCD3><3 HCD5><5 HCD3><3 HCD5><5 HCD3><3 HCD5><5
128x128 165 224 6060 4464 3.97 4.68
352x288 .8 1.22 1250 819 5.06 5.31
512x512 1.74 2.63 574 380 6.02 6.37
640x480 2.15 3.28 465 304 5.71 5.99
1280x720 7.04 10.89 142 91 5.23 5.41

The arithmetic intensity, i.e., number of operation per pixel, of HC D33 and
HCDsy5 is 40 and 64 respectively. As Table 2 shows, the sustained GFLOP de-
pends also on the image size. The reason is that in processing the last sweep
of data, some PEs may be idle, and the number of idle PEs depends on im-
age size. For example, performing HC D33 for images of resolution 640x480
and 1280x720, the number of idle PEs are 4 and 32, respectively. Due to more
utilization of PEs, better GFLOPS is achieved for resolution 640x480.

Table 3 compares our implementation results with those reported in the
literature. As can be seen, our approach provides much better performance in
terms of latency or frame per second while providing a high degree of flexibility
in terms of problem size and parameters.

Table 3. Comparison with other implementations in the literature

Image Resolution|fps reported in [ref]|fps achieved by our approach
128x128 1367 [6] 4464-6060

352x288 60 [5 819

640x480 99 [4 304




HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 67

6 Conclusion and Future Work

We presented a much faster than real-time implementation of Harris Corner
Detector (HCD) on a low-power, highly parallel, SIMD architecture, the Clear-
Speed CSX 700. Considering the features of the CSX architecture, we presented
strategies for efficient parallel implementation of HCD.We have achieved a per-
formance of 465 fps for images of 640x480 resolution and 142 fps for 1280x720
resolution. These results indeed represent a much faster than real-time imple-
mentation. Our experimental results, presented in this paper, and our previous
work [11] clearly indicate that the CSX architecture is indeed a good candidate
for achieving low-power supercomputing capability, as well as flexibility, for em-
bedded computer vision applications. We are currently implementing other more
complex variants of HCD as well as more sophisticated and computationally
more expensive feature detectors such as SIFT.

References

1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing
Surveys 38(4) (2006) 13

2. Roth, P.M., Winter, M.: Survey of appearance-based methods for object recogni-
tion. Technical Report ICG-TR-01/08, Inst. for Computer Graphics and Vision,
Graz University of Technology (2008)

3. Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th Alvey
Vision Conference. (1988) 147-151

4. Teixeira, L., Celes, W., Gattass, M.: Accelerated corner-detector algorithms. In:
19th British Machine Vision Conference(BMVC ’08), Springer-Verlag (2008) 625—
634

5. Dietrich, B.: Design and implementation of an fpga-based stereo vision system for
the EyeBot M6. University of Western Australia (2009)

6. Cheng, C.C., Lin, C.H., Li, C.T., Chang, S.C., Chen, L.G.: iVisual: an intelligent
visual sensor soc with 2790fps cmos image sensor and 205gops/w vision processor.
In: 45th annual Design Automation Conference(DAC ’08), ACM (2008) 90-95

7. Saidani, T., Lacassagne, L., Bouaziz, S., Khan, T.M.: Parallelization strategies
for the points of interests algorithm on the cell processor. In: 5th International
symposium on Parallel and Distributed Processing and Applications (ISPA’07).
(2007) 104-112

8. ClearSpeed www.clearspeed.com: Clearspeed Whitepaper: CSX Processor Archi-
tecture. (2007)

9. ClearSpeed www.clearspeed.com: CSX600 Hardware Programming Manual. (Jan
2008) Document No. 06-RM-1305 Revision: 1.A.

10. ClearSpeed www.clearspeed.com: CSX600/CSX700 Instruction Set Reference
Manual. (August 2008) 06-RM-1137 Revision: 4.A.

11. Hosseini, F.; Fijany, A., Safari, S., Chellali, R., Fontaine, J.G.: Real-time parallel
implementation of ssd stereo vision algorithm on csx simd architecture. In: Pro-
ceedings of the 5th International Symposium on Advances in Visual Computing
(ISVC ’09), Springer-Verlag (2009) 808-818



68 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

Static Speculation as Post-Link Optimization for the
Grid Alu Processor

Ralf Jahr, Basher Shehan, Sascha Uhrig, Theo Ungerer
{jahr, shehan, uhrig, ungerer } @informatik.uni-augsburg.de

Institute of Computer Science
University of Augsburg
86135 Augsburg
Germany

Abstract. In this paper we propose and evaluate a post-link-optimization to in-
crease instruction level parallelism by moving instructions from one basic block
to the preceding blocks. The Grid Alu Processor used for the evaluations com-
prises plenty of functional units that are not completely allocated by the original
instruction stream. The proposed technique speculatively performs operations in
advance by using unallocated functional units.

The algorithm moves instructions to multiple predecessors of a source block. If
necessary, it adds compensation code to allow the shifted instructions to work on
unused registers, whose values will be copied into the original target registers at
the time the speculation is resolved.

Evaluations of the algorithm show a maximum speedup of factor 2.08 achieved
on the Grid Alu Processor compared to the unoptimized version of the same pro-
gram. Reasons are a better exploitation of the instruction level parallelism and an
optimized mapping of loops.

1 Introduction

The Grid Alu Processor (GAP, see Uhrig et al. [15]) was proposed to speed up the ex-
ecution of single threaded sequential instruction streams. In difference to most other
currently discussed designs it uses the available number of transistors not for complete
cores but for a high number of functional units (FUs) set up as two-dimensional ar-
ray. To configure it, a superscalar-like processor frontend loads a standard sequential
instruction stream that is dynamically mapped onto the array by a special configuration
unit. Execution speed is gained very much from the high level of parallelism supplied
by the FUs.

The main influences on the mapping process are control and data flow dependencies
as well as resource conflicts caused by limited resources. These dependencies restrict
the level of instruction level parallelism that can be exploited. Thus, most of the time
not all of the FUs of the GAP can be used although they could execute additional in-
structions at no or only little additional cost in terms of execution time.

The algorithm presented in this paper tackles this by moving parts of a basic block
(source block) to one or more preceding blocks (target blocks). By this, results that



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 69

might be required in the near future, e.g. after upcoming branches, are calculated spec-
ulatively on otherwise unused resources. At the time the reason for the speculation is
resolved, these results are made visible by compensation instructions (if required).

As the GAP shall be able to replace a superscalar processor and, hence, be able
to execute the same binaries, no recompilation would be needed to make use of it.
To preserve this advantage, we suggest using a post-link optimizer to apply platform-
dependent code optimizations because the source code of the program to optimize is
not needed in this case. Therefore, the algorithm has been designed for use in a post-
link-optimizer, hence after instruction selection, register assignment, and scheduling. !

The algorithm is able to handle all types of control flow independent from
domination- or post-domination-relations or the number of the source block’s predeces-
sors. The only exceptions are basic blocks that are targets of indirect jumps. A binary
analysis together with profiling of the application delivers information about the execu-
tion frequency of basic blocks that can be selected as candidates for the modification.

