
HPPC
2011

(Hand-out) Proceedings of the

5th Workshop on
Highly Parallel Processing

on a Chip

August 30, 2011, Bordeaux, France
Organizers Martti Forsell and Jesper Larsson Träff

in conjunction with

the 17th International European Conference on
Parallel and Distributed Computing (Euro-Par)

August 29-September 2, 2011, Bordeaux, France

Sponsored by

S

S

I P

S

S S

S

I P

S

S S

S

I P

S

S S

S

I P

M

S

S

S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S

S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S

S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S S

S

I P

M

S

S

I/O

I/O

I/O

I/O I/O I/O

I/O

M

I/O I/O

M M

I/O

I/O

I/O

I/O

I/O

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P
rni

C

M

S

rni

S

rni

re

S

rni

S

C

M re

re
C

M

P
D

(Hand-out) Proceedings of the

5th Workshop on
Highly Parallel Processing

on a Chip

August 30, 2011, Bordeaux, France
http://www.hppc-workshop.org/

in conjunction with

the 17th International European Conference on Parallel and Distributed Computing (Euro-Par)
August 29-September 2, 2011, Bordeaux, France

August 2011
Handout editors: Martti Forsell and Jesper Larsson Träff

Printed in Finland and Austria

2 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

CONTENTS

Foreword 4

Organization 5

Program 6

SESSION 1 - High throughput computing CMPs

Keynote - Extreme Thread-Level-Parallelism on Sparc Processors - Rick Hetherington, Microelectronics,
Oracle Corp 7

Thermal Management of a Many-Core Processor under Fine-Grained Parallelism - Fuat Keceli,
Tali Moreshet and Uzi Vishkin, University of Maryland, Swarthmore College 8

SESSION 2 - Programming and optimization of CMPs

Mainstream Parallel Array Programming on Cell - Paul Keir, Paul Cockshott and Andrew Richards,
University of Glasgow, Codeplay Software Ltd 18

Generating GPU Code from a High-level Representation for Image Processing Kernels - Richard
Membarth, Anton Lokhmotov and Jürgen Teich, University of Erlangen-Nuremberg, ARM 28

A Greedy Heuristic Approximation Scheduling Algorithm for 3D Multicore Processors - Thomas
Canhao Xu, Pasi Liljeberg and Hannu Tenhunen, Turku Center for Computer Science,
University of Turku 38

3HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

FOREWORD

The arrival of multicore processors and plans to increase the amount of cores per chip exponentially over the coming
years have made parallel computing reality for the programmers. Unfortunately, usability of available development
tools, the asynchronous models of computation used in current designs, heterogeneity of them, and lack of proper
education are making parallel programming still very challening. Also the development of multicore architectures is
its infancy, adopting still many non-scalable techniques from the sequential computing domain although there would
be more efficient parallel computing-aware solutions available. Finally, the technological challenges, including ever
increasing mask costs, design complexity explosion of especially heterogeneous chips, inclusion of third dimension,
power density concerns, and raising influence of atom-level effects are threatening to diminish returns form silicon
process improvements. Thus, there is a strong need to study, develop and teach parallel languages, compiling, models
of computation, architctural techniques, advanced implementation technologies, and entire execution architectures
before parallel applications will be efficiently executed on highly parallel multicore processors and parallel computing
becomes the main stream of computing.

This is fifth time we organize the Workshop on Highly Parallel Processing on a Chip (HPPC). Again, it aims to be a
forum for discussing such fundamental issues. It is open to all aspects of existing and emerging/envisaged multi-core
processors with a significant amount of parallelism, especially to considerations on novel paradigms and models and
the related architectural and language support. To be able to relate to the parallel processing community at large,
which we consider essential, the workshop has been organized in conjunction with Euro-Par, the main European
(and international) conference on all aspects of parallel processing.

The Call-for-papers for the HPPC workshop was launched on March, and at the passing of the submission deadline
we had received 7 submissions, which were relevant to the theme of the workshop and of good quality. The papers
were swiftly and expertly reviewed by the program committee, all of them receiving 5 qualified reviews. We thank
the whole of the program committee for the time and expertise they put into the reviewing work, and for getting it
all done within the rather strict timelimit. Final decision on acceptance was made by the program chairs based on the
recommendations from the program committee. This year the themes of manuscripts matched well to the scope of
the workshop and we were able to accept full 4 contributions, resulting in an acceptance ratio of about 57%. The 4
accepted contributions will be presented at the workshop today, together with a forward looking invited talk by Rick
Hetherington on extreme thread-level parallelism on Oracle Sparc processors.

This handout includes the workshop versions of the HPPC papers and the abstracts of the invited talks. Final versions
of the papers will be published as post proceedings in a Springer LNCS volume containing material from all the Euro-
Par workshops. We sincerely thank the Euro-Par organization for giving us the opportunity to arrange the HPPC work-
shop in conjunction with the Euro-Par 2011 conference. We also warmly thank our sponsors VTT, University of Vienna
and Euro-Par for the financial support which made it possible for us to invite Rick Hetherington, of whom we also
sincerely thank for accepting our invitation to come and contribute.

Finally, we welcome all of our attendees to the Workshop on Highly Parallel Processing on a Chip in the beautiful
city of Bordeaux, France. We wish you all a productive and pleasant workshop.

HPPC organizers
Martti Forsell, VTT, Finland
Jesper Larsson Träff, University of Vienna, Austria

4 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

ORGANIZATION

Organized in conjuction with the 17th International European Conference on Parallel and Distributed Computing

WORKSHOP ORGANIZERS

Martti Forsell, VTT, Finland
Jesper Larsson Träff, University of Vienna, Austria

PROGRAM COMMITTEE

David Bader, Georgia Institute of Technology, USA
Martti Forsell, VTT, Finland
Jim Held, Intel, USA
Peter Hofstee, IBM, USA
Magnus Jahre, NTNU, Norway
Chris Jesshope, University of Amsterdam, The Netherlands
Ben Juurlink, Technical University of Berlin, Germany
Jörg Keller, University of Hagen, Germany
Christoph Kessler, University of Linköping, Sweden
Avi Mendelson, Microsoft, Israel
Vitaly Osipov, Karlsruhe Institute of Technology, Germany
Martti Penttonen, University of Eastern Finland, Finland
Sven-Bodo Scholz, University of Hertfordshire, UK
Jesper Larsson Träff, University of Vienna, Austria
Theo Ungerer, University of Augsburg, Germany
Uzi Vishkin, University of Maryland, USA

SPONSORS

VTT, Finland http://www.vtt.fi
University of Vienna http://www.univie.ac.at
Euro-Par http://www.euro-par.org

5HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

PROGRAM

5th Workshop on Highly Parallel Processing on a Chip (HPPC 2011)

TUESDAY AUGUST 30, 2011 Bordeaux

SESSION 1 - High throughput computing CMPs

09:30-09:35 Opening remarks - Jesper Larsson Träff and Martti Forsell, University of Vienna, VTT
09:35-10:35 Keynote - Extreme Thread-Level-Parallelism on Sparc Processors - Rick Hetherington, Microelectron-
ics, Oracle Corp, USA
10:35-11:00 Thermal Management of a Many-Core Processor under Fine-Grained Parallelism - Fuat Keceli, Tali
Moreshet and Uzi Vishkin, University of Maryland, Swarthmore College

11:00-11:30 -- Break --

SESSION 2 - Programming and optimization of CMPs

11:30-11:55 Mainstream Parallel Array Programming on Cell - Paul Keir, Paul Cockshott and Andrew Richards,
University of Glasgow, Codeplay Software Ltd
11:55-12:20 Generating GPU Code from a High-level Representation for Image Processing Kernels - Richard Mem-
barth, Anton Lokhmotov and Jürgen Teich, University of Erlangen-Nuremberg, ARM
12:20-12:45 A Greedy Heuristic Approximation Scheduling Algorithm for 3D Multicore Processors - Thomas Can-
hao Xu, Pasi Liljeberg and Hannu Tenhunen, Turku Center for Computer Science, University of Turku
12:45-12:50 Closing remarks - Jesper Larsson Träff and Martti Forsell, University of Vienna, VTT

12:50-14:30 -- Lunch --

14:30-15:00 Informal business meeting on the Highly Parallel Processing on a Chip Workshop Series - Jesper Lars-
son Träff and Martti Forsell, University of Vienna, VTT

6 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

KEYNOTE

Extreme Thread-Level-Parallelism on Sparc Processors

Rick Hetherington, Vice President, Microelectronics, Oracle Corp, USA

Abstract: Sparc has been the leader in pursuing high levels of throughput on commercial workloads with the use of
Chip-Multithreaded Processors. Introduced in 2005, the Niagara 1 processor broke new ground by providing 32
processor threads across 8 cores. This talk will revisit the history of Sparc CMT as well as presenting the current state
of CMT with the fourth generation of Sparc CMT and some projections as to where this technology is heading in
future. The talk will touch on experience gained, lessons learned, what worked and what did not work during this
nearly decade of experience on highly threaded processor design.

Bio: Rick Hetherington is Vice President in the Microelectronics Division of Oracle. He is responsible for Sparc Archi-
tecture and Performance. In this role, he manages a team of architects and performance analysts to develop processors
and systems.

Rick Hetherington was the chief technology officer for Sun’s Microelectronics business unit where he set the technical
direction for Sun's SPARC processor development and related technologies. Hetherington is driving Sun's leadership
in the chip multithreading (CMT) approach to processor design, in which multiple cores and multiple threads combine
to generate extraordinary throughput and power efficiency.

Prior to his appointment as CTO, Hetherington provided oversight for the architecture, performance and roadmap
of UltraSPARC T1(TM) processors and systems as chief architect for Sun's Horizontal Systems group. From 2000 to
2002, Hetherington took a hiatus from Sun to join a networking start-up as VP of engineering.

Hetherington originally joined Sun in 1996 as co-architect of Sun's Project Millennium processor. Prior to Sun, he
spent 16 years with Digital Equipment Corp., working on a variety of VAX and Alpha processors and systems. His
last position at Digital was system architect of EV6 (21264) processor.

Hetherington earned his bachelor's degree from Pennsylvania State University and currently holds 63 patents.

7HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

8 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

Thermal Management of a Many-Core Processor
under Fine-Grained Parallelism

Fuat Keceli1, Tali Moreshet2, Uzi Vishkin1

1University of Maryland, College Park, MD, USA
2Swarthmore College, Swarthmore, PA, USA

Abstract. In this paper, we present the work in progress that studies
the run-time impact of various DTM techniques on a proposed 1024-core
XMT chip. XMT aims to improve single task performance using fine-
grained parallelism. Via simulations, we show that relative to a general
global scheme, speedups of up to 46% with a dedicated interconnection
controller and 22% with distributed control of computing clusters are
possible. Our findings lead to several high level insights that can impact
the design of a broader family of shared memory many-core systems.

1 Introduction

Thermal feasibility has become a first-class architectural design constraint re-
flected in specifications of modern processors. It is typical to incorporate dynamic
thermal management (DTM) in order to improve the power envelope without
having to adopt more expensive cooling solutions. Going forward, it is important
to advance the understanding of DTM techniques for efficiently supporting the
architecture trend of increase in core count.

We base our work on the eXplicit Multi-Threading (XMT) architecture.
XMT is a general-purpose many-core platform for fine-grained parallel programs,
with significant evidence on ease-of-programming (e.g., [24]) and competitive
performance (e.g., [3]). The reasons for choosing XMT as our platform are: (a)
As noted in [25], ease-of-programming is crucial for the success of parallel com-
puters and XMT constitutes a competitive and realistic direction in this respect,
(b) The XMT simulator allows for evaluation of DTM techniques and such an
infrastructure is not publicly available for other current many-core platforms.

In this paper, we evaluate the potential benefits of several DTM techniques
on XMT. We focus on a system which executes one parallel task at a time. The
relevance and the novelty of our work can be better understood by answering
the following two questions.

Why is single task fine-grained parallelism important? On a general-
purpose many-core system the number of concurrent tasks is unlikely to often
reach the number of cores (i.e., thousands). Parallelizing the most time consum-
ing tasks is a sensible way for both improved performance and taking advantage
of the plurality of cores. The main obstacle then is the difficulty of program-
ming for single-task parallelism. Scalable fine-grained parallelism is natural for
easy-to-program approaches such as XMT.

What is new in many-core DTM? DTM on current multi-cores mainly
capitalizes on the fact that cores show different activity levels under multi-tasked
workloads [5]. In a single-tasked many-core, the source of imbalance is likely to

9HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

lie in the structures that did not exist in the former architectures such as the
large scale on-chip interconnection network (ICN) and distributed shared caches.

