A Work Stealing Algorithm for Parallel Loops
on Shared Cache Multicores

Marc Tchiboukdjian Vincent Danjean Thierry Gautier
Fabien Le Mentec Bruno Raffin

g B INRIA
L G

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 1/24

Shared Cache of Multicore Processors

1. One core with 2 cache levels

Ly

Ly

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 2/24

Shared Cache of Multicore Processors

1. One core with 2 cache levels

2. Multiple cores with private caches

L= [= J[= J[= |
(S | P § R |

I Core II Core ” Core II Core I

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 2/24

Shared Cache of Multicore Processors

1. One core with 2 cache levels
2. Multiple cores with private caches

3. Multiple cores with private caches and one shared cache

L3

L= [= J[= J[= |
(S | P § R |

I Core II Core ” Core II Core I

The sequential has an unfair advantage.
Can we still get linear speedup?

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 2/24

Scheduling for Efficient Shared Cache Usage

Schedule the computation so that
shared cache misses do not increase.

» with a work stealing scheduler allowing efficient dynamic
load balancing

» for parallel loops: no dependencies between tasks

| 8MB |

| 256KB || 256KB || 256KB || 256KB |
[3me™ || sxe || 3k || 3k |
I Core 0 II Core 1 I I Core 2 I I Core 3 I

Xeon Nehalem E5530 (2.4Ghz)

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 3/24

Overview

Cache Efficient Work Stealing Scheduling for Parallel Loops

1. Standard Schedulers for Parallel Loops

2. New Scheduler Optimized for Shared Cache
3. Efficient Implementation of the Scheduler
4

. Experiments

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 4/24

Parallel Loops

Examples of parallel loops

v

OpenMP #pragma omp parallel for
TBB parallel_for
Cilk parallel for

Parallel STL for_each or transform

v

v

v

Problem characteristics

» Schedule n iterations on p cores
> lterations can be processed independently

» Time to process one iteration can vary

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 5/24

Static Scheduling of Parallel Loops

Static Scheduling

n.)
» Allocate — iterations to each core

p

> ex: OpenMP static scheduling

| ma

=

s

-

core 1

Characteristics

core 2

» low overhead mechanism

core 3

core 4

» bad load balancing if workload is irregular

Marc Tchiboukdjian

A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores

6/24

Dynamic Scheduling of Parallel Loops

OpenMP dynamic scheduling

> Allocate iterations in chunks of size g
» All chunks are stored in a centralized list

» Each thread remove a chunk from the list and process it

4

>

Characteristics

» Good load balancing

HER
» Contention on the list
» Chunk creation overhead E .ﬂ

core 1 core 2 core 3 core 4

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 7/24

Scheduling Parallel Loops with Work Stealing

Work Stealing

» Each thread has its own list of tasks (= chunks)
> If list is empty, steal tasks in a randomly selected list

> Binary tree of tasks to minimize number of steals:
one steal < half of the iterations

o steal
Characteristics

N\
» Good load balancing |. | | | |..| |..|
» Contention is reduced l |:| .H

» Task creation overhead core 1 core 2 core 3 core 4

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 8/24

Scheduling Parallel Loops with Work Stealing

[0, 127]

/ \

[0,63] [64.127]

/\

[0,31] [32.63]

/ \

[0,15] [16.31]

> terminated tasks
» ready tasks
> running tasks

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 9/24

Scheduling Parallel Loops with Work Stealing

[O 127] [64 127]
steal
[O 63] [64 95] [96 127]
[0, 31] 32 63] [64,79] [80.95]

/\

[0,15] [16.31]

> terminated tasks
» ready tasks
> running tasks

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 9/24

Parallel Loops with XKAAPI

XKAAPI typedef struct {
InputIterator ibeg;
» Work stealing library Inputlterator iend;

} Work_t ; // Task
» Tasks are created on a steal:
reduce task creation overhead void parallel_for (...) {

while (iend != ibeg)

» Cooperative stealing: do_work (ibeg++) ;
. . } // no more work -> become a thief
The victim stops working to
answer work requests void splitter (num_req) {
i=0;
» The victim can answer to size = victim.iend - victim.ibeg ;
multiple requests at a time bloc = size / (num_req + 1) ;

local_end = victim.iend ;

while (num_req > 0) {
thief->iend = local_end ;
thief->ibeg = local_end - bloc ;
local_end -= bloc ;
--num_req ;

Characteristics

» Good load balancing

» Low overhead mechanism o A
} // wictim + thieves -> parallel_for

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 10/24

Overview

Cache Efficient Work Stealing Scheduling for Parallel Loops

1. Standard Schedulers for Parallel Loops

steal

e

core 1 core 2 core 3 core 4

2. New Scheduler Optimized for Shared Cache
3. Efficient Implementation of the Scheduler

4. Experiments

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores

11/24

Reuse Distances [Beyls and D'Hollander 01]

» Number of distinct elements accessed between

two accesses to the same element.
» If first access, reuse distance is infinity. C
1

» On a fully associative LRU cache of size C:
reuse distance < C = hit
reuse distance > C = miss

1
'misses

> hg: number of accesses with a reuse distance d

» number of cache misses M(C) = Z hg
d=C+1

element access | A B
reuse distance | co 00
cache content | § A

A B B C B A C
2 2 1 00 2 3 3
AB AB AB AB BC BC AB

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 12/24

Shared Cache Misses with the Classic Schedule

» Cores work on elements far away [EI] shered cache
» Good temporal locality of the

sequential algorithm EEE'EI

core 1 core 2 core 3 core 4

= Cores work on distinct data

» To 1 access by a core corresponds
p — 1 accesses to distinct data by
the other cores

» Reuse distance is multiplied by p:
hseq _ hpar
d — 'pd

» Number of cache misses additional misses
Moar(C) = > hg"= D hgjy= D hg" = Mueq(C/p)
d=C+1 d=C+1 d=C/p+1

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 13/24

A Shared Cache Aware Schedule

» Cores work at distance at most m

» r(m) accesses to distinct elements [<vzred cache
in a window of size m | EEEE |
» The reuse distance is increased by —

win

at most r(m): hy? = hy'l, .

