
A Work Stealing Algorithm for Parallel Loops
on Shared Cache Multicores

Marc Tchiboukdjian Vincent Danjean Thierry Gautier
Fabien Le Mentec Bruno Raffin

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 1/24

Shared Cache of Multicore Processors

1. One core with 2 cache levels

2. Multiple cores with private caches

3. Multiple cores with private caches and one shared cache

Core

L1

L2

The sequential has an unfair advantage.
Can we still get linear speedup?

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 2/24

Shared Cache of Multicore Processors

1. One core with 2 cache levels

2. Multiple cores with private caches

3. Multiple cores with private caches and one shared cache

Core

L1

L2

Core Core Core

L2

L1

L2

L1

L2

L1

The sequential has an unfair advantage.
Can we still get linear speedup?

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 2/24

Shared Cache of Multicore Processors

1. One core with 2 cache levels

2. Multiple cores with private caches

3. Multiple cores with private caches and one shared cache

Core

L1

L2

Core Core Core

L2

L1

L2

L1

L2

L1

L3

The sequential has an unfair advantage.
Can we still get linear speedup?

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 2/24

Scheduling for Efficient Shared Cache Usage

Schedule the computation so that
shared cache misses do not increase.

I with a work stealing scheduler allowing efficient dynamic
load balancing

I for parallel loops: no dependencies between tasks

8MB

256KB256KB256KB256KB

32KB 32KB 32KB32KB

Core 0 Core 2 Core 3Core 1

Xeon Nehalem E5530 (2.4Ghz)

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 3/24

Overview

Cache Efficient Work Stealing Scheduling for Parallel Loops

1. Standard Schedulers for Parallel Loops

2. New Scheduler Optimized for Shared Cache

3. Efficient Implementation of the Scheduler

4. Experiments

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 4/24

Parallel Loops

Examples of parallel loops

I OpenMP #pragma omp parallel for

I TBB parallel for

I Cilk parallel for

I Parallel STL for each or transform

Problem characteristics

I Schedule n iterations on p cores

I Iterations can be processed independently

I Time to process one iteration can vary

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 5/24

Static Scheduling of Parallel Loops

Static Scheduling

I Allocate
n

p
iterations to each core

I ex: OpenMP static scheduling

core 3 core 4core 2core 1

Characteristics

I low overhead mechanism

I bad load balancing if workload is irregular

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 6/24

Dynamic Scheduling of Parallel Loops

OpenMP dynamic scheduling

I Allocate iterations in chunks of size g

I All chunks are stored in a centralized list

I Each thread remove a chunk from the list and process it

Characteristics

I Good load balancing

I Contention on the list

I Chunk creation overhead
core 1 core 3 core 4core 2

g

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 7/24

Scheduling Parallel Loops with Work Stealing

Work Stealing

I Each thread has its own list of tasks (= chunks)

I If list is empty, steal tasks in a randomly selected list

I Binary tree of tasks to minimize number of steals:
one steal ⇔ half of the iterations

Characteristics

I Good load balancing

I Contention is reduced

I Task creation overhead core 1 core 2 core 3 core 4

steal

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 8/24

Scheduling Parallel Loops with Work Stealing

[0, 127]

[0, 63]

[0, 31]

[0, 15] [16, 31]

[32, 63]

[64, 127]

I terminated tasks

I ready tasks

I running tasks

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 9/24

Scheduling Parallel Loops with Work Stealing

[0, 127]

[0, 63]

[0, 31]

[0, 15] [16, 31]

[32, 63]

[64, 127]

[64, 95]

[64, 79] [80, 95]

[96, 127]

steal

I terminated tasks

I ready tasks

I running tasks

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 9/24

Parallel Loops with Xkaapi

Xkaapi

I Work stealing library

I Tasks are created on a steal:
reduce task creation overhead

I Cooperative stealing:
The victim stops working to
answer work requests

I The victim can answer to
multiple requests at a time

Characteristics

I Good load balancing

I Low overhead mechanism

typedef struct {
InputIterator ibeg;

InputIterator iend;

} Work_t ; // Task

void parallel_for (...) {
while (iend != ibeg)

do_work (ibeg++) ;

} // no more work -> become a thief

void splitter (num_req) {
i = 0 ;

size = victim.iend - victim.ibeg ;

bloc = size / (num_req + 1) ;

local_end = victim.iend ;

while (num_req > 0) {
thief->iend = local_end ;

thief->ibeg = local_end - bloc ;

local_end -= bloc ;

--num_req ;

}
} // victim + thieves -> parallel_for

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 10/24

Overview

Cache Efficient Work Stealing Scheduling for Parallel Loops

1. Standard Schedulers for Parallel Loops

core 1 core 2 core 3 core 4

steal

2. New Scheduler Optimized for Shared Cache

3. Efficient Implementation of the Scheduler

4. Experiments

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 11/24

Reuse Distances [Beyls and D’Hollander 01]

I Number of distinct elements accessed between
two accesses to the same element.

I If first access, reuse distance is infinity.