The paper is organized as follows. Section 2 gives an overview of related approaches
followed by Section 3 which introduces the GAP (GAP) as target processor, with focus
on the mapping of code to the array of FUs and the features exploited by the proposed
algorithm. The algorithm is described in Section 4 followed by an evaluation of its
effects on the execution of selected benchmarks in Section 5. Section 6 concludes the

paper.

2 Related Work

The GAP is a unique approach and no other code optimizations are yet suggested for it.
However, similar challenges arise in compilation for superscalar or VLIW architectures
as well as in hardware design. This section gives an overview.

For VLIW architectures, trace scheduling [5] is used to expose parallelism beyond
basic block boundaries. The Multiflow Trace Scheduling Compiler [9] is an example
for its implementation. This compiler also tries to move instructions above splits in the
control flow graph but does this only if no compensation instructions are necessary.
Compensation code is not used/generated due to the author’s point of view that this
causes too much overhead. As we show later, this is not always correct. Other schedul-
ing techniques for speculation have been introduced and evaluated by e.g. Bergmann [2]
and Mahlke [10]. They work mainly the level of superblocks. These techniques require
sophisticated knowledge of the program to optimize and, therefore, cannot be applied
as post-link optimizations.

For scalar and superscalar architectures, moving of instructions to preceding blocks
is also suggested by Bernstein et al. [1]. The authors also state, that it is possible to
move instructions speculatively, but does not give any details. They focus on moving
single instructions. Similar work is done by Tirumalai et al. [13]. Although this can be
iterated many times it is a difference to the work presented here, because we try to move
as many instructions of a basic block as possible or reasonable at one time. Hence, the

I Nevertheless, additional implementation effort arises from this and it can happen that the opti-
mization performs not as well as if implemented directly in the compiler. Somehow this is the
price to pay for not having access to the source code.



70 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

overhead for repeatingly executing the analyses, e.g., updating the data dependencies, is
much smaller. Beyond this, we also cope with the duplication of instructions to execute
them speculatively.

Similarities also exist with fail duplication (e.g. [6]), which creates copies of a
basic block merging them with each of its preceding basic blocks. We also try to ex-
pose parallelism by duplicating instructions but handle only the important parts of basic
blocks. Hence, the program is not as heavily rewritten but the modification effort is even
smaller.

As shown in Section 4 our algorithm also has parallels with software pipelining
(e.g., Llosa [8]) because it can split a loop formed by a single block into two parts and
rearrange them (i.e., a prologue is formed). Nevertheless, it does not reach the com-
plexity of most algorithms for software pipelining because we assume that instructions
in blocks have already been scheduled. Accordingly, we do not try to divide the source
block into equal blocks in terms of approximated execution time and support only one
stage.

Regarding processor design techniques, out-of-order execution as implemented by
scoreboarding [11, 12] or Tomasulo’s scheme [14] — both in combination with branch
prediction — executes instructions speculatively, too. The hardware-effort needed to al-
low out-of-order execution is very high and adds new limitations e.g. for the issue unit
of a processor as shown by Cotofana et al. [4].

Hence, the outstanding features of the algorithm presented here are its large number
of instructions which can be handled in one iteration, its ability to handle different con-
stellations of blocks independent of the number of the source block’s predecessors or
the domination and/or post-domination relation between a source block and its prede-
cessors. Beyond this, it is a post-link optimization that uses only information available
from the analysis of the binary file and profiling. This causes also the struggle to modify
only small parts of the program with the aim of achieving maximal effects.

3 Target Platform: Grid Alu Processor

The Grid Alu Processor (GAP) has been developed to speed up the execution of con-
ventional single-threaded instruction streams. To achieve this goal, it combines the ad-
vantages of superscalar processor architectures, those of coarse grained reconfigurable
systems, and asynchronous execution.

A superscalar-like processor front-end consisting of fetch- and decode unit is to-
gether with a novel configuration unit (see Figure 1(a)) used to load instructions and
map them dynamically onto an array of functional units (FUs) accompanied by a branch
control unit and several load/store units to handle memory accesses (see Figure 1(b)).

The array of FUs is organized in columns and rows. Each column is dynamically
and per configuration assigned to one architectural registers. Instructions are then as-
signed to the column whose register matched the instructions output register. The rows
of the array are used to model dependencies between instructions. If an instruction B
is dependent of an instruction A than it must be mapped to a row below the row of
A. This way it is possible for the in-order configuration unit to also “issue” dependent
instructions without the need of complex out-or-order logic. After mapping a branch



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 71

! Processor front-end
s Instruction fetch unit ‘ : Top registers  Configuration busses
E=I} :
B8 — 2 — b
G v :
2 :
= Decode and 9 Viemo
: configuration unit : = acceslsy
D S S T E
% || Memory
Memory S = access
= access 2 unit
b= unit g
< I
> Memory 2 @ Memory
g = X access B = access
c Array of reconfigurable FUs unit S -
8 o} unit
%
s Memory )
5 access U
& unit — /| ALU array
Reconfigurable  Backward Forward Horizontal
FUs connections  connections  connections

(a) Block diagram of the GAP core (b) General organization of the ALU array

Fig. 1. Architecture of the Grid Alu Processor

the configuration unit continues with the most probable output, for this e.g. a bimodal
branch predictor is used.

Execution starts in the first row of the array. It is done asynchronously between the
FU and synchronously in and with the branch control unit and the L/S units. Synchro-
nization between the FUs and the other elements of the array is controlled by tokens
calculated by the configuration unit; this is similar to data-flow architectures.

‘When execution reaches the last row of the array, a branch is miss-predicted or there
are no more columns available to map instructions, the array is cleared and the configu-
ration units starts mapping in the first row of the array. To be able to save configurations
for repeated execution all elements of the array are equipped with some memory cells
which form configuration layers. The array is quasi three-dimensional and its size can
be written as columns x rows x layers.

So, before clearing the array it is first checked if the next instruction to execute is
equal to any first instruction in one of the layers. Then, in all cases, the new values of
registers calculated in columns are copied to the register file at the top of the columns. If
a match is found, the corresponding layer is set to active and execution continues there.
If no match is found, the least recently used configuration is cleared and used to map
new instructions. With this technique, the execution of loops can be accelerated very
much because instructions do not have to be re-issued. This favors static speculation,
too, because the maybe speculatively executed instructions are likely to be configured
already on one of the configuration layers due to being often executed parts of the
program.

To evaluate the architecture a cycle-accurate simulator has been developed. It uses
the Portable Instruction Set Architecture (PISA), hence the simulator can execute the
same program files as the SimpleScalar simulation tool set [3].

More detailed information about the processor are given by Uhrig et al. [15].



72 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

4 Static speculation

In this section, we shortly describe the algorithm to move instructions to preceding basic
blocks together with the aim of the proposed program transformation

When running code generated by the default compiler (GCC 2.7.2 with -03, the
latest version available for SimpleScalar/PISA), in most rows of the array only a small
number of FUs is configured with instructions (see Figure 2). So there are enough FUs
that could be used to calculate additional results, even if they might not be needed, be-
cause they would consume only little or no additional time. To use these spare resources
we try to speculatively execute instructions from following blocks.