Contribution. This paper introduces XMTSim+dtm, a new, DTM-enabled
cycle-accurate simulator based on XMTSim [16]. Using XMTSim+dtm we mea-
sure the performance improvements introduced by several DTM techniques for a
1024-core XMT chip. We compare techniques that are tailored for a many-core
architecture against a global DTM (GDVFS), which is not specific to many-
cores. Following are the highlights of the insights we provide: (a) Workloads
with scattered irregular memory accesses benefit more from a dedicated ICN
controller (up to 46% runtime improvement over GDVFS). (b) In XMT, cores
are arranged in clusters. Distributed DTM decisions at the clusters provide up
to 22% improvement over GDVFS for high-computation parallel programs, yet
overall performance may not justify the implementation overhead.

Our work is relevant for architectures that consider similar design choices as
XMT (for example the Plural system [7]) which promote the ability to handle
both regular and irregular parallel general-purpose applications competitively
(see Section 3.1 for a definition of regular and irregular). These design choices
include an integrated serial processor, no caches that are local to parallel cores,
and a parallel core design that provides for a true SPMD implementation. We
aim to establish high-level guidelines for designers of such systems.

A comprehensive body of previous work is dedicated to dynamic power and
thermal management techniques for multi-core processors [13]. However, in most
cases (e.g., [6, 12,21]), authors assume a pool of uncorrelated serial benchmarks
as their workload, and capitalize on the variance in the execution profiles of
these benchmarks. The study by Ma, et al. [22] is notable, as they simulate a
set of parallel benchmarks, however, it focuses on power rather than thermal
management and considers up to only 128 cores. To our knowledge, our work is
among the first to evaluate DTM techniques on a many-core processor for single
task parallelism.

2 Experimental Platform
2.1 The XMT Architecture
The primary goal of the eXplicit Multi-Threading (XMT) general-purpose com-
puter architecture [28] has been improving single-task performance through par-
allelism. XMT was designed from the ground up to capitalize on the huge on-chip
resources becoming available in order to support the formidable body of knowl-
edge, known as Parallel Random Access Model (PRAM) algorithmics [18], and
the latent, though not widespread, familiarity with it. Driven by the repeated
programming difficulties of parallel machines, ease-of-programming was a leading
design objective of XMT. Indeed, considerable amount of evidence was developed
on ease of teaching and improved development time with XMT (e.g., [24])1.

The XMT architecture includes an array of lightweight cores, Thread Control
Units (TCUs), and a serial core with its own cache (Master TCU). The architec-
ture includes several clusters of TCUs connected to mutually-exclusive shared

1 A complete list of references can be found at http://www.umiacs.umd.edu/users/
vishkin/XMT/index.shtml#publications

2

10 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

cache modules by a high-throughput interconnection network [1] (XMT does not
feature writable private caches). TCUs include lightweight ALUs, but the more
heavy-weight units are shared by all TCUs in a cluster. XMT is programmed in
XMTC, a simple extension of the C language which contains succession of serial
and parallel code sections. The code of a parallel section is expressed in the
SPMD (single program, multiple data) style, specifying an arbitrary number of
virtual threads sharing the same code. Further details on the XMT architecture
can be found in [28].
2.2 Simulation Environment
The simulation environment used in this work is XMTSim+dtm, an extension
of publicly available XMTSim [16]. XMTSim is the cycle-accurate simulator
of the XMT computer architecture, built to model the on-chip components that
constitute the ASIC and FPGA prototypes of XMT. XMTSim has been validated
against the FPGA prototype and cycle counts are shown to be accurate within
a margin of 15% [17]. The parameters of the power model used in XMTSim
is based on other validated tools: McPat [20] and Cacti [29]. The details of
this estimation are the subject of a companion paper [15]. More details on the
simulator than presented hereafter can be found in [14,16,17].

The high level specifications of the 1024-TCU XMT chip that we simulated
in our experiments are given in Table 1a. The values in the table were compiled
to match the chip area of an advanced GPU, NVIDIA GTX280. Details of this
analysis are given in [3].

Power Estimation. XMTSim estimates power based on the activity that
a benchmark induces on the clusters, ICN and the shared caches. Effect of die
temperatures is included in calculation of the leakage power. The power model
used in XMTSim is similar to the model proposed in [11] and explained in detail
in [14, 17]. The model reflects the assumptions that a components implement
clock gating and voltage gating. Table 1a lists the maximum powers of the com-
ponents in the simulated XMT chip.

The Temperature Model. XMTSim uses HotSpot [27] to estimate the
temperatures of the clusters and the maximum temperature of the area dedicated
to the ICN routing. We set the thermal limit at 65C, whenever required, and
simulated our benchmarks with a heatsink convection resistance of 0.1W/K,
observed in typical cooling solutions [10]. Fig. 1b denotes the simulated XMT
floorplan. It is motivated by previous work that shows it is thermally more
efficient to place the clusters and shared caches in a checkerboard pattern rather
than keeping them separately [10].

Simulating DTM. XMTSim samples the power and computes tempera-
ture at regular intervals. At each interval, DTM algorithm calculates a new set
of frequencies for the clusters and the ICN. In order to avoid very long simu-
lation times, we use steady-state temperature computations. Steady-state is an
approximation to transient solutions for very long intervals with steady inputs.
We observed that the behaviors of the kernels we simulated do not change sig-
nificantly with larger data sets, except that the phases of consistent activity
stretch in time. Therefore, we interpret the steady-state results obtained from
simulating relatively short kernels with narrow sampling intervals as indicators

3

11HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

Processing Clusters (240.7W)

·1024 In-order 5–stage TCUs with ALUs,
2-bit br. prediction, 16 prefetch buffers

·64 Mult./Div. and 64 Float. Point units
·2K read-only cache per cluster
Interconnection Network (45.3W)

·64-to-128 Mesh-of-Trees

Shared Parallel Cache (80.4W)

·128 modules x 32K. 4MB total
·2-way associative
Other Specifications

·Max. clock freq.: Clusters – 1.3 GHz,
ICN – 2.6 GHz

·Max. DRAM bwidth.: 141.7 GB/sec

(a) (b)
Table 1. (a) The specifications of the 1024-TCU XMT. Given in parentheses are the
maximum cumulative power for each group of components. (b) Checkerboard floorplan
for a 1024 TCU XMT. Vertical strips with light gray color are reserved for intercon-
nection network routing and the black colored rectangle is the Master TCU.

of potential results from longer kernels. The sampling intervals, ranging from
5K to 200K clock cycles, are determined empirically to filter the noise in the
activity patterns.

3 Performance Under Thermal Constraints

In this section, we discuss the performance of the XMT chip under thermal
constraints and evaluate a set of dynamic thermal management techniques that
can potentially improve the performance. Our main objective is obtaining the
shortest execution time for a benchmark without exceeding a predetermined
temperature limit. Note that energy efficiency is not within the scope of this
objective.

3.1 Benchmarks

We consider it essential for a general-purpose architecture to perform well on
a range of applications. Therefore we include both regular benchmarks, such
as graphics processing, and irregular benchmarks, such as graph algorithms.
In a typical regular benchmark, memory access addresses are predictable and
there is no variability in control flow. In an irregular benchmark, memory access
addresses and the control flow (if it is data dependent) are less predictable. Since
it is our purpose to make the results relevant to other many-core platforms, we
select benchmarks that commonly appear in the public domain [2, 4, 8, 23, 26].
Where applicable, benchmarks use single precision floating point format, except
FFT, which uses fixed point arithmetics (i.e., utilizing the integer functional
units instead of the FP units).

Table 2 provides a summary of the benchmarks that we use in our experi-
ments. Execution times (in clock cycles), average power and temperature values
are obtained from simulating benchmarks with no thermal constraint. Power
and temperature estimations assume a global clock frequency of 1.3 GHz and

4

12 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

Name Results Description Characteristic and Dataset

BFS-I 1.825M, 161W, 60C Breadth-first search on
graphs.

Hi-P. 1M nodes, 6M edges. Low cluster
and moderate ICN activity. Irregular.

BFS-II 135.2M, 118W, 56C Low-P. 200K nodes, 1.2M edges. Very low
activity. Irregular.

Bprop 3.990M, 118W, 56C Back Propagation
machine learning alg.

Hi-P. 64K nodes. Low activity. Irregular.

Conv 0.885M, 215W, 66C Image convolution with
separable filter.

Hi-P. 1024x512. Highest activity. Regu-
lar.

FFT 4.905M, 194W, 63C 1-D fixed point
Fast-Fourier transform.

Hi-P. 1M points. Moderate activity. Reg-
ular.

Mmult 10.6M, 180W, 63C Multiplication of two in-
teger matrices.

Low-P. 512x512 elts. Moderate cluster
and high ICN activity. Regular.

Msort 3.625M, 161W, 60C Merge-sort algorithm. Hi-P. 1M keys. Variable moderate to low
activity. Irregular.

NW 1.725M, 166W, 61C Needleman-Wunsch
sequence alignment.

Low-P. 2x2048 seqs. Variable moderate
to low activity. Irregular.

Reduct 0.67M, 185W, 63C Parallel reduction
(sum).

Hi-P. 16M elts. Moderate cluster and
high ICN activity. Regular.

Spmv 0.31M, 205W, 64C Sparse matrix - vector
multiplication.

Hi-P. 36Kx36K, 4M non-zero. Moderate
cluster and high ICN activity. Irregular.

Table 2. Benchmark properties. Results are clock cycles, average power and temper-
ature, consecutively.

Rc = 0.05W/K. Each benchmark is characterized in terms of its degree of par-
allelism, regularity and activity. More detail on these will follow next.

The degree of parallelism for a benchmark is defined to be low (low-P) if the
number of TCUs executing threads is significantly smaller than the total number
of TCUs when averaged over the execution time of the benchmark. Otherwise
the benchmark is categorized as highly parallel (hi-P). According to Table 2,
three of our benchmarks, BFS-II, Mmult and NW, are identified as low-P. In
Mmult, the size of the multiplied matrices is 512× 512 and each thread handles
one row, therefore only half of the 1024 TCUs are utilized. BFS-II shows a
random distribution of threads between 1 and 11 in each one of its 300K parallel
sections. NW shows varying amount of parallelism between the iterations of a
large number of synchronization steps (i.e., parallel sections in XMTC).

As mentioned above, regularity of a benchmark is affected by the predictabil-
ity of memory access patterns and the control flow. For instance, BFS, Msort
and Spmv are irregular due to their memory access patterns, whereas BFS also
shows data dependent control flow. FFT is another benchmark with irregular
memory access patterns, however it is classified as regular since the uniform dis-
tribution of work among TCUs was the dominant factor in this case. Some of the
other factors that play a role in the regularity of a benchmark are the amount
and variability of parallelism (e.g., NW), and memory bottlenecks (e.g., Bprop).
Bprop is a complex irregular program with heavy memory queuing.

The activity profile of a benchmark plays an important role in the behavior
of the system under thermal constraints, as we demonstrate in Section 3.3. It can
be observed in Table 2 that there is a direct correlation between the regularity
and activity/power value of a benchmark. For example, Conv, Reduct andMmult
are typical regular benchmarks with steady and high activity and power values.

In addition to regularity, cluster and ICN activities are determined by a
number of additional factors, such as the computation to memory operation ratio

5

13HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

of the threads and amount of parallelism (even if it is constant). An example is
fixed-point FFT, which has lower activity than the other regular benchmarks,
partly because it performs integer operations rather than floating point, spending
less time in computation. Another example, Mmult, despite being very regular,
is not as active as Conv due to the fact that it is a low-P benchmark.

3.2 Dynamic Thermal Management

Dynamic thermal management is the general term for various algorithms used to
increase, or more efficiently utilize, the power envelope without exceeding a limit
temperature at any location on the chip, as observed by thermal sensors. DTM
alters the operation of the system during runtime via tools such as dynamic
voltage and frequency scaling (DVFS), clock gating and voltage gating. These
tools are commonly implemented in current processors [9, 13,19].

In our experiments, we evaluated the following DTM techniques that are
motivated by previous work on single and multi-cores [13]. We adapted these
techniques to our many-core platform. The DTM decisions for each technique are
determined during runtime and based on proportional-integral (PI) controllers
which take temperatures as input and output the clock frequency and voltage
level [27]. The clusters and ICN are assumed to feature one or more temperature
sensors that report their maximum temperatures. The exact sensor configuration
is beyond the scope of this work. In the distributed DVFS algorithms, a controller
assigned to a certain component in the chip (for example, the ICN or a cluster)
responds to the temperature of that component. Further details can be found
in [14].
Global DVFS (GDVFS): All clusters, caches and the ICN are connected to
one central controller which converges to the maximum frequency/voltage values
possible without exceeding limit temperature. Global DVFS is the simplest DTM
technique in terms of physical implementation, therefore, any other technique
should perform better in order to justify its added design complexity.
Coarse-Grain Distributed DVFS (CG-DDVFS): The ICN is assigned a
separate controller while the rest of the chip remains connected to the global
controller as in GDVFS. Some many-cores, such as GTX280, already have sep-
arate clock domains for the computation elements and the interconnection net-
work, leading us to conclude that the implementation cost of this technique is
acceptable.
Fine-Grain Distributed DVFS (FG-DDVFS): Each cluster is connected
to an isolated voltage/frequency domain and assigned a separate controller. The
shared caches are connected to a common domain and their frequency is set to the
average frequency of the clusters. The ICN is assigned a dedicated controller as
in CG-DDVFS. The implementation of distributed DVFS may be prohibitively
expensive on large systems due to the high number of voltage/frequency domains.