» Number of cache misses

(o) C
Muin(C) < 3 BT = Meg(O)+ > hT
d=C+1—r(m) d=C+1—r(m)

Small Overhead over Sequential

» good sequential locality
= r(m) small

= hy small for large d

T ' .
Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 14/24

Overview

Cache Efficient Work Stealing Scheduling for Parallel Loops

1. Standard Schedulers for Parallel Loops

steal

a1

B [B B
core 1 core 2 core 3 core 4

2. New Scheduler Optimized for Shared Cache
:l shared cache

| FFFF |

—
m

3. Efficient Implementation of the Scheduler

4. Experiments

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 15/24

Implementing the Shared Cache Aware Schedule

Using a standard parallel for loop: StaticWindow

» Divide the iterations in n/m chunks of size m
» Each chunk is processed in parallel with a standard parallel for

» Two versions: pthread and XKAAPI

Pthread version

» each thread processes 1/p of a chunk

» wait on a barrier after each chunk I:ls ared cache
AAPI version

» each chunk is processed in parallel
with a parallel for

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 16/24

Implementing the Shared Cache Aware Schedule

Optimized implementation using XKAAPI: SlidingWindow

» Processing iteration i enables iteration i + m

> Master thread is at the beginning of the sequence
» On a steal, the master can give work
> In the interval [ibeg, iend| like the other workers
> In the interval [ilast, ibeg + m[enabled since the last steal

ibeg iend

Processed Elements Master Work

Stolen Work

m-size window

typedef struct { typedef struct {

P . InputIterator ibeg;
Inputlterator ibeg; InputIterator iend;
InputIterator iend; K >

} Work_t ; // Task InputIterator ilast;

} Master_Work_t ; // Master Task

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 17/24

Overview

Cache Efficient Work Stealing Scheduling for Parallel Loops

1. Standard Schedulers for Parallel Loops

steal

?Dlﬂ@

core 1 core 2 core 3 core 4

2. New Scheduler Optimized for Shared Cache
E shared cache

| FPFH |

—
m

3. Efficient Implementation of the Scheduler

4. Experiments

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 18/24

Application: Isosurface Extraction

108
121 T c =
Isosurface extraction 1r Mseq(ﬁ) -
» Common scientific 0.8 | B
visualization filter 0.6 Mseq(C) |
» Memory bounded 0.4 i

| |
2MB 8MB
Algorithm

> lIterate through all cells in the mesh

» Interpolate surface inside each cell

» Cells close in the mesh share points

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 19/24

Experiments

2 processors

» Opteron: 2 Dualcores with private L1 and Ly caches

» Nehalem: Quadcore with private Ly, Ly caches and shared L3

2 schedules

» NoWindow: classic schedule

» (Static or Sliding) Window: shared cache aware schedule

7 implementations

» NoWindow: Pthread, TBB and XKAAPI
» StaticWindow: Pthread, TBB and XKAAPI
» SlidingWindow: XKAAPI

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 20/24

Synchronization overhead

Speedup on 4 cores on Opteron
| | |

3.85
41 — 3.6 |
3.49
3.27 3 7 = 337]
— NoWindow

o | 1 StaticWindow
0 T T

Pthread TBB XKAAPI

» Pthread < TBB < XKAAPI

» On Opteron: no shared cache = Window < NoWindow
more synchronizations without gain in cache misses

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 21/24

Window Size m

L3 cache misses

—e— Static == Seq. == No

107
I
6 [|
5 - |
4+ N
| | | |
210 215 220 225

Marc Tchiboukdjian

window size m

A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores

On 4 cores of Nehalem
Shared 8MB L3 cache

For small m:

Mwindow ~ seq (C)
C

Mno—window ~ Mseq(g)
Mno—window =6.15- 107
C
Mseq(—) = 7.13- 107
(%)

22/24

Speedup and Cache Misses on Nehalem

w Speedup Tseq/ Tpar

4 3.37
3.25 2

sl 312 546 |
2.44

2 |

1+ |
No Static No StaticSliding
Pthread XKAAPI

2
1.5
1
0.5
0

I [3 misses

ratio Mpar/ Mseq

1.48

1.09

No Static

Pthread

1.51

1.16 1.15

No StaticSliding
XKAAPI

» 4 cores of Nehalem with 8MB of shared cache L3

» Best performance: SlidingWindow

Marc Tchiboukdjian

A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores

23/24

Conclusion

Shared Cache Aware Scheduler

» Shared cache aware scheduler for parallel loops
» Efficient implementation using work stealing

» For application with good sequential locality
the window strategy is as good as if
each core had its own copy of the L3 cache

E shared cache
L FRRH |

—
m

Future work

» Experiment with other applications
» Automatically find window size with reuse distance histogram

» Cache-oblivious version (cache size unknown)?

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 24/24

	Introduction
	Scheduling Parallel Loops
	Scheduling for Efficient Shared Cache Usage
	Implementing the Scheduler
	Experiments
	Conclusion