0,6
B columns per line
0,5 B columns per configuration

0,4

0,3

0,2

i | Bew.
1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

ratio

number of columns

Fig. 2. Ratio between the number of used and available columns per row/configuration for bench-
mark jpeg_encode executed on GAP with 16x16x16 array

An example is demonstrated in Figure 3. It shows three basic blocks which could
stand for an if-then-structure and have been placed into the array of the GAP. The in-
fluence of data dependencies on the instruction placement can be observed. Also, after
each control flow instruction synchronization shown by a horizontal line in Figure 3 is
required. In this example, all instructions of the second block can be moved to the first
block and executed speculatively.

If the second block shall not be executed, i.e., the branch from the first block to
the third block is taken, its effects must not be visible. In the example, R3 is the only
register which would have been modified by the speculatively executed instructions
and overwrite a value which is used by subsequent instructions. Therefore, the moved
instructions work on R4, which was initially unused, instead of the original R3. The
overhead for executing the speculative instructions is zero in this example, because
they are executed in parallel to the first block.

If the second block shall be executed, the content of R4 must be copied to R3, the
original target register. In the figure, this additional compensation instruction is marked
by a dark box. Even if multiple compensation instructions would be required, they can
be placed in the same row of the array and can be executed in parallel because they
do not have any interdependencies. In our example, the overhead for the compensation
instruction is zero because it is executed in parallel with the branch instruction. In the
worst case, all compensation instructions can be executed in parallel because they do



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 73

ALU ALY
ALU
ALU| [ALU

Fig. 3. Three basic blocks and their layout in the GAP array before (left) and after (right) moving
of instructions

not have any dependencies on each other and, hence, consume the same time as a single
additional move instruction.

Depending on the critical path and the resource utilization of the source and the
target block, the number of rows of the array that are required to map the combined
blocks should be lower. If a lower number of rows is needed for the modified blocks the
average number of instructions per row increases. Hence, the number of instructions
that can be executed in parallel increases resulting in a higher instructions per cycle
(IPC) value.

To avoid executing too many unnecessary instructions, we move instructions only
if the probability of the usage of the calculated results is above a fixed value, e.g. 30%.
This value has been found to be a good tradeoff between performance and additionally
executed instructions. Also we want to modify blocks only if they contribute signifi-
cantly to the total program performance. Hence a block must be executed more often
than a fixed boundary, e.g. more than 10 times.

Nevertheless, we cannot be sure that the total configuration length will be shorter
after the modification of the blocks. This is because of the eventually required additional
row for the compensation instructions, the may-be inconvenient layout of the critical
paths of the blocks, and resource restrictions. For example, if memory operations are
moved into a block which already uses many memory access units, than additional
rows will be needed to map the moved memory operations. Hence, resource restrictions
can also restrict the degree of parallelism of instructions. This problem is solved by
introducing an objective function to estimate the height of the modified configuration.
The additional height could also be limited by a parameter, at the moment this is set
to 0.

This is mainly taken into account when selecting the number of instructions to
move. it is maximized in respect to the objective function and the availability of enough
registers to use them as temporary registers.

A special case is to move instructions across a loop branch. Figure 4 shows an exam-
ple for such a situation. In this example, there is a block with a conditional branch to its
first instruction, so it forms a very simple loop. If we shift a part of the source block to



74 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

targetbbuk
duplicatd
tyetbbk nistructions
A 6 Y 6
Tistuctns py histr.
D shift
source bbak
souree bbck Tyetbk
tagetbbok duplt
| nstructions
v v

Fig. 4. A part of a block which forms a loop is moved over the loop back edge (left unmodified,
right modified).

all the preceding blocks, we shift instructions from its beginning to one or more blocks
with edges to the loop and also to the end of the loop. In other words, we divide the
loop into two parts and copy the first one to blocks outside the loop and also move it to
the end of the loop. Hence, when executing the loop, the degree of parallelism between
its two parts is expected to be higher. Loop carried dependencies are also handled be-
cause the speculatively executed previously first part of the loop operates on temporary
registers which do not influence the second part. The speculatively calculated results of
the first part are not copied to the target registers until it is clear that the loop will be
executed at least one more time.

To sum up, we expect better performance in terms of execution time. In an optimal
case a better use of the FUs of the array is achieved because more columns and less
rows are used. This leads to less reconfigurations of the array. Furthermore, the degree
of parallelism of instructions inside the array increases.

5 Evaluation

We evaluated the static speculation algorithm using seven selected benchmarks of the
MiBench Benchmark Suite [7]. We first compiled them using a standard compiler (GCC
with optimizations turned on, —O3). Second, we performed a static analysis and applied
our post-link-optimization to modify the binaries.

To be able to analyze the effects of every single modification, we set an upper bound
for the maximum allowed number of modifications and increased it continuously.

The GAP, which is our target processor, is simulated by a cycle accurate simulator.
It can be configured in terms of array size, configuration layers, cache size, and branch
prediction. For all benchmarks, we used a bimod branch predictor and the identical
cache configuration.

Figure 5 shows the speedup that can be gained for the seven selected bench-
marks and several configurations of the GAP by the optimization technique over un-
changed code. They have been distributed on the two charts according to the main



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 75

1,06 25
W 12x12x1

1,05 W 12x12x4

O 12x12x8
1,04 M 12x12x16 2
W 12x12x32
1,03
15
1,02
1,01
1
1
0,99 05
098
097 0
e“oode

4000

Speedup

o a?

,d(\‘“g\‘a oot o

. \e
e R e

Co(\s;\peg‘ o _«\geg-

Fig. 5. Maximum speedup for selected benchmarks on GAP array of 12x12xN FUs

reason for the speedup. The maximum speedup of 2.08 is achieved for benchmark
secu-rijndael-encode for GAP with an array of 12 rows, 12 columns and 32 layers
(i.e. 12x12x32). The speedup is calculated as the number of total clock cycles required
to completely execute the unmodified program divided by the number of clock cycles
needed for the modified program executed on GAP with exactly the same configuration,
too.

The speedup for the benchmarks tele-crc32, secu-rijndael-decode-
nounroll, and secu-rijndael-encode-nounroll is caused by some effects beyond
those described in 4. The main reason for the speedup is here GAP’s ability to accelerate
the execution of loops if the loop body fits completely into the array. This is more often
the case if the program has been modified with reduction of the length of configurations
as objective.

As example, GAP with the 12x12x1 configuration executing tele-crc32 acceler-
ates 108310 loop iterations after applying the algorithm instead of 428 without modifi-
cations. This is because the configuration of the loop is short enough after applying the
static speculation optimization to map it onto the single available configuration layer.
In other words, the static speculation and the hardware architecture are working hand
in hand.

The more configuration layers are available the less is the impact of the optimization
for tele-crc32 and cons-jpeg-encode. This is because huger loops can be mapped
to multiple layers anyway and, hence, the advantage of the static speculation is not as
high as with only a single layer.