I On a fully associative LRU cache of size C :
reuse distance ≤ C ⇒ hit
reuse distance > C ⇒ miss

I hd : number of accesses with a reuse distance d

I number of cache misses M(C) =
∞∑

d=C+1

hd

���������
���������
���������

���������
���������
���������

hd
C

misses

d

element access A B A B B C B A C

reuse distance ∞ ∞ 2 2 1 ∞ 2 3 3

cache content ∅ A A,B A,B A,B A,B B,C B,C A,B

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 12/24

Shared Cache Misses with the Classic Schedule

I Cores work on elements far away

I Good temporal locality of the
sequential algorithm

⇒ Cores work on distinct data
core 3 core 4core 2core 1

shared cache

I To 1 access by a core corresponds
p − 1 accesses to distinct data by
the other cores

I Reuse distance is multiplied by p:
hseqd = hparp·d

I Number of cache misses

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������

���������
���������
���������

hd

d

C
C
p

seq misses

additional misses

Mpar (C) =
∞∑

d=C+1

hpard =
∞∑

d=C+1

hseqd/p =
∞∑

d=C/p+1

hseqd = Mseq(C/p)

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 13/24

A Shared Cache Aware Schedule

I Cores work at distance at most m

I r(m) accesses to distinct elements
in a window of size m

I The reuse distance is increased by
at most r(m): hseqd = hwind+r(m)

I Number of cache misses

shared cache

m

Mwin(C) ≤
∞∑

d=C+1−r(m)

hseqd = Mseq(C) +
C∑

d=C+1−r(m)

hseqd

Small Overhead over Sequential

I good sequential locality

⇒ r(m) small

⇒ hd small for large d
���������
���������
���������

���������
���������
���������

��
��
��

��
��
��

hd

d

seq misses

additional misses
C

r(m)

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 14/24

Overview

Cache Efficient Work Stealing Scheduling for Parallel Loops

1. Standard Schedulers for Parallel Loops

core 1 core 2 core 3 core 4

steal

2. New Scheduler Optimized for Shared Cache
shared cache

m

3. Efficient Implementation of the Scheduler

4. Experiments

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 15/24

Implementing the Shared Cache Aware Schedule

Using a standard parallel for loop: StaticWindow

I Divide the iterations in n/m chunks of size m

I Each chunk is processed in parallel with a standard parallel for

I Two versions: pthread and Xkaapi

Pthread version

I each thread processes 1/p of a chunk

I wait on a barrier after each chunk

Xkaapi version

I each chunk is processed in parallel
with a parallel for

shared cache

m

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 16/24

Implementing the Shared Cache Aware Schedule

Optimized implementation using Xkaapi: SlidingWindow

I Processing iteration i enables iteration i + m

I Master thread is at the beginning of the sequence
I On a steal, the master can give work

I In the interval [ibeg , iend [like the other workers
I In the interval [ilast, ibeg + m[enabled since the last steal

Processed Elements Master Work Stolen Work Remaining Elements

ibeg ilast

m-size window

iend

typedef struct {
InputIterator ibeg;

InputIterator iend;

} Work_t ; // Task

typedef struct {
InputIterator ibeg;

InputIterator iend;

InputIterator ilast;

} Master_Work_t ; // Master Task

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 17/24

Overview

Cache Efficient Work Stealing Scheduling for Parallel Loops

1. Standard Schedulers for Parallel Loops

core 1 core 2 core 3 core 4

steal

2. New Scheduler Optimized for Shared Cache
shared cache

m

3. Efficient Implementation of the Scheduler
Processed Elements Master Work Stolen Work Remaining Elements

ibeg ilast

m-size window

iend

4. Experiments

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 18/24

Application: Isosurface Extraction

Isosurface extraction

I Common scientific
visualization filter

I Memory bounded

2MB 8MB

0.4

0.6

0.8

1

1.2
·108

Mseq(C)

Mseq

(C

p

)

Algorithm

I Iterate through all cells in the mesh

I Interpolate surface inside each cell

I Cells close in the mesh share points

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 19/24

Experiments

2 processors

I Opteron: 2 Dualcores with private L1 and L2 caches

I Nehalem: Quadcore with private L1, L2 caches and shared L3

2 schedules

I NoWindow: classic schedule

I (Static or Sliding) Window: shared cache aware schedule

7 implementations

I NoWindow: Pthread, TBB and Xkaapi

I StaticWindow: Pthread, TBB and Xkaapi

I SlidingWindow: Xkaapi

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 20/24

Synchronization overhead

Pthread TBB Xkaapi
0

2

4
3.27 3.49

3.85

3.07
3.37 3.6

Speedup on 4 cores on Opteron

NoWindow
StaticWindow

I Pthread < TBB < Xkaapi

I On Opteron: no shared cache ⇒ Window < NoWindow
more synchronizations without gain in cache misses

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 21/24

Window Size m

210 215 220 225

4

5

6

·107

window size m

L
3

ca
ch

e
m

is
se

s

Static Seq. No

I On 4 cores of Nehalem

I Shared 8MB L3 cache

I For small m:
Mwindow ≈ Mseq(C)

I Mno−window ≈ Mseq

(C
p

)
Mno−window = 6.15 · 107

Mseq

(C

p

)
= 7.13 · 107

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 22/24

Speedup and Cache Misses on Nehalem

No Static No StaticSliding
0

1

2

3

4

Pthread Xkaapi

2.44

3.12 2.96
3.25 3.37

Speedup Tseq/Tpar

No Static No StaticSliding
0

0.5

1

1.5

2

Pthread Xkaapi

1.48

1.09

1.51

1.16 1.15

L3 misses ratio Mpar/Mseq

I 4 cores of Nehalem with 8MB of shared cache L3
I Best performance: SlidingWindow

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 23/24

Conclusion

Shared Cache Aware Scheduler

I Shared cache aware scheduler for parallel loops

I Efficient implementation using work stealing

I For application with good sequential locality
the window strategy is as good as if
each core had its own copy of the L3 cache

shared cache

m

Future work

I Experiment with other applications

I Automatically find window size with reuse distance histogram

I Cache-oblivious version (cache size unknown)?

Marc Tchiboukdjian A Work Stealing Algorithm for Parallel Loops on Shared Cache Multicores 24/24

	Introduction
	Scheduling Parallel Loops
	Scheduling for Efficient Shared Cache Usage
	Implementing the Scheduler
	Experiments
	Conclusion