3.3 Analysis of DTM Results

A chip with no dynamic thermal management is designed to work at the high-
est possible clock frequency with which it can tolerate the thermal stress of
the worst case (i.e., the most active, most power intensive) benchmark. Conse-
quently, applications that are not as thermally demanding are penalized, since

6

14 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

 1.0

 1.2

 1.4

 1.6

 1.8

 2.0

bfs−i

bfs−ii

bprop

nw m
sort

S
p

ee
d

u
p

 1.0

 1.1

 1.2

 1.3

 1.4

 1.5

spm
v

reduct

conv
m

m
ult

fft

GDVFS
CG−DDVFS
FG−DDVFS

Fig. 1. Benchmark speedups for the DTM algorithms. The benchmarks are grouped
into low (left) and high (right) cluster activity. Note that the two groups have different
y-axis ranges.

they are subject to the same clock frequency. DTM techniques provide the high-
est improvement on the execution time of such benchmarks compared to the
no-DTM case. Consistent with this statement, throughout this analysis it can
be observed that benchmarks identified as low activity in Section 3.1 show the
highest speedups with DTM techniques.

In evaluating the DTM techniques introduced in Section 3.2, we set an XMT
chip with no-DTM as the baseline and express the performance of a DTM tech-
nique in terms of speedups over the baseline. We assume that the no-DTM
system is optimized to run at the fastest clock frequency that is thermally feasi-
ble for Conv, which is the most thermally active benchmark according to Section
3.1. We determined the baseline clock frequency as 900MHz. The thermal limit
was set at 65C, as indicated in Section 2.2.

In Fig. 1, we present the benchmark speedups when simulated with the exam-
ined DTM techniques. If thermal management is present, the clock frequencies
of the clusters and caches can be dynamically scaled up to 1.3GHz. We also
assume that ICN frequency can be raised to a maximum of 2.6GHz. A higher
interconnect speed is possible due to the simplicity of the pipeline stages in the
Mesh-of-Trees ICN (as in [9]). The speedup of a benchmark is calculated using
the following formula: S = Execbase/Execdtm, where Execbase and Execdtm are
the execution times on the baseline, no-DTM system and with thermal manage-
ment, respectively.

As a general trend, the benchmarks that benefit the most from the DTM
techniques are benchmarks with low cluster activity factors, namely BFS-I, BFS-
II, Bprop, NW and Msort (note the scale difference between the y axes of the two
rows of Fig. 1). The highest speedups are observed for BFS-II since it has very
low overall activity and runs at the maximum clock speed without even nearing
the limit temperature. Moreover, CG-DDVFS and FG-DDVFS performs up to
46% better than GDVFS for BFS-II, which is mainly bound by memory latency,
hence benefits greatly from the independently increased ICN frequency. On the
other extreme, Conv has the highest cluster activity and was used as the worst
case in determining the feasible baseline clock frequency, and therefore shows
the least improvement in most experiments.

7

15HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

In the remainder of this section we elaborate on the performance of CG-DVFS
and FG-DVFS separately.

CG-DDVFS. Our experiments show that the CG-DDVFS algorithm presents
a very reasonable trade-off between hardware complexity and performance. How-
ever, performance of certain benchmarks can suffer from the CG-DDVFS algo-
rithm without the modification explained next.

We observed that the performance of the originally proposed CG-DDVFS al-
gorithm is adversely affected by the fact that the ICN and cluster temperatures
are correlated. The conduction of the heat generated by the ICN activity adds
to the temperature of the clusters, requiring a slowdown in the cluster clock
frequency. Moreover, when the ICN frequency is increased, the cores spend less
time idling on memory operations and the cluster power escalates. As a conse-
quence, CG-DDVS is most effective on benchmarks with low cluster activity, and
may hurt the performance of a computation bound benchmark by causing the
cluster frequency to drop excessively while trying to increase the ICN frequency
for an insignificant gain. Therefore, we modified the algorithm to fall back to
GDVFS when the ICN activity is lower than the cluster activity (this criterion
was determined empirically). Fig. 1 reflects the results of this modification.

The CG-DDVFS technique provides better performance than GDVFS on
BFS-I (25% faster), BFS-II (46% faster), NW (30% faster) and Msort (17%
faster), which have irregular memory accesses and low computation to mem-
ory operation ratios. For these benchmarks, the performance bottleneck is the
amount of time that TCUs wait on memory operations. CG-DDVFS shortens
the wait time by increasing the ICN clock frequency. Irregularity of memory
accesses implies that the ICN is not saturated, and it is not fully utilizing its
power envelope. Therefore, ICN has sufficient thermal slack that can be picked
up by increasing its clock frequency. Bprop does not benefit from CG-DDVFS
significantly, due to the high degree of queuing on the shared memory modules
with this benchmark. We also observed that CG-DDVFS can cause a perfor-
mance degradation of up to 12% with respect to GDVFS for the remainder of
the benchmarks if the GDVFS fall-back is not implemented.

Insight: For a system with a central ICN component such as XMT, workloads
that are characterized by scattered irregular memory accesses usually benefit
more from dedicated ICN thermal monitoring and control. Conversely, CG-
DDVFS can hurt the performance and should be disabled for regular parallel
programs which usually have higher computation to memory operation ratios.
Performance of CG-DDVFS improves for more advanced cooling solutions.

FG-DDVFS. For the single-tasked system such as the one we examine in this
work, the activity does not vary significantly among the clusters when averaged
over a sufficiently long time window. The said time window is shorter than the
duration required for a significant change in temperature to occur. Therefore,
the only benefit that FG-DDVFS can provide is due to the temperature gradient
between the middle of the die, where it is harder to remove the heat, and the
edges. FG-DDVFS tries to pick up the thermal slack at the edge clusters by
increasing their clock frequency. However, the performance of FG-DDVFS suffers

8

16 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

from the interaction between the temperatures of the center and edge clusters:
as the temperature of the edge clusters rises, so does the temperature of the
center clusters, and the controllers in the middle will respond by converging at
lower clock frequencies, diminishing the performance gain.

FG-DDVFS exhibits speedups similar to CG-DDVFS on the low activity
benchmarks. This is due to the dedicated ICN clock controller introduced in
CG-DDVFS. The added value of the dedicated cluster controllers of FG-DDVFS
is observed on Spmv, Reduct, Conv and FFT, which are the high activity bench-
marks. For these benchmarks, runtimes with FG-DDVFS are faster than GDVFS
by 14%, 7% and 11%, respectively. Mmult is the only benchmark that shows a
slowdown over GDVFS due to its low-P characteristic.
Insight: Individual temperature monitoring and control for computing clusters
may be worthwhile even in a single-tasking system with fairly uniform workload
distribution. The gains are noteworthy for regular parallel programs with high
amounts of computation. Conversely, the overall performance of FG-DDVFS on
the low activity benchmarks may not justify its added cost for some systems. It
should also be noted that FG-DDVFS has advantage over CG-DDVFS only for
cases where the overall speedups are lower than average.

4 Conclusion
In this paper, we outline ongoing work in which we tailor various DTM tech-
niques that exist in uniprocessors and multi-cores to a many-core architecture.
We evaluate these techniques on the easy-to-program XMT many-core architec-
ture according to their implementation/design complexity and improvement in
single task execution time. We observed that in a many-core processor with fine-
grained parallel workloads, the dominant source of thermal imbalance is often
between the cores and the interconnection network. According to preliminary
results, a DTM technique that exploits this imbalance by individually managing
the interconnect can perform up to 46% better than the global DTM for irregu-
lar parallel benchmarks. This paper provides several other high-level insights on
the effect of individually managing the interconnect and the computing clusters.
Our analysis is a step forward from the previous work on multi-core DTM which
exclusively focused on systems with a small number of relatively complex serial
processors and uneven distribution of the load among these cores. Future work
will extend the results presented here to a multi-tasked environment, where the
XMT chip will be able to simultaneously execute multiple fine-grained parallel
tasks. This extension poses an interesting optimization problem where the man-
agement algorithm will also determine the number of threads to be run from
each task and how they map on the TCUs.

Acknowledgment
Partial support by NSF grants 0325393, 0811504, 0834373 and 0926237 is grate-
fully acknowledged.

References

1. Balkan, A.O., Horak, M.N., Qu, G., Vishkin, U.: Layout-accurate design and im-
plementation of a high-throughput interconnection network for single-chip parallel
processing. In: Proc. Hot Interconnects (2007)

9

17HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

2. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proc. SC (2009)

3. Caragea, G., Keceli, F., Tzannes, A., Vishkin, U.: General-purpose vs. GPU: Com-
parison of many-cores on irregular workloads. In: Proc. HotPar (2010)

4. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: Proc. IISWC (2009)

5. Donald, J., Martonosi, M.: Techniques for multicore thermal management: Classi-
fication and new exploration. In: Proc. ISCA (2006)

6. Ge, Y., Malani, P., Qiu, Q.: Distributed task migration for thermal management
in many-core systems. In: Proc. DAC (2010)

7. Ginosar, R.: The plural architecture. www.plurality.com (2011), also see course
on Parallel Computing, Electrical Engineering, Technion http://webee.technion.
ac.il/courses/048874

8. Hoberock, J., Bell, N.: Thrust: A parallel template library (2009), http://www.
meganewtons.com/, version 1.1

9. Howard, J., Dighe, S., et al.: A 48-core IA-32 message-passing processor with DVFS
in 45nm CMOS. In: Proc. ISSCC (2010)

10. Huang, W., Stan, M.R., Sankaranarayanan, K., Ribando, R.J., Skadron, K.: Many-
core design from a thermal perspective. In: Proc. DAC (2008)

11. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: Method-
ology and empirical data. In: Proc. MICRO (2003)

12. Kadin, M., Reda, S., Uht, A.: Central vs. distributed dynamic thermal management
for multi-core processors: which one is better? In: Proceedings of the Great Lakes
symposium on VLSI (2009)

13. Kaxiras, S., Martonosi, M.: Computer Architecture Techniques for Power Effi-
ciency. Morgan and Claypool Publishers (2008)

14. Keceli, F.: Power and Performance Studies of the Explicit Multi-Threading (XMT)
Architecture. Ph.D. thesis, University of Maryland (2011)

15. Keceli, F., Moreshet, T., Vishkin, U.: Power-performance comparison of single-task
driven many-cores, submitted for publication.

16. Keceli, F., Tzannes, A., Caragea, G., Vishkin, U., Barua, R.: Toolchain for pro-
gramming, simulating and studying the XMT many-core architecture. In: Proc.
HIPS (2011), in conj. with IPDPS

17. Keceli, F., Vishkin, U.: XMTSim: Cycle-accurate Simulator of the XMT Many-
Core Architecture. Tech. Rep. UMIACS-TR-2011-02, Univ. of Maryland (2011)

18. Keller, J., Kessler, C., Traeff, J.L.: Practical PRAM Programming. John Wiley &
Sons, Inc., New York, NY, USA (2001)

19. Kumar, R., Hinton, G.: A family of 45nm IA processors. In: Proc. ISSCC (2009)
20. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.: Mc-

PAT: an integrated power, area, and timing modeling framework for multicore and
manycore architectures. In: Proc. MICRO (2009)

21. Liu, S., Zhang, J., Wu, Q., Qiu, Q.: Thermal-aware job allocation and scheduling
for three dimensional chip multiprocessor. In: Proceedings of the International
Symposium on Quality Electronic Design (2010)

22. Ma, K., Li, X., Chen, M., Wang, X.: Scalable power control for many-core archi-
tectures running multi-threaded applications. In: Proc. ISCA (2011)

23. NVIDIA: CUDA SDK 2.3 (2009), www.nvidia.com/cuda
24. Padua, D., Vishkin, U.: Joint UIUC/UMD parallel algorithms/ programming

course. In: Proc. EduPar (2011), in conj. with IPDPS
25. Patterson, D.: The trouble with multicore: Chipmakers are busy designing micro-

processors that most programmers can’t handle. IEEE Spectrum (July 2010)
26. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-

core GPUs. In: Proc. IPDPS (2009)
27. Skadron, K., Stan, M.R., Huang, W., Velusamy, S., Sankaranarayanan, K., Tarjan,

D.: Temperature-aware microarchitecture. In: Proc. ISCA (2003)
28. Wen, X., Vishkin, U.: FPGA-based prototype of a PRAM on-chip processor. In:

Proc. Comp. Front. (2008)
29. Wilton, S., Jouppi, N.: CACTI: an enhanced cache access and cycle time model.