The acceleration of the two secu-rijndael-*-nounroll benchmarks is caused
by the same effects. Hereby, a very long loop is mapped to multiple layers and by static
speculation the number of layers required for the loop is reduced. Consequently, more
layers are available to configure other code fragments.



76 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

1,05

Normalized value

>
>
>
>
Normalized number of cache access

08 = Total accesses ™*Instruction cache 7 Speedup
0 2 4 6 8 10 12 of instruction misses

. cache
Number of modified blocks 0,85

® Average of used ™*Executed  **Instruction per > Number of clock 0 2 4 6 8 10 12

FUs per line instructions clock cycle (PC) cycles Number of modified blocks

(a) Different performance counters (b) Normalized total number of instruction
cache accesses and misses as well as speedup

Fig. 6. Performance counters showing effectiveness of static speculation for cons-jpeg-encode
for GAP with array of 12x12x1 FUs

But static speculation can also gain speedup for benchmarks without dominating
loops. Figure 6(a) shows for cons-jpeg-encode four characteristics for different num-
bers of modified blocks. All values are normalized to an unmodified version of the
benchmark (number of modified blocks is 0).

The modified benchmark shows a higher degree of instruction level parallelism and
the execution time decreases while executing nearly the same number of instructions.
Hence, we observe the intended effects.

The reason for the speedup from a hardware point of view is the better cache be-
haviour. Figure 6(b) shows that while the number of accesses of the instruction cache
changes only marginally the number of instruction cache misses drops by more than 10
percent and speedup increases. If more configuration layers are available, the impact of
the algorithm is reduced because more instructions can be accessed quickly and hence
the influence of the instruction cache is decreased.

6 Conclusion

In this paper, we present an algorithm for a post-link-optimizer to increase the degree
of instruction level parallelism in some parts of a program. Therefore, instructions are
moved from one basic block to the preceding blocks. This modification allows in-order
architectures with high fetch and execute bandwidth to execute these instructions specu-
latively. The speculative instructions are statically modified to use registers not required
by the original program flow at that time. If the following branch is resolved the results
are copied into the original target registers, if necessary. Otherwise, they are discarded.
Additional hardware for speculative execution is not required. Our evaluations show a
maximum speedup factor of 2.08 for a standard benchmark using GAP.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

A side effect of the static speculation algorithm is that moving instructions over a

loop back branch is similar to software pipelining. In the future we will focus more
on this aspect. As example, it would be possible to add an additional step to resched-
ule the instructions of the source block before modification to increase the number of
instructions that can be moved to the target blocks.

Another topic that we will examine is the real-time capability of the proposed ap-

proach. Speculative execution is also applied within out-of-order processors but, in con-
trast to our approach, its timing behavior is nearly unpredictable because of the dynamic
nature.

References

1

2.

12.
13.

14.

15.

D. Bernstein and M. Rodeh. Global instruction scheduling for superscalar machines. SIG-
PLAN Not., 26(6):241-255, 1991.

R. A. Bringmann. Enhancing instruction level parallelism through compiler-controlled spec-
ulation. PhD thesis, University of Illinois, Champaign, IL, USA, 1995.

D. Burger and T. Austin. The simplescalar tool set, version 2.0. ACM SIGARCH Computer
Architecture News, 25(3):13-25, June 1997.

S. Cotofana and S. Vassiliadis. On the design complexity of the issue logic of superscalar
machines. EUROMICRO Conference, 1:10277, 1998.

J. Fisher. Trace scheduling: A technique for global microcode compaction. /[EEE Transac-
tions on Computers, 30:478-490, 1981.

D. Gregg. Comparing tail duplication with compensation code in single path global instruc-
tion scheduling. In CC ’01: Proceedings of the 10th International Conference on Compiler
Construction, pages 200-212, London, UK, 2001. Springer-Verlag.

M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and T. Brown. Mibench: A free,
commercially representative embedded benchmark suite. 4th IEEE International Workshop
on Workload Characteristics, pages 3—14, December 2001.

J. Llosa. Swing modulo scheduling: A lifetime-sensitive approach. In PACT ’96: Proceed-
ings of the 1996 Conference on Parallel Architectures and Compilation Techniques, page 80,
Washington, DC, USA, 1996. IEEE Computer Society.

P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O’Donnell, and J. Ruttenberg. The multiflow trace scheduling compiler. J. Supercomput.,
7(1-2):51-142, 1993.

S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. mei W. Hwu, B. Ramakr-
ishna, R. Michael, and S. Schlansker. Sentinel scheduling: a model for compiler-controlled
speculative execution. ACM Transactions on Computer Systems, 11:376—408, 1993.

. J. E. Thornton. Parallel operation in the control data 6600. In AFIPS '64 (Fall, part I):

Proceedings of the October 27-29, 1964, fall joint computer conference, part Il: very high
speed computer systems, pages 33—40, New York, NY, USA, 1965. ACM.

J. E. Thornton. Design of a Computer—The Control Data 6600. Scott Foresman & Co, 1970.
P. Tirumalai and M. Lee. A heuristic for global code motion. In ICYCS’93: Proceedings
of the third international conference on Young computer scientists, pages 109-115, Beijing,
China, China, 1993. Tsinghua University Press.

R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. /BM J Res
Dev, 11(1):25-33, 1967.

S. Uhrig, B. Shehan, R. Jahr, and T. Ungerer. A two-dimensional superscalar processor
architecture. In The First International Conference on Future Computational Technologies
and Applications, Athens, Greece, 2009.

77



78 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

A Multi-Level Routing Scheme and Router Architecture
to support Hierarchical Routing in Large Network on
Chip Platforms

Rickard Holsmark!, Shashi Kumar' and Maurizio Palesi®

'School of Engineering, Jénkdping University, Sweden
{rickard.holsmark, shashi.kumar}@jth.hj.se
*DIT, University of Catania, Ttaly
mpalesi@diit.unict.it

Abstract. The concept of hierarchical networks is useful for designing a large
heterogeneous NoC by reusing predesigned small NoCs as subnets. It can also
be helpful when analyzing and designing a large NoC as interconnection of
subnets at a higher level of abstraction. Hierarchical deadlock-free routing is
required to enable deadlock-free interconnection of sub-networks with different
internal routing algorithms. In this paper we show that multi-level addressing is
a cost-effective implementation option for hierarchical deadlock-free routing.
We propose a two-level routing scheme, which is not only efficient, but also
enables co-existence of algorithmic and table-based implementation in one
router. A hierarchical view of the network simplifies addressing of network
nodes and address decoding in the router. Synthesis results show that a 2-level
hierarchical router design for an 8x8 NoC, can reduce area and power
requirements by up to ~20%, as compared to a router for the flat network. This
work also proposes a new possibility for increasing the number of nodes
available for subnet-to-subnet interfaces. while keeping the properties of
hierarchical deadlock-freedom. We evaluate and discuss the communication
performance in a 2-level hierarchical network for various subnet interface set-
ups and traffic situations. A cycle accurate simulator has been developed and
used for this purpose.

Keywords: Networks on Chip, Hierarchical Networks, Deadlock Free Routing,
Router Architecture

1 Introduction

While SoCs consisting of tens of cores were common in the last decade, ITRS
predicts that the next generation of many-cores SoC will contain hundreds of cores.
Intel has recently announced the fabrication of a 48-core chip [1] using a Network-on-
Chip as communication infrastructure. The concept of hierarchy will be very useful in




HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 79

designing and using such NoC platforms with growing number of cores. This concept
will allow raising the level of abstraction of reuse during the design process. Instead
of reusing IP cores, one can redesign large NoCs by integrating predesigned smaller
NoCs as building blocks.

Whether hierarchical or not, the formation of packet deadlocks may be fatal to any
network communication. To avoid this, several deadlock-free routing schemes have
been proposed in literature, e.g. Turn model [2], Odd-Even [3] and Up*/Down* [4].
Deadlock freedom may be compromised when combining different networks, each
with its own deadlock-free routing algorithm. For this reason, an important new issue
in hierarchical NoCs is the design of deadlock-free routing algorithms. Holsmark et
al. [5] proposed the concept of hierarchical deadlock-free routing and showed that if
subnets are interconnected by “safe boundary” nodes, it is possible to design a
deadlock-free global routing algorithm without altering any internal subnet routing
algorithm. Although design and analysis of the routing algorithm was hierarchical,
Holsmark et al. [5] assumed a flat implementation with a common address space for
all network nodes. Non-homogeneity in such cases will often require the use of
routing tables to implement the routing function.

In this work we propose that a hierarchical routing function is implemented in two
levels. The higher level routing function will determine if the destination for a packet
is inside or outside the local subnet. If the destination is outside the subnet, the packet
is guided to a node at the boundary of the local subnet. From here the external routing
function guides the packet (possibly through intermediate subnets) to a boundary node
of the destination subnet. If the destination is within the subnet, the lower level
routing function itself guides the packet to the destination node. The proposed
structured router architecture enables significant reduction in area and power
consumption. One important parameter which affects performance is the number of
safe boundary nodes of a subnet. Since some routing algorithms provide very few safe
nodes, we propose the concept of “safe channels” to attain higher connectivity. The
performance of hierarchical routing is compared with common deadlock-free routing
algorithms and the effect of varying the number of boundary nodes is explored.

Recently the topic of hierarchical NoCs has caught the attention of researchers.
Several aspects have been studied, for example Bourduas et al. [6] have proposed a
hybrid ring/mesh interconnect topology to remove limitations of lengthy diameter of
large mesh topology networks. In [7], a hybrid mesh-ring NoC topology is proposed
which is suitable for future 3-D ICs. A hierarchical on-chip approach is also taken in
HiNoC [8], which offers both packet- and stream-based communication services. In
HiNoC, the network has two levels of hierarchy; the asynchronously communicating
mesh at the top level and an optional synchronously operating fat-tree structure
attached to a mesh router network node. Deadlock-free routing in irregular networks
often implies a strongly limited set of routing paths. To increase the available paths,
Lysne et al. [9] developed a routing scheme, which avoids deadlock by assigning
traffic into different layers of virtual channels.

2 Hierarchical Deadlock-Free Routing Algorithms

The methodology for hierarchical routing algorithms [5] enables deadlock-free
interaction of independent subnet routing algorithms in hierarchical networks (sub-



80 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

networks interconnected by external links). Deadlock freedom is guaranteed by
acyclic channel dependency graphs (CDG) [10] [11]. In [5] it is shown that if all
subnets are deadlock free and all nodes which interconnect subnets are “safe”, it is
possible to design a deadlock-free routing algorithm for the whole network. Whether
a boundary node is “safe” or not depends on the internal subnet routing algorithm and
is easily checked by analysis of internal CDG paths. If there are no paths from any
internal output to any internal input of a node, it is safe (see Fig. 1). If such a path
exists, the node is unsafe and may enable formation of CDG cycles with paths in
other subnets. The concept of safe boundary nodes helps to design a hierarchical
routing algorithm by only considering the CDG paths among boundary nodes.

2.1  Safe Channels for Increasing Connectivity

The requirement that all boundary nodes should be safe often, depending on routing
algorithm, reduces the number of possible boundary nodes in a network. For
deterministic routing algorithms, like XY all nodes are safe boundary nodes. Several
partially adaptive algorithms provide few safe boundary nodes, e.g. an NxN network
with Odd-Even [3], or West-First [2] provides only N safe boundary nodes. Negative-
First [2] would in this case provide N+ (N-1) safe nodes.

To remedy this situation we propose the concept of safe channels. Given a node n,
and an internal output channel ¢ of node n, ¢ is a safe channel if there does not exist
an intemal CDG path from channel ¢ to any input channel of #. Fig. 1 illustrates the
differences between unsafe nodes, safe nodes and safe channels.

Unsafe node Safe node e C el

Internal CDG poth

Ne Internol COG path

Unsafe node safe node \ Unsafe node with safe channel (north)

internol CDG poths No Internol CDG paths

Fig. 1. Examples of unsafe boundary nodes, safe boundary nodes and safe channels

In the safe channel example, it is straightforward to see that only one of the internal
output channels of node us (unsafe with safe channel) is on a CDG path to an input
channel of ws itself. Using this safe channel and restricting the use of the other
channel would, from a deadlock-free perspective, be the same as using a safe
boundary node. Note that safe channels cannot relax the requirement that there must
be at least one safe boundary node in each neighboring subnet. The effect of adding
unsafe nodes with safe channels is explored in the evaluation section.

3 Two-Level Routing Scheme

31 Addressing and Routing Protocol

Intuitively it seems that the destination address for a packet in a two-level NoC can be
encoded using only two fields given in the form: [subnet id, node id]. However the



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 81

availability of multiple boundary nodes requires that information of the destination
subnet boundary node is added. Therefore a source node tags the header destination
address with three fields [subnet id, boundary node, node id).

The routing protocol is identical for all nodes. Each node first checks whether a
packet is destined to its own subnet or to an external subnet. If the destination is
internal to the subnet, the packet is forwarded using the internal routing function. If
the destination is in another subnet, the packet is forwarded by an external routing
function (which provides paths identical to the internal routing protocols for internal
link traversals).

If subnets are heterogeneous, the encoding of node address in the source subnet
may differ from the encoding in the destination subnet, both with respect to size and
topology. In general, the header field for node address must be adjusted according to
the subnet requiring largest number of bits for node address. The size of the field for
subnet addressing depends on the number of subnets.