IEEE J. Solid-State Circuits 31(5), 677–688 (May 1996)

10

18 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

Mainstream Parallel Array Programming on Cell

Paul Keir1, Paul W. Cockshott1 and Andrew Richards2

1 School of Computing Science, University of Glasgow, UK,
2 Codeplay Software Ltd., Edinburgh, UK,

Abstract. We present the E] compiler and runtime library for the ‘F’ subset of
the Fortran 95 programming language. ‘F’ provides first-class support for arrays,
allowing E] to implicitly evaluate array expressions in parallel using the SPU co-
processors of the Cell Broadband Engine. We present performance results from
four benchmarks that all demonstrate absolute speedups over equivalent ‘C’ or
Fortran versions running on the PPU host processor. A significant benefit of this
straightforward approach is that a serial implementation of any code is always
available, providing code longevity, and a familiar development paradigm.

1 Introduction

Collection-oriented programming languages [1] are characterised by the provision of a
built-in selection of operations to manipulate aggregate data structures in a holistic man-
ner. Idiomatic code in these languages will commonly eshew the use of loop constructs.
The potential to extract parallelism from this style of programming is consequently,
and firstly, due to the divisibility of these aggregate data types; and secondly to the lack
of side-effects in the expressions or constructs which stand in place of the imperative
loops. Collection-oriented programming has often been applied to distributed parallel
architectures, however it is just as relevant in the setting of heterogeneous multicore.

A perennial concern of performance-critical code structured around imperative loops
appears within the context of implicit, or automatic, parallelism. An auto-parallelising
compiler faced with a side-effecting loop which exhibits a sequential execution seman-
tics, may overcome the challenge by a code transformation which introduces paral-
lelism, along with locks or semaphores. The user of such a compiler is soon compelled
to understand a new layer of diagnostic messages, which gradually cajole them to-
wards an alternative, highly structured, coding style. The resulting code will often be
data-parallel, and specify behaviour equivalent to that common to collection languages,
though considerably more verbose.

In this paper we present a mainstream solution for scientific computing in the auto-
parallelising array compiler, E], which targets the heterogeneous architecture of the Cell
Broadband Engine. We also discuss the design decisions behind our implementation of
four classic benchmarks1 , before presenting an analysis of performance experiments.

1.1 Related Work

The seminal array language, originating in the 1960s, is Kenneth Iverson’s APL. Sub-
sequent decades brought a number of parallel array languages, for distributed architec-

1Available at http://www.dcs.gla.ac.uk/people/personal/pkeir/hppc11code.7z

19HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

tures: HPF, NESL, and ZPL being notable examples. Recent trends towards multicore
systems have brought about a renaissance in the design of parallel array languages.

Single Assignment C (SAC) is a pioneering functional array research language
based on the syntax and semantics of ‘C’. SAC is distinguished by its first-class ar-
rays, absent pointers and side-effects, and an advanced typing system capable of shape-
polymorphic array function definitions. SAC has also recently targeted the heteroge-
neous GPU architecture via a CUDA backend [2]. The absence of a stack in CUDA
however necessitates that no function calls are present within the SAC WITH-loops
which provide the sites for parallelisation.

Cray’s Chapel language, and IBM’s X10, were the two finalists from the ten year
DARPA High Productivity Computing Systems (HPCS) [3] programme. Both use a par-
titioned global address space (PGAS) model, and allow high-level, holistic, and paral-
lelisable manipulation of arrays. The two standard implementations of these languages
target distributed parallel architectures.

Microsoft’s Accelerator project [4] targets homogeneous x86, and heterogeneous
GPU architectures, using a data-parallel .NET array library which, by delaying the eval-
uation of array expressions, can minimise the creation of intermediate structures.

By virtue of the highly expressive Haskell typing system, the Repa [5] parallel array
library, is refreshingly akin to an embedded array language. Absolute parallel perfor-
mance comparable to serial ‘C’ derives from optimisations such as array fusion; and
mandatory unboxed, strictly evaluated array elements. For the end user, performance
can still depend on careful application of the force function; which replaces a delayed
with a manifest array. Repa builds on the long-running Data-Parallel Haskell research
strand, and for now targets only homogeneous multicore systems.

2 Implicit Parallelism using the ‘F’ Programming Language

Fortran was originally developed by John Backus and others at IBM in the 1950s. Like
‘C’, Fortran is a statically typed, imperative language. Fortran has historically differen-
tiated itself from ‘C’ by its absent pointer arithmetic; longstanding support for complex
numbers; argument passing by reference; and with Fortran 90, first class array types.
The Fortran language is ISO standardised, and Fortran 2008 has been approved. Of the
mainstream programming languages, Fortran has distinguished itself within the field
of computational science, due to its relatively high level, and excellent performance
profile.

The ‘F’ programming language is a subset of Fortran 95 designed with the inten-
tion of providing a lightweight version of Fortran, free of the requirement to support
40 years of language artifacts. The primary motivation of the language design was
to create a Fortran-based language for education, however ‘F’ is a perfectly adequate
general-purpose language. Furthermore, any Fortran compiler will compile a program
conforming to the ‘F’ language standard, the g95 compiler also has a command line
switch to enable error messages.

Having the requisite support for arrays, the ‘F’ programming language is therefore
a suitable language to explore the use of array expressions as a mechanism to drive
implicit parallelism for scientific computing on a heterogeneous architecture such as
the Cell Broadband Engine.

20 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

2.1 A Language Primer

The following code excerpt demonstrates an entire ‘F’ program, equivalent to a ‘C’
main function. The assignment on line 3 will pointwise multiply the elements of the
two arrays bound by b and c, before adding the result to a third array induced by the
literal 3. Once all operations on the right hand side of the assignment are completed,
the result is copied to the array bound to a.

1 program p
2 real, dimension(2,3) :: a, b = 1, c = 2
3 a = b * c + 3
4 a = muladd(b,c,3)
5 end program p

Fig. 1: Assignments involving intrinsic and user defined elemental functions.

The dimension attribute specification on line 2 of Figure 1 declares three arrays,
each with an explicit shape vector of 2;3. The length of an array’s shape vector provides
another useful metric: its rank, and is therefore 2 in this case. The terms in an array
expression must all have equal shape, and in doing so, the shapes are said to conform.
Scalar values, such as the numeric literals 1, 2 and 3, are promoted, or lifted, to an
array type of conforming shape, when their context within an expression requires it.
The induced array is then populated by elements of the same value as the inducing
scalar. In Figure 1, the expression b * c + 3 is therefore an array expression with a
rank of 2, and shape of 2;3. This is in fact true of all the expressions in Figure 1.

For the E] compiler, an array expression involving one or more functions, or opera-
tors, will be evaluated in parallel. The array expression b * c + 3 from Figure 1 will
therefore qualify, and so trigger the appropriate compiler transformations to ensure a
parallel execution.

Scalar functions free of side-effects may also be applied to array arguments with
conforming shapes. Such functions in Fortran are classified as elemental. The call to
muladd on line 4 of Figure 1 represents a user defined elemental function producing
the same result as the elemental arithmetic expression on line 3.

Unlike many auto-parallelising compilers, the E] user has the certainty that all array
expressions will execute in parallel. Consequently, other iterative constructs of the ‘F’
language, such as do or while loops remain useful. Such constructs should be used
where there is insufficient work to justify the small cost of thread adminstration and
direct memory access (DMA) operations.

3 The E] compiler

E] is a source to source compiler, translating from the ‘F’ subset of Fortran 95 to Offload
C++ [6]: a C++ language extension utilising pointer locality. The compiler targets het-
erogeneous multicore architectures, and in particular the CBE. The ‘F’ language has a

21HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

1 offloadThread_t tid = offload {
2 int outer *po = &g;
3 int i = *po;
4 int inner *pi = &i;
5 *pi = *pi+1;
6 *po = i;
7 };
8

9 offloadThreadJoin(tid);

Fig. 2: A simple asynchronous offload block expression

large standard library, and this is made available to both the PPU and the SPU using the
GNU Fortran runtime libraries. A C++ template class has also been developed which
both abstracts over the multifarious internal array representations of essentially all For-
tran compilers; and is also compatible with the dual memory address hierarchy exposed
by Offload C++. The E] compiler is written in the pure functional programming lan-
guage Haskell. Haskell’s Parsec parsing library allowed the structure of the published
‘F’ grammar to be followed exactly, while the Scrap Your Boilerplate package was used
to perform the crucial transformations of the abstract syntax trees.

3.1 Targeting Offload C++

E] translates from ‘F’ to Offload C++, a C++ language extension and runtime library [6]
targeting heterogeneous architectures. The most prominent language feature of Offload
C++ is the offload block which provides a traditional ‘C’ compound statement, prefixed
with the keyword offload, to be executed asynchronously to the main thread. Running
on the CBE, each new thread will be executed by the next available SPU. An offload
block returns an integer thread identifier and, like Pthreads, performance parallelism
is achieved through the launch of multiple threads; subsequently joined with a call to
offloadThreadJoin. A related benefit of this approach, is automatic call-graph du-
plication: with little or no annotation, a function, or variable reference, defined once,
may be used both outside and inside an offload block.

Equally significant is the extension of the C++ type system to allow statically as-
signed pointer locality. In Offload C++ a pointer is, either implicitly or explicitly, iden-
tified either with an inner or outer locality. Pointer arithmetic and assignment between
those of differing localities is statically prohibited by the compiler. More proactively,
the dereferencing of an outer pointer from within an offload block corresponds to a
DMA transfer from main memory to SPU scratch memory; while assignment to an
outer pointer results in a DMA transfer in the opposite direction. Figure 2 demonstrates
the concept: assuming the variable g is defined at global scope, the resulting effect of
the offload block is for g to be incremented by one. Note that the inner and outer

pointer qualifiers on lines 2 and 4 in Figure 2 are optional and would be automatically
inferred.

22 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

1 template <typename T, int Od>
2 struct PtrWrapper {
3 T inout(Od) *m_p;
4 };

Fig. 3: Offload C++ template struct with pointer member

Flexibility in the locality of class or struct pointer members may be obtained using
the static inout qualifier and an integer template parameter, as shown in Figure 3.

3.2 A C++ Template Interface to Fortran Runtime Libraries

Neither the ‘F’ nor Fortran language standards specify an application binary interface
(ABI) for arrays. With over a dozen Fortran compilers it would be unfortunate to restrict
the E] compiler to only one of the associated runtime libraries. The Chasm project [7]
helps addresses this issue by providing a low-level ‘C’ API targeting the internal “dope
vectors” used by each Fortran compiler. For E], two new C++ array template classes
have been designed and implemented: ArrayT; and the statically sized ArrayTN. Each
provides high-level support for Fortran array features such as sectioning; serialisation;
de-serialisation; and fast indexing with optional non-1 lower bound.

3.3 Parallel Operational Semantics

The E] compiler attempts a human-readable, one-to-one correspondence between ‘F’
input and C++ output language constructs. An exception occurs at a parallelised array
expression. In this instance, the array expression is transformed into a nested for loop1,
with depth equal to an expression’s rank. A team of threads is then launched, each
assigned a statically allocated and contiguous chunk of the outermost iteration space.
The precise number of threads is set on program startup using an environment variable,
ESHARP_NUM_THREADS, and may range from 1 to 128. Each individual thread is given
the full resources of an SPU, and sits in a notional FIFO queue until one is available.
While it can be assumed that launching one thread for each SPU will incur the lowest
thread administration costs, while maximising resource usage, a program with a large
working set may need to be split into more than six pieces. For example, an array
expression with a 6000KiB working set, will exceed the 256KiB local store of an SPU
if partitioned across six threads. With 32 or more threads, the program should run.

4 The Benchmark Programs

The first two benchmark programs we will examine, BlackScholes and Swaptions, are
financial simulations from Princeton Univerity’s PARSEC benchmark suite, converted
by hand to ‘F’ from original C and C++. Our Mandelbrot program allows us to look at
DMA transfer bottlenecks. while exploring differing approaches to parallel decomposi-
tion. Finally, a simulation of the n-body problem is examined.

1The operation is also recursively applied to array subexpressions.

23HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

4.1 Blackscholes

Blackscholes is a financial simulation which prices a portfolio of options using a partial
differential equation now known as the Black-Scholes equation. Scalability in perfor-
mance is obtained using a chunked, fine-grained decomposition, and calculating mul-
tiple options in parallel. The original implementation of Blackscholes uses Threading
Building Blocks (TBB) and Pthreads to facilitate parallelism, with both using an array
of structs configuration. Beneath the requisite file IO and threading boilerplate, there are
two functions within the call graph of the parallel region: BlkSchlsEqEuroNoDiv, and
a “callee” function CNDF. The kernel is given 100 runs, each of which is launched by
an application of the TBB parallel_for template. This invokes multiple calls to a
user-defined worker class’s overloaded function operator. The ‘F’ version requires only
that we mark the function as elemental, and the kernel launch is then
prices = BlkSchlsEqEuroNoDiv(dat)

4.2 Swaptions

The Swaptions program prices a portfolio of interest-rate swap options by the Heath-
Jarrow-Morton framework using Monte-Carlo simulation. The original program con-
sists of around fifteen C++ source files, then converted to ‘F’.

Parallel decomposition on both TBB and Pthread implementations was, like Blacksc-
holes, static and course-grained, though distinguished by a significantly larger working
set. An array of structs configuration was again present in the C++ code, and the kernel
was again dominated by a single 16-parameter function, HJM_Swaption_Blocking,
applied in parallel to chunks from an one-dimensional iteration space.

The HJM_Swaption_Blocking function was ultimately a suitable target for elemental
status, however the element type of two of its arguments are pointers to 1D and 2D ar-
rays. An ‘F’ elemental function cannot accept arrays as a “scalar” element type, so
necessitating the definition of two array wrapper types. With the 1D pdYield array, this
amounts to the type shown in Figure 4.

1 type, public :: yieldT
2 real(kind=ki), dimension(m_iN) :: y
3 end type yieldT

Fig. 4: A scalar ‘F’ datatype wrapping an array

The C++0x code generated by E] from Figure 4 is shown in Figure 5. Notice that
the struct has a template parameter, used to specify the locality of the data accessed
via the ArrayTN member at line 18. That this is an ArrayTN, rather than an ArrayT, is
an automatic optimisation due to the m_iN from line 2 of Figure 4 being a compile-time
constant; the integer template argument 11 specifies the statically-allocated data size.

24 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

1 template <int Od>
2 struct yieldT {
3 inline yieldT () {};
4 inline yieldT (const ArrayTN<__compiler,float,1,11,Od> &&y)
5 : y(y) {};
6 inline friend ostream & operator << (ostream &o,
7 const yieldT<Od> &t) {
8 o << t.y; return o;
9 };

10 inline friend istream & operator >> (istream &i,
11 yieldT<Od> &t) {
12 i >> t.y; return i;
13 };
14 template <int Od2>
15 inline yieldT &operator= (const yieldT<Od2> &rhs) {
16 y = rhs.y; return *this;
17 };
18 ArrayTN<__compiler,float,1,11,Od> y;
19 };

Fig. 5: The C++ struct generated from Figure 4 by E]

4.3 Mandelbrot

Estimation of the Mandelbrot set requires iteration of the complex function zn+1 =
z2
n+c. Of the two Mandelbrot benchmarks we have developed, the first is more straight-

forward. An array of the same size as the 8-bit output image is initialised with positive
integer coordinate pairs within the appropriate range, leaving the elemental function
to create the complex value upon which it iterates. A second, blocked, version of the
program partitions the coordinate array into squares. A user defined type is used for the
squares, and is the scalar type upon which the requisite elemental function is defined.

4.4 The n-Body problem

From earlier work [8] we were aware that an O(n2) “all-pairs” n-body simulation on
CBE can exhibit good scaling at the expense of wall clock time, and so a tiled decom-
position of the problem, inspired by research at Nvidia [9], was developed.

The kernel of our n-body algorithm performs the O(n2) force calculation in paral-
lel while the remaining leapfrog-Verlet integration updates the positions and velocities,
and is run in serial by the host processor. This choice seems reasonable as having only
linear complexity, the percentage of runtime expended on the remaining integration
stage becomes insignificant with larger body counts. A square shaped tile of the pair-
wise body interactions, maximises the number of calculations that can be performed
per body. That is to say, a DMA transfer of 2p body positions and masses, will provide
p2 components of force for the integrator.

The E] compiler parallelises only the outermost of the generated loops. To fully ex-
ploit the two-dimensional decomposition already outlined, a “flattened”, one-dimensional,

25HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

array is used to feed the requisite driving elemental function. User-defined scalar
types, are once again required for the input and output elements. For input and output
respectively the two types pchunk2d and accel_chunk are shown in Figure 6.

1 type, public :: pchunk2d
2 type(vec4), pointer, dimension(:) :: ivec4, jvec4
3 end type pchunk2d
4

5 type, public :: accel_chunk
6 type(vec3), dimension(CHUNK_SIZE) :: avec3
7 end type accel_chunk

Fig. 6: The n-body kernel input (pchunk2d) and output (accel_chunk) wrapper types

5 Experimental Evaluation

The following benchmark results were measured and averaged across five runs on a
PlayStation 3 running Fedora Core 7. Single-precision was used throughout, due to the
CBE’s slow double-precision execution. In addition to the 4.1.1 versions of the GNU
C, C++, and Fortran compilers provided with the installed IBM Cell SDK v3.0, version
4.6 of GCC is also installed. Where a speedup metric is presented, the fastest available
PPU serial version is used, with selection based on source language; compiler; and the
often powerful GCC switch: -mcpu=cell. The Offload C++ compiler version is 2.0.2,
patched to use SPU GCC 4.6. All compilers use the -O3 switch throughout.

BlackScholes This benchmark exceeds the memory limitations of the SPU at low thread
counts. However, with 18 threads the E] version outperforms GCC after 4K options.
With 64 threads, 256K options become possible, and provide a final speedup of over
11; shown in Figure 7. The surprisingly horizontal E] curves indicate that the problem
is dominated by thread administration. The serial results also demonstrate that the ‘F’
version performs competitively with the independently constructed ‘C’ version.

Swaptions Though speedup values also increased, slightly, with input data size, Fig-
ure 8 shows only a maximum speedup of around 2.3x over GCC 4.6 with the “Large”
data set. Lower thread counts for Swaptions are possible, and the graph demonstrates
good scaling to 6 threads. While greater thread counts, up to 128, are shown as redun-
dant in this configuration, it is encouraging to see that increasing thread administration
overheads have no noticeable effect, as no fall in speedup is observed.

Mandelbrot As anticipated, the blocked version of Mandelbrot, using 64x64 squares,
outperformed the naı̈ve version, presumably due to reduced DMA traffic. The blocked
version was also able to create a 2048x2048 image, and so achieve a speedup of al-
most 12x. Mandelbrot reaches a similar maximum speedup as Blackscholes; though a
distinctive fall-off is also observed. See Figure 9.

26 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

0.1

1

10

100

1K 4K 16K 64K 256K

Ti
m

e
(s

ec
s.

)

Number of Options (1000s)

Serial ‘C’ using GCC 4.6
Serial ‘F’ using GFortran 4.1.1

E] using 18 threads
E] using 64 threads

Fig. 7: Wallclock Blackscholes Kernel Tim-
ings for 100 iterations

0.1

1

10

1 10 100

Sp
ee

du
p

Number of Threads

Fig. 8: E] Speedup with Swaptions and
“Large” data set

The n-Body Problem Using 16x16 square tiles speedups increase gradually with data
sizes, reaching a 3.4x speedup against the fastest ‘C’ configuration on PPU; which uses
the older GCC 4.1.1 and the -mcpu=cell switch. In comparison to times obtained from
the PPU only, using GFortran 4.1.1 -mcpu=cell, and the same ‘F’ code, a speedup of
4.9x is obtained with 16384 bodies; shown in Figure 10.

5

6

7

8

9

10

11

12

5122 10242 20482

Sp
ee

du
p

Image Area

Mandelbrot using Blocked Decomposition
Non-blocked Mandelbrot

Fig. 9: Relative Mandelbrot Speedups against
Image Area

1

2

3

4

5

1024 2048 4096 8192 16384

Sp
ee

du
p

Number of Bodies

Relative to Fastest Serial in C
Relative to Identical Fortran in Serial

Fig. 10: Relative n-Body Speedups against
Input Data Size

6 Conclusion

We have demonstrated the auto-parallelising array compiler, E], targeting the hetero-
geneous architecture of the Cell Broadband Engine. Encouraging performance results
from four benchmarks are presented, and show speedups ranging from 2-11x over serial
versions running on PPU only. The language employed, ‘F’, is a simple, useable, and

27HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

standard dialect of modern Fortran, and is therefore well positioned for expected users
from the scientific programming community. In addition, ‘F’ codes developed for use
by E] are also valid Fortran; and shown to perform competitively in serial.

E] would benefit from the inclusion of streaming, rather than the current static par-
titioning of the iteration-space. This should allow access to a larger range of problem
sizes, and hopefully more routine access to high performance. Also, as array expres-
sions are free of side-effects, we can expose a finer level of granularity than currently
offered by E], which presently partitions only the outermost rank. This should help load
balancing on problems with small outer rank extents.

The techniques described here for the CBE could also be applied to new multicore
processors such as Intel’s Single-Chip Cloud Computer (SCC), or Knight’s Corner. In
the case of the SCC it would be possible to produce an E] compiler provided that a ver-
sion of the Offload system were ported to the SCC. This is likely to result in somewhat
lower performance than the Cell because of 3 factors: a) processors on the SCC can not
initiate reads from host memory, b) inter-process communication on the SCC relies on
a software library, RCCE, rather than the CBE’s DMA hardware; c) the performance
of the inidividual SCC processors is slower than the host Xeon, whereas the Cell SPUs
are capable of higher throughput than the host PPC. For shared memory machines like
Knight’s Corner, we anticipate implementing E] by compiling to C++ with OpenMP
pragmas. Some prototype work has already been done using this approach.

References

1. J. Sipelstein and G. E. Blelloch, “Collection-Oriented Languages,” Proceedings of the IEEE,
vol. 79, pp. 504–523, 1991.

2. J. Guo, J. Thiyagalingam, and S.-B. Scholz, “Breaking the GPU programming barrier with
the auto-parallelising SAC compiler,” in Proceedings of the sixth workshop on Declarative
aspects of multicore programming. ACM Press, 2011, pp. 15–24.

3. M. Weiland, “Chapel, Fortress and X10: novel languages for HPC,” EPCC, The University of
Edinburgh, Tech. Rep. HPCxTR0706, October 2007.

4. D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose uses,” in Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems. ACM Press, 2006, pp. 325–335.

5. G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and B. Lippmeier, “Regular,
shape-polymorphic, parallel arrays in Haskell,” in Proceedings of the 15th ACM SIGPLAN
international conference on Functional programming. ACM Press, 2010, pp. 261–272.

6. P. Cooper, U. Dolinsky, A. F. Donaldson, A. Richards, C. Riley, and G. Russell, “Offload -
Automating Code Migration to Heterogeneous Multicore Systems,” in Proceedings of the 5th
International Conference on High Performance and Embedded Architectures and Compilers,
vol. 5952. Springer, 2010, pp. 337–352.

7. C. E. Rasmussen, M. J. Sottile, S. S. Shende, and A. D. Malony, “Bridging the language gap
in scientific computing: the Chasm approach,” Concurrency and Computation: Practice and
Experience, vol. 18, pp. 151–162, 2006.

8. A. F. Donaldson, P. Keir, and A. Lokhmotov, “Compile-time and Run-time Issues in an Auto-
parallelisation System for the Cell BE Processor,” in Proceedings of the 2nd EuroPar Work-
shop on Highly Parallel Processing on a Chip, vol. 5415. Springer, 2008, pp. 163–173.

9. M. H. Lars Nyland and J. Prins, “Fast N-Body Simulation with CUDA,” in GPU Gems 3,
H. Nguyen, Ed. Addison-Wesley Professional, 2007, pp. 677–694.

28 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

Generating GPU Code from a High-level Representation
for Image Processing Kernels

Richard Membarth1?, Anton Lokhmotov2, and Jürgen Teich1

1 Hardware/Software Co-Design, Department of Computer Science,
University of Erlangen-Nuremberg, Germany.

{richard.membarth,teich}@cs.fau.de
2 Media Processing Division, ARM,

Cambridge, United Kingdom.
anton.lokhmotov@arm.com

Abstract. We present a framework for representing image processing kernels
based on decoupled access/execute metadata, which allow the programmer to
specify both execution constraints and memory access pattern of a kernel. The
framework performs source-to-source translation of kernels expressed in high-
level framework-specific C++ classes into low-level CUDA or OpenCL code
with effective device-dependent optimizations such as global memory padding
for memory coalescing and optimal memory bandwidth utilization. We evaluate
the framework on several image filters, comparing generated code against highly-
optimized CPU and GPU versions in the popular OpenCV library.