3.2  Routing Function

The two-level routing function is partitioned into an external routing function Rg and
a subnet internal routing function R;. The internal routing function is identical to the
routing function should the subnet be a stand-alone network. One feature which is
enabled by two-level routing is the possibility to utilize different implementation
techniques of the internal routing functions in different subnets. This implies that
routers in some subnets may be table-based while other routers may implement
algorithmic routing.

function Ry (curn dst) returns c_out |
if ((currsn=dst.sn) and (cwrr.addr = dst.addr)) |

¢_out:=Resource:]

elsif (currsn = dst.sn) | /check if dest. in subnet
c_out:=R; (curraddr, dst.addr);} ' local route

else (
c_out:= R¢ (curnaddr, dst.sn, dst.bn);} // global route

Fig. 2. Two-level routing function

Fig. 2 gives pseudo-code of the main hierarchical routing function R;. The routing
function takes dst which contains the destination subnet (dst.sn), destination boundary
node (dst.bn) and node address (dst.addr). If both destination subnet and node address
matches with current subnet and node address, the channel will be set to the local
resource. Otherwise if the destination resides in the same subnet as the current node,
the local routing function is called with the destination node address (dst.addr). The
output channel (¢_our) will in this case always be internal. Should the subnets not
match, the external routing function is invoked with destination subnet (dst.sn) and
boundary node (dst.bn). The external routing function can return both external and
internal channels if current node is a boundary node. If current node is not a boundary
node it will only return internal channels.

The two-level router tables are built using a similar algorithm (breadth first
search) as was used for constructing flat router tables. The main difference is that only



82 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

paths to destination subnets and boundary nodes are stored in the external table. This
means that during the search, for each source-destination pair, the node where the last
transition between different subnets was made, is stored as boundary node for the
destination. This information is used for addressing by the source node.
Simultaneously, the output channel from which the boundary node can be reached is
stored in the router table.

Since all paths are obtained using the hierarchical deadlock-free routing
methodology [5], it can be shown that the two-level scheme is deadlock free and
connected as well. If the destination is in another subnet, such paths must traverse a
boundary node in the source subnet and a boundary node in the destination subnet
(and possibly also through some intermediate subnets).

3.3 A Small Example of Routing in Two-Level Router Networks

The following simplistic example illustrates routing in two-level networks as well as
the necessity for addition of boundary node id for specifying the destination address.
Consider Fig. 3 where each of the subnets S), S, and S; is a 2x2 mesh with routing
algorithms XY, YX and XY respectively. The external algorithm in this case is
assumed to be YX, which is the same as subnet S, algorithm. Nodes within subnets
are addressed using (row#, column#) as shown in the figure. Boundary nodes are
indicated by double border.

S (XY) S: (YX) S3 (XY)

Notalloweed
- e - i ] IS a———

sre=(Sy,ny4) boundary nodeb, dst=(5;, by,n; ;) External YX

Fig. 3. Example of two-level addressing

Consider routing a message from source node #, , in subnet S, to the destination node
N, in subnet S5. In two-level addressing, the source node is identified with subnet and
node address, sre= (Sy, m,). The source appends the destination address with
destination subnet, boundary node and node address, dst= (Ss, b, 5125). When the
routing function is called in curr=src, the subnet fields do not match and the external
function will be used. The external function returns the East channel, i.e. Rg((n ),
S5, by) = East. Note that this is the only allowed route according to the internal XY
algorithm. At node curr=(S), n, ), the external algorithm returns South. Note that East
would also not violate the internal algorithm restriction.

However, this shows the necessity for boundary node specification. If the external
address is specified using subnet id alone, it would be impossible to distinguish
between destinations in row | and row 2 in subnet S. In this case, for reaching node
dst the only allowed route is South, since the packet cannot make this turn at row 1 in
subnet S, since both the internal algorithm and external algorithm is YX. After
turning south, eventually the packet arrives at node n,; in subnet S,. Since the current



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 83

subnet is now the same as the destination subnet, the node address and local algorithm
is used for routing to the destination, i.e. R;= YX(ny,, ny5) = East.

4 Router Architecture with Two-Level Routing Function

A block diagram of the two-level routing function in the router is given in Fig. 4. As
shown in the upper part of the figure, the routing function takes destination subnet
address (sn), destination boundary node address (bn), destination node address (addr),
and returns the allowed output channel(s) (c_out).

dst -
Hierarchical routing ___lr R T
function e | L H } oo
Packet header Allowed outputs
dst
mac)|
— [ ; Sel
T i &= ] b
Internal structure » m,,

| S
©_out

{ R, 1 )

Fig. 4. Internal structure of two-level routing function

Studying the internal structure, it is seen that if both destination subnet and node
addresses match with the current subnet and node addresses, the comparators will set
the output of the multiplexor to Resource. If the subnet addresses match but not the
node addresses, the destination is internal to the subnet and the output from the
internal function R; will be selected. If subnet addresses do not match, the output of
the external function R; will be selected, and the node address is not used. The table
in Fig. 5 presents synthesis results from a 65nm technology library, assuming 1 GHz
clock frequency. Network size is set to 64 nodes (8x8 mesh), which is considered as a
two-level hierarchical network consisting of four equally sized subnets (4x4 mesh).

The results for implementation of a flat routing function are indicated by the label
RF. Two level routing functions are synthesized for 1, 4 and 7 boundary nodes (RH-
1bn, RH-4bn and RH-7bn). The table also provides data for two-level routing with
one boundary node and algorithmic XY routing (RH-1bn-xy). Results are given for
one routing function per router. The table gives area and power consumption
separately for the routing function as well as the whole router. The main share of cost
of the complete router is dominated by input buffers of 4 flits each.

Fig. 5 also summarizes the percentage of area and power reduction of the two
level routing functions as compared to the flat routing function. The largest reduction
for area, about 65 percent for the routing function (and ~12 percent for the complete
router), is obtained by the configuration with one boundary node (bn/), which only
needs to store one entry per subnet. As the number of boundary nodes increase so do
the resource requirements of the routing function. Power reduction is slightly less than
area reduction for all configurations. Considering the algorithmic implementation



84 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

with XY as local routing function, it is shown that it is possible to reduce the required
area and power for the routing function by about 90 percent.

Area and power reduction 00%

(routing function) for 80%
2-level routers w.rt. flat router | WArma @ Power
80%
T0%
B0%
Synthesis Results e
Routing Function | Complete Router
Router Description A Power A Power 40%
i | (uW) e | (W) |
RF Flat 8x8 mesh 3928] 29934] 217815 1ose4| 30%
RH-bn |2l table 1bn | 12682] 1176.1] 19121.6] 18066.7]  5qe,
RH-4bn___|2L table 4bn 1974.4]  174a.1] 1v827.8] 186396
RH-7bn __ |2Ltable 7bn | 26752 2306.2] 205286) 19196.8] 10%
Rit-tonay |21 toiielg 100 | 317.1 3327  17569] 164267 gy,
RH-1bn

RH-4bn RH-Tbhn RH-1bn-xy

Fig. 5. Area and power for different two-level router versions(RH-xbn) and a flat router (RF)

5 Performance Evaluations and Results

The evaluations compare performance of hierarchical routing with a few flat routing
algorithms (XY, Up*/Down* [4]) with different configurations of boundary nodes
and traffic scenarios.