1 Introduction
Computer systems are increasingly heterogeneous, as many important computational
tasks, such as multimedia processing, can be accelerated by special-purpose processors
that outperform general-purpose processors by 1–2 orders of magnitude, importantly, in
terms of energy efficiency as well as in terms of execution speed.

Until recently, every accelerator vendor provided their own application programming
interface (API), typically based on the C language. For example, NVIDIA’s API called
CUDA C [6] targets systems accelerated with Graphics Processing Units (GPUs). In
CUDA, the programmer dispatches compute-intensive data-parallel functions (kernels)
to the GPU, and manages the interaction between the CPU and the GPU via API calls.
Ryoo et al. [7] highlight the complexity of CUDA programming, in particular, the
need for exploring thoroughly the space of possible implementations and configuration
options. OpenCL [8], a new industry-backed standard API that inherits many traits
from CUDA, aims to provide software portability across heterogeneous systems: correct
OpenCL programs will run on any standard-compliant implementation. OpenCL per
se, however, does not address the problem of performance portability; that is, OpenCL
code optimized for one accelerator device may perform dismally on another, since
performance may significantly depend on low-level details, such as data layout and
iteration space mapping [4].

? This work was partly done during the author’s internship at ARM, which was sponsored by
the European Network of Excellence on High Performance and Embedded Architectures and
Compilation (HiPEAC).

29HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

Low-level programming increases the cost of software development and maintenance:
whilst low-level languages can be robustly compiled into efficient machine code, they
effectively lack support for creating portable and composable software.

High-level languages with domain-specific features are more attractive to domain
experts, who do not necessarily wish to become target system experts. To compete with
low-level languages for programming accelerated systems, however, domain-specific
languages should have an acceptable performance penalty.

We present a framework for image processing that allows programmers to concentrate
on developing algorithms and applications, rather than on mapping them to the target
hardware. While previous work shows that running the same kernels (e. g., written in
OpenCL) on different hardware (from AMD and NVIDIA) can have significant impact
on the performance [3], this framework serves to protect investments in software in the
face of the ever changing landscape of computer systems.

The framework is implemented as a library of C++ classes (§2.1) and a Clang-
based compiler producing host and device code in CUDA C and OpenCL (§2.2). Our
framework is most similar in spirit to Cornwall et al.’s work on indexed metadata for
visual effects [2] but introduces additional device-specific optimizations such as global
memory padding for memory coalescing and optimal bandwidth utilization. We evaluate
the framework by comparing generated code against highly-optimized CPU and GPU
versions in the popular OpenCV library (§3).

2 Image Processing Framework
Our framework provides a library of C++ classes for representing image processing
kernels (§2.1) and a source-to-source compiler for translating library constructs into
host and device code in CUDA or OpenCL (§2.2). The library is based on the concept
of decoupled access/execute metadata, which capture both execution constraints and
memory access patterns of a kernel [4]. The compiler is built using Clang [1], an open
source frontend for C-family languages.

2.1 Library

The library consists of built-in C++ classes that describe the following three basic
components required to express image processing on an abstract level:

– Image: Describes data storage for the image pixels. Each pixel can be stored as
an integer number, a floating point number, or in another format such as RGB,
depending on instantiation of this templated class. The data layout is handled
internally using multi-dimensional arrays.

– Iteration Space: Describes a rectangular region of interest in the output image, for
example the complete image. Each pixel in this region is a point in the iteration
space.

– Kernel: Describes an algorithm to be applied to each pixel in the region of interest.

These components are an instance of decoupled access/execute metadata [4]: the Iteration
Space specification provides ordering and partitioning constraints (execute metadata); the
Kernel specification provides a pattern of accesses to uniform memory (access metadata).
Currently, the access/execute metadata is mostly implicit: we assume that the iteration
space is parallel in all dimensions and has a 1:1 mapping to work-items (threads), and
that the memory access pattern is obvious from the kernel code.

30 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

Example We illustrate our image processing framework using a grayscale vertical mean
image filter, for which the output pixel with coordinates (x,y) is the average of D input
column pixels:

Ox,y =
1
D

D−1

∑
k=0

Ix,y+k, where 0 ≤ x <W,0 ≤ y < H −D. (1)

– I is an input image of W ×H pixels;
– O is an output image of W ×H pixels;
– D is the diameter of the filter, that is, the number of input pixels over which the

mean is computed (typically, D � H).

To express this filter, the framework user derives a class from the built-in Kernel class
and implements the virtual kernel function, as shown in Listing 1. The kernel function
(line 10) takes an ElementIterator argument that represents the output pixel for which the
algorithm is run. To access the pixels of an image, the parenthesis operator () is used,
taking the ElementIterator argument as a mandatory parameter, and the column (dx)
and row (dy) offsets as optional parameters. The user instantiates the class with input
and output images, an iteration space, and other parameters that are member variables of
the class.

1 class VerticalMeanFilter : public Kernel {
2 private:
3 Image<float> &Input, &Output;
4 int d;
5
6 public:
7 VerticalMeanFilter(IterationSpace &IS, Image<float> &Input,

Image<float> &Output, int d) :
8 Kernel(IS), Input(Input), Output(Output), d(d) {}
9

10 void kernel(IterationSpace::ElementIterator EI) {
11 float sum = 0.0f;
12
13 for (int k=0; k<d; ++k) {
14 sum += Input(EI, 0, k);
15 }
16
17 Output(EI) = sum/(float)d;
18 }
19 };

Listing 1: The vertical mean filter expressed in our framework.

In Listing 2, the input and output Image objects IN and OUT are defined as two-
dimensional W ×H grayscale images, having pixels represented as floating-point num-
bers (lines 8–9). The Image object IN is initialized with the host_in pointer to a plain
C array with raw image data, which invokes the = operator of the Image class (line 12).
The region of interest VIS contains all image columns but excludes the last d rows to
simplify border handling in this example (line 15). The kernel is initialized with the

31HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

iteration space object, image objects and kernel diameter d (line 18), and executed by
a call to the execute() method (line 21). To retrieve the output image, the host_out
pointer to a plain C data array is assigned the Image object OUT, which invokes the
getData() operator (line 24).

1 const int width = 5120, height = 3200, d = 40;
2
3 // pointers to raw image data
4 float *host_in = ...;
5 float *host_out = ...;
6
7 // input and output images
8 Image<float> IN(width, height);
9 Image<float> OUT(width, height);

10
11 // initialize input image
12 IN = host_in; // operator=
13
14 // define region of interest
15 IterationSpace VIS(width, height-d);
16
17 // define kernel
18 VerticalMeanFilter VMF(VIS, IN, OUT, d);
19
20 // execute kernel
21 VMF.execute();
22
23 // retrieve output image
24 host_out = OUT.getData();

Listing 2: Example code that initializes and executes vertical mean filtering.

2.2 Compiler

This section describes the design of our source-to-source compiler and the single steps
taken to create CUDA C and OpenCL code from a high-level description of image
objects, iteration space objects and kernel objects.

Our source-to-source compiler is based on the latest Clang/LLVM compiler frame-
work. The Clang frontend for C/C++ is used to parse the input files and to generate an
AST representation of the source code. Our backend uses this AST representation to
generate host and device code in CUDA or OpenCL.

Kernel Code The compiler creates the kernel code AST in multiple steps.
First, the kernel declaration is created. The kernel parameters are identified from

the Kernel class constructor. Each variable, reference, or pointer has to be initialized
in the constructor of the Kernel class and a corresponding kernel parameter is added to
the declaration. In doing so, references to image objects are replaced by global memory
pointers to the pixel type. The existing kernel method argument—the ElementIterator—
is removed. Some additional parameters such as the image width and height are added
for index calculations and for future uses like border handling.

32 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

Second, the kernel body is created from the kernel method of the class. To get an
AST for the kernel body, the original AST is copied with certain AST nodes replaced.
References to Image objects are replaced with references to corresponding arrays. Instead
of using the ElementIterator to calculate the image index, the compiler adds statements
at the beginning of the kernel that calculate the pixel location from the thread index and
block index in CUDA C or the global indices in OpenCL. Similarly, each class member
expression – access to a member variable of the kernel class – is translated to a reference
to the corresponding kernel function parameter. After the translation, we get an AST that
can be used for further transformations.

After transformations, the AST is pretty printed and stored to a file. During pretty
printing, CUDA C and OpenCL C specific function and variable qualifiers are emitted.
For example, the __global__ qualifier in CUDA C and the __kernel qualifier in
OpenCL are emitted for entry functions.

Host Code Unlike for device code, we create no AST for host code. Rather, we use
Clang’s Rewriter functionality to change the textual representation of AST nodes, whilst
leaving the nodes intact.

To invoke previously generated device kernels, the framework code gets translated
into corresponding CUDA or OpenCL API calls as follows:

– Image declarations (line 8 and 9): Get translated into device memory allocation
using cudaMalloc or clCreateBuffer.

– Memory assignments (line 12): Get translated into memory transfers using cuda-
Memcpy or clEnqueueWriteBuffer.

– IterationSpace declaration (line 15): Defines the kernel execution configuration.
– Kernel declaration (line 18): Gets translated into loading the kernel source. For

CUDA C, this step is not required. For OpenCL, the kernel source is loaded from a
file, an OpenCL program for the loaded source is created, and the kernel is compiled.

– Kernel execution (line 21): Gets translated into launching the kernel, using the
execution configuration obtained from from the corresponding IterationSpace
declaration.

– Memory assignments (line 24): Get translated into memory transfers using cuda-
Memcpy or clEnqueueReadBuffer.
In addition to the above changes, further changes are required to get proper CUDA C

or OpenCL code. First of all, include directives for the CUDA C or OpenCL headers
are added. In addition, the CUDA C kernel sources are included at the beginning of the
file. To initialize the runtime, we add the corresponding functionality at the beginning
of the main function. In particular, for OpenCL this initialization is an important part
since it sets up the platform and device to be used for execution. After these changes, the
generated host and device files can be compiled.

Padding Support To avoid conflicts in accessing image pixels in global memory, our
compiler adds padding to allocated host and device memory. For host code, special
memory allocation functions are required to allocate memory so that each image row
is padded to get the desired data alignment. For device code, array index calculations
are changed to take padding into account. The compiler handles padding automatically,
given the desired alignment amount for the target device.

33HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

3 Results
3.1 Vertical Mean Filtering
A naïve parallel algorithm can run N =W × (H −D) threads, each producing a single
output element, which requires Θ(ND) reads and arithmetic operations. A good parallel
algorithm, however, must be efficient and scalable [5]. Therefore, we use an algorithm
that strips the computation, where up to T outputs in the same strip are computed serially
in two phases [4]: The first phase computes Ox,y0 according to (1), while the second
phase computes Ox,y for y ≥ y0+1 as Ox,y−1 +

(
Ix,y+D−1 − Ix,y−1

)
/D.

This algorithm performs Θ(N +ND/T) reads and arithmetic operations, consider-
ably reducing memory bandwidth and compute requirements for T � D, whilst allowing
up to dN/Te threads to run in parallel. Thus, this algorithm trades off work efficiency
against parallelism.

Listing 3 shows the implementation of this algorithm in our framework. Since our
framework supports currently only a 1:1 mapping of output pixels to threads, we use the
offset specification to calculate the pixel location for a 1:N mapping. We will provide
special syntax for a 1:N mapping in the future.

1 class VerticalMeanFilterRollingSum : public Kernel {
2 ...
3 void kernel(IterationSpace::ElementIterator EI) {
4 float sum = 0.0f;
5 int t0 = EI.getY();
6
7 // first phase: convolution
8 for (int k=0; k<d; ++k) {
9 sum += Input(EI, 0, k + (t0*NT-t0));

10 }
11 Output(EI, 0, (t0*NT-t0)) = sum/(float)d;
12
13 // second phase: rolling sum
14 for (int dt=1; dt<min(NT, height-d-(t0*NT)); ++dt) {
15 int t = (t0*NT-t0) + dt;
16 sum -= Input(EI, 0, t-1);
17 sum += Input(EI, 0, t-1+d);
18 Output(EI, 0, t) = sum/(float)d;
19 }
20 }
21 };

Listing 3: Kernel description of the vertical mean filter using a rolling sum.

We compare the performance of code generated by our framework against that of
hand-written code reported in [4].3 We run the vertical mean filter with different values
for T , that is, changing the number of pixels calculated by one thread. Figure 1 shows
the execution times of the vertical mean filter applied to an image of 5120×3200 pixels.
Processing more than one pixel increases the throughput from 0.53 Gpixel/s for T = 1,
up to the peak throughput of 6.6 Gpixel/s at several points (e. g., for T = 528).