5.1 Evaluation Parameters

The simulator is designed in SDL (Specification and Description Language) using
Telelogic SDL and TTCN Suite 6.2 (now IBM Rational). Wormhole switching is
employed, with packet size fixed at 10 flits. Routers are modeled with input buffers of
size 4 and flit latency of 3 cycles per router. Packet injection rate pir is given in
average number of packets generated per cycle. Thus pir=0.02 corresponds to that
each node generates on average 2 packets per 100 cycles (Poisson process). For two-
level routing, the simulator implements the two-level routing protocol described in
Section 3, with algorithmically modeled internal subnet routing functions.

Simulations are performed with different levels of external subnet traffic w.r.t.
local subnet traffic. This means that for 75% local traffic, 25% of the traffic is sent
outside the source subnet. External traffic destinations are uniformly distributed over
the whole network. The used subnet configurations are given in Fig. 6(left). Each
subnet exhibits a specific traffic type, which in the case of hierarchical routing is
matched with a suitable routing algorithm (Subnet 1: Uniformly random, XY, Subnet
2: Transposel, Negative-First; Subnet 3: Shuffle, East-First (mirrored West-First);
Subnet 4: Bit Reversal, Odd-Even).

Fig. 6(right) illustrates the three configurations of boundary nodes and external
routing restrictions used in the evaluations. Nodes labeled 1, and links connecting
these nodes, are used in the case with one boundary node per subnet (bnl). The set-up
with 4 boundary nodes per subnet (bn4) additionally uses the nodes labeled 4 and
attached links. The case with 7 boundary nodes per subnet (bn7) uses, in addition to



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 85

nodes labeled | and 4, the nodes labeled 7. The bnl and bn4 set-ups utilize only safe
nodes, where hn4 represents the maximum attainable connectivity with safe nodes.

Routing algoritt | traffic in sut B " y h :
Subnetz | S L | | bat
Neg. First Li
al-a
Transpose 1 m
| a4 bn4
e e e b b ) [
----- o e e ol oL | [
External IHAH2HOHU H 22
restriction § bnZ
4 4 EI
. Subnetd4 | a4 [&]
East First | Odd Even |
shuffle | | &

Bit reversal 44

Fig. 6. Subnet and boundary node configurations

The bhn7 case allows safe channels of unsafe nodes in subnets 3 and 4 and, in this
case, achieves the maximum connectivity of the topology. For flat algorithms, the
same algorithm is used for all subnets. That is, in the case of XY this means that XY
is used for routing over the whole network. Note that XY is only applicable to the bn7
configuration. The Up*/Down* algorithm is applicable to all different configurations
and a particular configuration is annotated similarly to the hierarchical (hr_bnx) cases,
i.e. ud bnx. The latency of a packet is the duration from when the packet was
generated at the source to when its tail flit was received at the destination. Average
latency is the average of all packet latencies in a simulation.

5.2  Comparison of Routing Algorithms and Boundary Node Configurations

Fig. 7(left) compares average latency of the hierarchical hr_bn7 configuration with
XY and Up*/Down* for 100, 95 and 75 percent of message subnet locality.

Avg. Latency (75 , 95, 100% local traffic) Avg. Latency (75, B5, 95% local traffic)

T I ®— hr_bn7_95 B 1]
r_bn H
250 : —#— hr_bn7_100 1'__ 450 h—b = ; | ;’l i f
...... H| & hr_bn7_85 | i
o | =-hr_bn7_95 H 400 T H f i
B o hr_bn7_75 i H
150 hr_bn7_75 b 350 oo o :._1 _|_.| .
= | —=—xy 100 14 El —— hr_bn4_95 i L] |
g 300 D s — 300 ¢ B | T 11
3 — i B 4 hr_bn4_85 {1 i ] [
Baso = Hi 250 + - 31 I
. I semays i) —&—hr_bnd_75 bi
& 200 £ ! f
& | —+—ud_bn7_100 1
150
| —=—ud_bn7_95
100 J

=1

et
P T T, TIPS S Y]
P E S g

0?@3- oF T P P P S P S NS ¥

pir /node(packets/cycle)

pir/node (packets/cycle)

Fig. 7. Average latency: hr vs. other algorithms (left), different hr configurations (right)

As can be seen, the performance is adversely affected for all algorithms when
reducing the level of internal traffic. The highest performance is, not surprisingly,
obtained by hr bn7 with 100% local traffic (hr bn7 100). One observation which is



86 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

rather unexpected can be noted. This is seen for Ar bn7 with 95 % local traffic
(hr_bn7_95), which performs considerably better than both XY and Up*/Down* with
100% local traffic. For 75% of local traffic, the differences in performance are
reduced, especially compared to XY. This is quite expected, since XY is known to be
a very good algorithm for uniformly distributed traffic (which is the distribution of the
external traffic).

When comparing the results in Fig. 7(left) with hierarchical routing for different
configurations of boundary nodes in Fig. 7(right), it is notable that both the four- and
one- boundary node hierarchical (hr_bn4 95 and hr_bnl 95 respectively) outperform
XY for 95% local traffic, even though the average distances are higher due to the
necessity of longer external routes. However, as the local traffic is reduced to 75%
and 85%, for hr_bn4 and hr bnl respectively, the lesser connectivity of fewer
boundary nodes result in notably higher average latency than XY. The very few
external links in Ar bnl are effective bottlenecks and the congestion on these links
propagates into the internal subnet traffic.

5.3 Comparison of Effects on Local and External Traffic

Fig. 8.(left) compares average latency for different algorithms and internal subnet
traffic. Both A» _bn7 and hr _bnl show considerably lower latency values for high load
in the 95% local traffic scenario.

Avg. Latency Subnet Traffic Avg. Latency External Traffic

it ! | | 35 _— — ’
o & i+ | | == hr_bn7_95_ext |I ! ,I J'r
®— hr_bn7_95_loc ] ! H
hr_bn7_9! - avg il ]l 125 T2 r_bn7_75_ext I '[ Iﬂ <
—8-— hr_bn7_75_loc_avg il {| S Ty T ;J f f
105 4 137 T if
+—a&— hr_bnl_95_loc_avg ¥ |
) i i f 9 L bnt_75_emt »L | ‘/l F
-g et . hnl_TS_Iuc_zvx” L g5 g il 4
85 - s —*— ud_bnl_95_e
E +ud bnl_95_loc, a\rgl . “E"‘ES Aé déd/ ; o
/ - ud_bnl_75_ a:l
H —<— ud_bn1 Js_]oc_avqo F-" E‘?E 4 ] & P
& &5 s ¢ E ¥
a s xy_95_loc_ave -'.-’ 3 2 —o— xy_95_ext ‘{9’ =
0
oxy 75 locave B [ aIs e o
45 5 55 5 anthe
i r oy :'.' I
el L ofats

25 : + 15

iy oy e R - S T . . O R S by o ) ty Moy B oy A Ay oy g

&FE § (RS PN o S NS e N e g

:aé? o ec? i oéo = eg" s S > @ n§ R mc} oé: caéa Q'S' o(? é?' qé? § IS ‘5" & a“? . é\"
pir/node (packets/cycle) pir/node fpnrke.‘.rfcyde}

Fig. 8. Average latency for internal subnet traffic (left), external traffic (right)

Note that XY in this case follows a higher curve than Up*/Down* (ud_bnl_95) at
low pir but improves as pir is increased. This indicates that Up*/Down* may have
advantage of adaptive routes at lower pir compared to XY routing algorithm. Fig.
8(right) complement the subnet latency by showing the latency of the external traffic.
The higher base latency for ud_bnland hr_bnl, due to less number of external links is
visible at both 75% and 95% of local traffic. Still, even though the base latency of
xy 95 is lower, it rapidly increases above the latency of hr_bnl 95 at pir of 0.015.