3 We use the same configuration: thread block dimensions 128× 1, kernel diameter D = 40.
However, we use Quadro FX 5800, rather than GTX 280.

34 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

7

Output pixels per thread (T)

G
pi

xe
l/s

CUDA(HPPC09)
CUDA(generated)

OpenCL(generated)

Fig. 1: Throughput of the generated CUDA C/OpenCL sources in Gpixel/s for the vertical mean
filter on an image of 5120×3200 pixels in comparison to the hand-written CUDA code from [4].

The results show that the generated CUDA code achieves the same performance as
the optimized hand-written CUDA code.4 However, our high-level implementation is
concise and has only a fraction of the complexity of the low-level implementation of [4].
For instance, in terms of lines of code, the low-level implementation consists of about
500 lines of host and device code, whilst the high-level implementation consists of fewer
than 50 lines of code.

In the previous example, the image width of 5120 is a multiple of the SIMD width of
the underlying hardware (which is 32). This results in optimal memory transfers utilizing
memory bandwidth best. However, if the image width is not a multiple of the SIMD width
and not properly aligned, bandwidth throughput drops. For instance, increasing image
width by one pixel using an image of 5121×3200 pixels, gives us a peak throughput of
3.9 Gpixel/s which is roughly half of the throughput we got before. Using our framework
allows to pad images and changes the kernel source to take padding into account. The
amount of padding required for best performance depends on the underlying hardware.
For the used graphics hardware, best memory throughput can be achieved when the
image is padded to a multiple of the memory transaction size that can be handled by the
GPU in one transaction. This size can be 32-, 64-, and 128-byte segments of aligned
memory. Doing so improves the peak throughput as shown in Fig. 2 for an image of
5121×3200 pixels with image lines padded to the different memory transaction sizes.
The peak throughput of 6.4 Gpixel/s is achieved for aligning to 256-bytes, which is
double the maximum transaction size.

3.2 OpenCV Library

One widely used library for image processing is the Open Source Computer Vision
(OpenCV) library [9]. Image processing algorithms are optimized in OpenCV to make

4 The generated OpenCL code is slightly slower than the generated CUDA code, which we
attribute to the relative immaturity of the OpenCL implementation.

35HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

7

Output pixels per thread (T)

G
pi

xe
l/s

no padding
32 bytes aligned
64 bytes aligned

128 bytes aligned
256 bytes aligned
512 bytes aligned

(a) CUDA.

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

7

Output pixels per thread (T)

G
pi

xe
l/s

no padding
32 bytes aligned
64 bytes aligned
128 bytes aligned
256 bytes aligned
512 bytes aligned

(b) OpenCL.
Fig. 2: Throughput of the generated CUDA C sources in Gpixel/s for the vertical mean filter on an
image of 5121×3200 pixels with padding. The generated CUDA C and OpenCL source pads the
image width to a multiple of 32-, 64-, 128-, 256-, or 512-bytes.

use of the SIMD units and multiple cores of modern processors. Beginning with version
2.2, selected algorithms (mostly convolution kernels) can also be executed on the GPU.
Instead of implementing these kernels from scratch, OpenCV relies on the NVIDIA
Performance Primitives (NPP) library. To compare the performance of code generated by
our framework to such state-of-the-art approaches, we used the framework to implement
all six convolution kernels from OpenCV that utilize NVIDIA GPUs. These kernels
mostly support the 8-bit unsigned char type and the 3×3 and 5×5 window dimensions,
which we use for evaluation. (For example, there is no 5×5 GPU implementation of the
laplace convolution filter.) However, we can also generate code for other configurations
with only minor modifications to the high-level description as for the 5× 5 laplace
convolution filter.

Figure 3 shows the execution times of the OpenCV implementations on a CPU
(Core 2 Quad @3.00 GHz) and three GPUs: NVIDIA’s Quadro FX 5800 and Tesla
C2050 and AMD’s Radeon HD 5870. For the NVIDIA cards, the OpenCV implemen-
tation and CUDA/OpenCL code generated by our framework are compared, while on
the AMD card only generated OpenCL code is available. Generated code is as fast
as OpenCV code (actually, faster in most cases). With larger filter window size also
execution times increase. Again, the generated CUDA code is slightly faster than the
OpenCL code. The GPU implementation of OpenCV relies on NPP, resulting in longer
execution times. While our DSL approach generates GPU code from a high-level rep-
resentation of the desired convolution kernel, the OpenCV library and NPP5 provide
more general implementations that are not optimized for the selected convolution kernel
properties like the kernel size. The performance of the vectorized OpenCV code varies
considerably. For some convolution kernels, their CPU implementation is almost as fast
as our generated GPU code (e. g., for dilate and erode); for most kernels, however, their
CPU implementation is an order of magnitude slower than generated GPU code (e. g.,
for blur, laplace, and gaussian). One big advantage of our framework is that we can

5 The NPP source code is not available for detailed analysis.

36 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

0

1

2

blur dilate erode gaussian laplace sobel

5.0 2.4 2.8

tim
e

in
m

s
OpenCV(CPU) OpenCV(GPU/Quadro) CUDA(Quadro) OpenCL(Quadro)

OpenCV(GPU/Tesla) CUDA(Tesla) OpenCL(Tesla) OpenCL(Radeon)

(a) 3×3 window size.

0

1

2

blur dilate erode gaussian laplace sobel

5.0 12.4 4.2

tim
e

in
m

s

(b) 5×5 window size.
Fig. 3: Comparison of the execution time of convolution kernels from OpenCV and our framework
for an image of 1024×1024 pixels on a Quadro FX 5800, Tesla C2050, and Radeon HD 5870.
The results for a window size of 3×3 is shown in (a) and for a window size of 5×5 in (b).

generate code for any pixel data type, while the OpenCV implementations are mostly
restricted to unsigned char.

4 Future Work
The framework presented in this paper allows abstract description of algorithms for
image processing which is translated and transformed into device-dependent, optimized
source codes. While this works for simple kernels and convolution kernels, we are
planning to extend our current framework to provide better support for a broader range
of image processing specific features and applications.

The current version of our framework does not support border handling for image
processing. The user has to specify border handling in the high-level algorithm de-
scription. Instead, our compiler can generate border handling support for images, like
clamping to the last valid value, repeating the values beyond the border, mirroring the
values at the border, or using a constant value.

Currently, the access/execute metadata is mostly implicit: we assume that the iteration
space is parallel in all dimensions and has a 1:1 mapping to work-items (threads), and
that the memory access pattern is obvious from the kernel code. In the vertical mean filter
example, we use the offset specification to realize a 1:N mapping. More elegant, native
support for such mappings allow not only more concise code, but also optimizations on
the generated code.

The configuration for a kernel can be specified by a user or determined by the
framework. Currently, our framework falls back to a default configuration of 128×1,
which is generally suboptimal. However, the compiler can detect a suitable configuration
for a kernel and use this setting.

37HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

Often, to reduce overheads for dispatching kernels and communicating intermediate
data between them, the programmers manually bundle several kernels (related by data
flow, not necessarily by the application logic!) into a single kernel. Since we have AST
information for kernel functions, we can perform kernel fusion and other optimizations
automatically if they are allowed by iteration space specifications and data dependences.

5 Conclusion
In this paper, we introduced a performance-portable framework for image processing.
Our framework provides C++ classes that allow to describe image processing kernels
based on decoupled access/execute metadata, which allows programmers to concentrate
on developing algorithms and applications, rather than on mapping them to the target
hardware.

The framework performs source-to-source translation of kernels expressed in high-
level framework-specific C++ classes into low-level CUDA C and OpenCL code with
effective device-dependent optimizations such as global memory padding for memory
coalescing and optimal memory bandwidth utilization. Our source-to-source compiler is
based on Clang and creates AST for kernel functions, which leaves room for future intra-
and inter-kernel optimizations.

Our experiments show that code generated from our abstract description is as fast
as hand-optimized and -tuned CUDA code for vertical mean filtering. While the perfor-
mance for images that lead to misaligned memory layouts decreases almost by 50 %,
our compiler pads the memory layout so that almost no performance penalty can be
observed. In terms of lines of code, our concise high-level description requires only one
tenth of the hand-written CUDA implementation. Supporting different backends, our
source-to-source compiler produces CUDA C and OpenCL code that is faster than the
OpenCV/NPP implementation for the available OpenCV convolution kernels that run on
the GPU.

References
1. Clang: Clang: A C Language Family Frontend for LLVM. http://clang.llvm.org (2007–2011)
2. Cornwall, J., Howes, L., Kelly, P., Parsonage, P., Nicoletti, B.: High-Performance SIMT Code

Generation in an Active Visual Effects Library. In: Proceedings of the 6th ACM Conference on
Computing Frontiers. pp. 175–184. ACM (2009)

3. Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., Dongarra, J.: From CUDA to OpenCL:
Towards a Performance-portable Solution for Multi-platform GPU Programming. Tech. rep.
(2010)

4. Howes, L., Lokhmotov, A., Donaldson, A., Kelly, P.: Towards Metaprogramming for Parallel
Systems on a Chip. In: Euro-Par 2009–Parallel Processing Workshops. pp. 36–45. Springer
(2010)

5. Lin, C., Snyder, L.: Principles of Parallel Programming. Addison-Wesley Publishing Company,
USA (2008)

6. NVIDIA: CUDA. http://www.nvidia.com/cuda (2006–2011)
7. Ryoo, S., Rodrigues, C., Stone, S., Stratton, J., Ueng, S., Baghsorkhi, S., Hwu, W.: Program

Optimization Carving for GPU Computing. Journal of Parallel and Distributed Computing
68(10), 1389–1401 (2008)

8. The Khronos Group: OpenCL. http://www.khronos.org/opencl (2008–2011)
9. Willow Garage: Open Source Computer Vision (OpenCV).

http://opencv.willowgarage.com/wiki (1999–2011)

38 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

A Greedy Heuristic Approximation Scheduling
Algorithm for 3D Multicore Processors*

Thomas Canhao Xu, Pasi Liljeberg, and Hannu Tenhunen

Turku Center for Computer Science, Joukahaisenkatu 3-5 B, 20520, Turku, Finland
Department of Information Technology, University of Turku, 20014, Turku, Finland

{canxu, pasi.liljeberg, hannu.tenhunen}@utu.fi

Abstract. In this paper, we propose a greedy heuristic approximation
scheduling algorithm for future multicore processors. It is expected that
hundreds of cores will be integrated on a single chip, known as a Chip
Multiprocessor (CMP). To reduce on-chip communication delay, 3D in-
tegration with Through Silicon Vias (TSVs) is introduced to replace the
2D counterpart. Multiple functional layers can be stacked in a 3D CMP.
However, operating system process scheduling, one of the most impor-
tant design issues for CMP systems, has not been well addressed for
such a system. We define a model for future 3D CMPs, based on which
a scheduling algorithm is proposed to reduce cache access latencies and
the delay of inter process communications (IPC). We explore different
scheduling possibilities and discuss the advantages and disadvantages of
our algorithm. We present benchmark results using a cycle accurate full
system simulator based on realistic workloads. Experiments show that
under two workloads, the execution times of our scheduling in two config-
urations (2 and 4 threads) are reduced by 15.58% and 8.13% respectively,
compared with the other schedulings. Our study provides a guideline for
designing scheduling algorithms for 3D multicore processors.

1 Introduction

The number of circuits integrated on a chip have been increasing continuously
which leads to an exponential rise in the complexity of their interaction. Tradi-
tional digital system design methods, e.g. bus-based System-on-Chip (SoC) will
encounter communication bottlenecks. To address these problems, Network-on-
Chip (NoC) was proposed as a promising communication platform solution for
future multicore systems [1]. Network communication methodologies are brought
into on-chip communication. Figure 1 shows a NoC with 4×4 mesh (16 nodes).
The underlying network is comprised of network links and routers (R), each of
which is connected to a processing element (PE) via a network interface (NI).
The basic architectural unit of a NoC is a tile/node (N) which consists of a
router, its attached NI and PE, and the corresponding links. Communication
among PEs is achieved via network packets. Intel 1 has demonstrated an 80 tile,

* This work is supported by Academy of Finland and Nokia Foundation.
1 Intel is a trademark or registered trademark of Intel or its subsidiaries. Other names
and brands may be claimed as the property of others.

39HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

2

100M transistor, 275mm2 2D NoC under 65nm technology [2]. Recently, an ex-
perimental microprocessor containing 48 cores (x86) on a chip has been created,
using 4×6 2D mesh topology with 2 cores per tile [2].

��� ��� ��� ���

�� �� ��	 ���

�� �� �
 ��

�	 �� �� ��

�
��

�

�

�

�

Fig. 1: An example of 4×4 NoC
using mesh topology.