6 Conclusions

In this paper we have proposed both a new routing scheme as well as a structured
router design to support deadlock-free routing in a two-level hierarchical NoC. One



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 87

important hierarchical network parameter is the number of safe interconnection nodes.
We have compared the area and energy consumption of a router for two-level
hierarchical networks for various values of this parameter. It is noticed that two-level
routing is less costly as compared to a flat solution, especially when only considering
the routing function. The importance of this advantage will increase with network size
(due to larger tables), if buffer size is kept constant.

We have also evaluated the effect of the number of boundary nodes on
communication performance. We observe that two-level hierarchical routing with
maximum number of boundary nodes, in general, provides higher performance
compared to flat routing algorithms. The advantage is higher when the ratio of
external to local traffic is higher. For low external traffic, a single boundary node in
each subnet enables routing performance comparable to flat algorithms on fully
connected mesh. Multi-level routing embodies a multitude of exploration activities.
For example, although the proposed 2-level scheme recursively extends itself to n-
levels, implementation issues of such schemes will open new challenges.

References

1. Dighe, S., Hoskote, Y., Vangal, S., Finan, D., Ruhl, G., Jenkins, D., Wilson, H., Borkar,
N., Schrom, G., Pailet, F., Jain, S., Jacob, T., Yada, S., Marella, 8., Salihundam, P.,
Erraguntla, V., Konow, M., Riepen, M., Droege, G., Lindemann, J.. Gries, M., Apel, T.,
Henriss, K., Lund-larsen, T., Steibl, S., Borkar, S., De, V., Wijngaart, R.V.D., Mattson,
T., Howard, J.: A 48-Core [A-32 Message-Passing Processor with DVFS in 45nm CMOS.
International SolidState Circuits Conference. 9, 58-59 (2010).

2. Glass, C., Ni, L.: The Turn Model for Adaptive Routing. Computer Architecture, 1992.
Proceedings., The 19th Annual International Symposium on. pp. 278-287 (1992).

3. Ge-Ming Chiu: The odd-even turn model for adaptive routing. Parallel and Distributed
Systems, IEEE Transactions on. 11, 729-738 (2000).

4. Schroeder, M., Birrell, A., Burrows, M., Murray, H., Needham, R., Rodeheffer, T.,
Satterthwaite, E., Thacker, C.: Autonet: a high-speed, self-configuring local area network
using point-to-point links. Selected Areas in Communications, IEEE Journal on. 9, 1318-
1335 (1991).

5. Holsmark, R., Kumar, S., Palesi, M., Mejia, A.: HIRA: A methodology for deadlock free
routing in hierarchical networks on chip. Networks-on-Chip, 2009. NoCS 2009. 3rd
ACM/IEEE International Symposium on. pp. 2-111EEE Computer Society (2009).

6. Bourduas, S., Zilic, Z.: A Hybrid Ring/Mesh Interconnect for Network-on-Chip Using
Hierarchical Rings for Global Routing. Proc. of the ACM/IEEE Int. Symp. on Networks-
on-Chip (NOCS). (2007).

7. Rantala, V., Lehtonen, T., Liljeberg, P., Plosila, J.: Hybrid NoC with Traffic Monitoring
and Adaptive Routing for Future 3D Integrated Chips. Digest of the Workshop on
Diagnostic Services in Network-on-Chips. (2008).

8. Hollstein, T., Ludewig, R., Zimmer, H., Mager, C., Hohenstern, S., Glesner, M.: Hinoc: A
Hierarchical Generic Approach for on-Chip Communication, Testing and Debugging of
SoCs. VLSI-SOC: From Systems to Chips. pp. 39-54 (2006).

9. Lysne, O., Skeie, T., Reinemo, S., Theiss, 1.: Layered Routing in Irregular Networks.
IEEE Trans. Parallel Distrib. Syst. 17, 51-65 (2006).

10. Dally, W., Seitz, C.: Deadlock-Free Message Routing in Multiprocessor Interconnection
Networks. Computers, [EEE Transactions on. C-36, 547-553 (1987).

11. Duato, J.: A new theory of deadlock-free adaptive routing in wormhole networks. Parallel
and Distributed Systems, IEEE Transactions on. 4, 1320-1331 (1993).



88 HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy

KEYNOTE

Intel Lab’s “Single-chip Cloud Computer”,
an TA Tera-scale Research Processor

Jim Held, Intel Fellow, Director Tera-Scale Computing Research, Intel, USA

Abstract: As part of our Tera-scale Computing Research Program, Intel Labs has created a second generation exper-
imental “Single-chip Cloud Computer,” (SCC). It contains the most Intel Architecture cores ever integrated on a silicon
CPU chip - 48 cores. It incorporates technologies intended to scale multi-core processors to 100 cores and beyond,
such as an on-chip network, advanced power management technologies and support for “message-passing.”

Architecturally, SCC is a microcosm of a cloud datacenter. Each core can run a separate OS and software stack and
act like an individual compute node that communicates with other compute nodes over the on-die packet-based net-
work fabric, thus supporting the "scale-out" message passing programming models that have been proven to scale to
1000s of processors in cloud datacenters.

The SCC serves as an experimental platform for a wide range of software research and is currently being used by a
worldwide community of academic and industry co-travelers. This talk will describe the architecture of the SCC plat-
form and discuss its role in the broader context of our Tera-scale research.

Bio: Jim Held is an Intel Fellow who leads a virtual team of architects conducting Tera-Scale Computing Research
in Intel Labs. Since joining Intel in 1990, he has led research and development in a variety of Intel's labs concerned
with media and interconnect technology, systems software, multi-core processor architecture and virtualization. He
earned a Ph.D. (1988) in Computer and Information Science at the University of Minnesota.



HPPC 2010—the 4th Workshop on Highly Parallel Processing on a Chip, August 31, 2010, Ischia - Naples, Italy 89



the 4th Workshop on =
Highly Parallel Processing
on a Chip

:
=
=
3
TOT

=

G

=

=
OO

-
=
=
3
TOT

H

=

H

H
OO

¢ E =€ B

INOOnonnonoonon
= H
= -
= =
- H
= 3
1 [

:
=
=
3
oo

=

G

=

=
OO

=
T

=

e

=

=
OO

-
=
=
3
TOT

w:gﬁrsrtat Euro-Par et HHHH}

H

B

H

H
OO

ononor
o