Traditional 2D chip interconnection will
result long global wire lengths, causing a high
delay, high power consumption and low per-
formance [3]. Besides 2D chips have larger die
size in multiprocessor implementations. The
3D integration has the potential to increase
device density, providing shorter wire lengths
and faster on-chip communication compared
with the 2D integration. Traditional stacking
technologies such as System-in-Package (SiP)
and Package-on-Package (PoP) have been integrated into manufacturing tech-
nology. Recent researches have focused on TSV [4]. TSV is a viable solution in
building 3D chips by stacking IC layers together using vertical interconnects.
These interconnects are formed through the silicon die to enable communica-
tion among layers. Layers with different functionalities can be implemented in
a 3D chip. The manufacturing process of the TSV is complex and expensive
[4], therefore finding an optimal number and placement of TSVs is critical. It
is presented that, the balance between performance and manufacturing cost is
essential in designing a 3D chip [5].

With limited resources between layers, it is obvious that better or even opti-
mal efficiency can be achieved through appropriate scheduling of multi-threaded
tasks in large scale 3D multicore processors. The design of operating system
schedulers is one of the most important issues for CMPs. Several multiprocessor
scheduling policies such as round robin, co-scheduling and dynamic partition-
ing have been studied and compared in [6]. However, these policies are designed
mainly for the conventional shared bus based communication architecture. Many
heuristic-based scheduling methods have been proposed [7, 8]. These methods are
based on different assumptions, e.g. the prior knowledge of the tasks and exe-
cution time of each task in a program, presented as a directed acyclic graph.
Hypercube scheduling has been proposed for off-chip systems [9]. Hypercube
systems, usually based on Non-Uniform Memory Access (NUMA) or cache co-
herent NUMA architectures [10], are different from CMPs. Task scheduling for
2D NoC platforms is studied in [11] and [12]. The impact of limited resources
between layers is not considered in these papers.

In our paper, we propose and discuss a novel greedy heuristic approximation
scheduler for TSV constrained 3D multicore processors which aims to reduce
the average network latency between caches and processing cores. With the
decrease of the latencies, lower power consumption and higher performance can
be achieved. To confirm our theory, we model and analyze a 64-core, 2-layer
NoC with 8×8 meshes, present the performance of an application with different
allocation strategies using a full system simulator.

40 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

3

2 3D NoC with Through Silicon Via Constraints
A modern multi-core processor is composed of several parts, e.g. processor core,
shared last level cache, I/O and memory controller. Processor core and shared
cache consume over 80% of the die area [13]. The total area of Sun SPARC chip
is 396mm2 with 65nm fabrication technology. Each core has an area of 14mm2,
thus with 16 cores the total area of cores is 224mm2 (56.6%). Shared caches and
other components occupy 172mm2 (43.4%). As explained above, nearly half of
the die area is devoted to cores and the other half is devoted to shared caches
and other circuits. A natural way of applying 3D integration is to partition all
the processors to one layer and other components to the other layer.

2.1 Processors and Caches

There is a significant concern for thermal hot-spots brought by packing layers
vertically. It is expectable that since the processors consume overwhelming ma-
jority of power in a chip, stacking multiple processor layers would be unwise
for heat dissipation. According to [5], heat dissipation is a major problem by
stacking multiple processor layers even if processors are interlaced vertically.
Therefore, in consideration of heat dissipation of current CMP, the processor
layer should be on top of the chip.

C1 C5 C9 C15

C2 C6 C10 C11

C4 C5 C6 C7

C0 C1 C2 C3

P/C

NI

R

S
Node

N
W ED

U
P12 P13 P14 P15

P8 P9 P10 P11

P4 P5 P6 P7

P0 P1 P2 P3

Fig. 2: A 3D NoC with one pro-
cessor layer (upper) and one
cache layer (lower), layers are
fully connected by TSVs.

In our paper, based on the above analy-
sis, we use a 3D multicore processor model of
two layers. The top layer is an 8×8 mesh of 64
Sun SPARC cores. Each core, scaled to 32nm
technology, has an area of 3.4mm2. We simu-
late the characteristics of a 64MB, 64 banks,
64-bit line size, 4-way associative, 32nm cache
by CACTI [14]. Results show that the to-
tal area of cache banks is 204.33mm2. Each
cache bank, including data and tag, occupies
3.2mm2. The cache layer has an 8×8 mesh
of cache banks. Routers are quite small com-
pared with processors and caches, e.g. we calculate a 7-port 3D router to be only
0.096mm2 under 32nm. The total area of the processor is supposed to be below
300mm2. Figure 2 shows a model with two layers and 16 processors only.

2.2 Constraints of the Through Silicon Via

TSV is the most promising solution for building 3D chips. There are several types
of TSVs, e.g. data signal transmission, control signal transmission, power distri-
bution and thermal dissipation. In our paper, a pillar is defined as a bunch of
TSVs, including TSVs for data, control and power distribution. On the assump-
tion that the power supply voltage is 1V, a practical aspect ratio for TSVs is
between 10:1 to 5:1, in which signal TSVs are dominant ones [15]. As it is shown
in Figure 1, routers in the 2D NoC have five ports to connect to five directions,
namely, North, East, West, South and Local PE. For the vertical communication
between different layers, routers in a generic 3D NoC model have two more ports
and the corresponding virtual channels, buffers and crossbars to connect to the

41HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

4

Up and Down pillars (Figure 2). It is noteworthy that routers in our 3D NoC
require less than seven ports, e.g. router of P12 in Figure 2 has only four ports
(East, South, Local PE and Down).

56

48

40

32

57

49

41

33

58

50

42

34

59

51

43

35

60

52

44

36

61

53

45

37

62

54

46

38

63

55

47

39

24

16

8

0

25

17

9

1

26

18

10

2

27

19

11

3

28

20

12

4

29

21

13

5

30

22

14

6

31

23

15

7

Fig. 3: Gray nodes are
attached with a pillar,
number means node se-
quence.

It is obvious that the maximum performance can
be achieved by full layer-layer connection, e.g. all
routers are connected with up/down routers by pil-
lars. However, as the number of tiles grow, it might
not be practical to assume that each tile will be con-
nected with corresponding TSVs because of the manu-
facturing cost and chip area. Assuming that a flit in a
NoC is 128 bits, full layer-layer connection for an 8×8
NoC would require 128×8×8 = 8, 192 TSVs for par-
allel data signals. Other TSVs are required for power,
thermal and control. Several researches have shown
that [4, 16], TSV processing cost is the dominating
cost for a 3D wafer. It is cheaper to manufacture a
3D chip with a fewer pillars between layers, in this case, multiple nodes have
to share a pillar, high congestion could be created on a pillar, leading to com-
munication bottlenecks. In [5], the placement of pillars is studied, an optimal
placement of TSVs for an 8×8 mesh with 16 pillars is presented to minimize
traffic contention between layers (Figure 3). The overall performance and total
number of TSVs are 92% and 20% compared with full layer-layer connection
respectively, achieving a good balance between performance and manufacturing
cost.

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

Fig. 4: Gray nodes are
attached with a pillar,
number means average
hop counts to all cache
nodes.

Assuming X-Y-Z deterministic routing, Equation 1
shows the access time (latency) required for a core-
cache communication. The latency involves in-tile
links (Between NI and PE, LLink delay1), router
(LRouter delay), tile-tile links (LLink delay2), the num-
ber of hops required to reach the destination (nhop)
and the delay caused by TSV (LTSV delay). Since the
delays of link, router and TSV are fixed, hop count
is the most important metric in determining latency.
Figure 4 shows the average hop counts required for a
core accessing the shared cache nodes (AHPC). Ob-
viously, without proper schedule, the communication
overhead can be an obstacle. For example, nodes in
corners of the NoC have much higher AHPC than
nodes in the center. However, nodes directly connected with a pillar usually
have lower AHPC, sometimes even lower than inner nodes, e.g. the AHPC for
the node 38 is 5.75, lower than 6.75 of the node 37. Scheduling a task to the
node 38 is therefore preferable than 37, since the average delay to the shared
caches is lower.

LCoreCache = 2×LLink delay1 + (nhop + 1)×LRouter delay+

nhop×LLink delay2 + LTSV delay (1)

42 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

5

3 The Scheduling Algorithm

Our proposed scheduling algorithm takes into consideration of on-chip topology
and TSV placement, scheduling decisions are made based on these information.
The aim of the algorithm is to minimize average network latency of the system,
which is an important factor of system performance. We use a 3D NoC model
as described below.

Definition 1 A 3D NoC N(P (X,Y), C(X,Y)) consists of a layer of PE mesh
P (X,Y) (width X, length Y); and a layer of cache mesh C(X,Y). Layers are
connected by TSVs, only a quarter of nodes are connected (Figure 3).

Definition 2 Each node is denoted by a coordinate (x, y), where 0≤x≤X − 1
and 0≤y≤Y − 1.

Definition 3 The Manhattan Distance between two PEs ni(xi, yi) and nj(xj , yj)
is MD(ni,nj), MD(ni,nj)=|xi − xj | + |yi − yj |. Two nodes in the same layer
n1(x1, y1) and n2(x2, y2) are interconnected by a router and related link only if
they are adjacent, e.g. MD(n1,n2)=1.

Definition 4 A task T (n) with n threads requests the allocation of n cores.

Definition 5 nFree is a sorted list of all unallocated nodes in P , such that:
AHPCnFree1≤AHPCnFree2≤AHPCnFree3≤. . .AHPCnFreek.

Definition 6 R(T (n)) is a unallocated region in P with n cores for T (n).

To schedule a task efficiently, several metrics have to be considered, e.g. MD,
AHPC and so on. Scheduling a task with only 1 thread is relatively easy. In
this case, nodes 19, 29, 34 and 44 are considered in the first place, if they are
not utilized by other applications. The reason is that, these four nodes have the
lowest AHPC (5.25). However, as the requested number of threads grows, other
metrics have to be included. For example, a 2-thread task can be scheduled to
nodes 19 and 29. In this case, the Inter Process Communication (IPC) between
threads will suffer higher delay, since the messages have to go through nodes
20 and 21 according to XY routing. Another problem is fragmentation. Non-
contiguous allocation of cores in a dynamic system can cause degradation of
overall system performance. The 2-thread task can be scheduled to nodes 19
and 20 as well. Despite the fact that the AHPC is increased by 1 for node 20
compared with node 29, the adjacent allocation will alleviate IPC bottleneck, and
reduce fragmentation. We introduce Average Core-access Time (ACT), which is
defined as the number of nodes a message has to go through from a PE to other
PEs, ∀i, j ∈ P .

ACT =

∑
MD(ni, nj)

n
(2)

Such that: ∀i 6=j∈P and ni 6=nj

43HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

6

According to the equation, the ACT is 3 and 1 for nodes 19/29 and 19/20,
respectively. The delay for a core-core communication is shown in Equation 3.
Obviously, allocation 19/29 will incur much higher router delay and delay of
tile-tile links, comparing with allocation 19/20. It is noteworthy that a core-core
communication is a intra-layer communication, while a core-cache communica-
tion is a inter-layer communication.

LCoreCore = 2×LLink delay1 + (nhop+1)×LRouter delay + nhop×LLink delay2 (3)

(a) (b)

Fig. 5: Comparison of
two core allocation
schemes for 15 threads.

For a rectangular core allocation with A×B nodes,
according to [17], ACT can be calculated in an easier
way (Equation 4). For example, 4×4 and 2×8 are pos-
sible rectangular core allocations for a task with 16
threads. However, the value of ACT in 4×4 is smaller
than in 2×8 (2.5 and 3.125). In consideration of ACT,
an allocation shape have a lower ACT number if it is
closer to a square. Figure 5a and 5b show two core
allocation schemes for a task with 15 threads. In Fig-
ure 5b, the number of ACT is lower than in Figure 5a
(2.4177 and 2.4888 respectively).

ACT =
A+B

3
× (1− 1

A×B
) (4)

A scheduling algorithm should have a low computation complexity and should
deliver an optimal or near-optimal results. This is due to the scheduling has to
be solved online, and the time for solving the scheduling is a part of the overall
system response time. It is clear that we should not try to solve the schedul-
ing problem optimally, in case the computation complexity is too high. Given a
task with n executing threads, we define the problem as determining the near-
optimal core allocation for the task by selecting a region containing of n cores.
The pseudo code of the algorithm is shown in Algorithm 1.

Algorithm 1 The Greedy Heuristic Approximation Scheduling Algorithm

Input: A mesh based NoC N with TSV constrains, a task with n threads
Output: An allocated region R, containing n processors

1 Pop the first node as an initial node u0 from nFree, and push u0 to R

2 nMD := nFree sorted as MD(u0,nFree)

3 while nMD is not empty do
4 Pick a node un(xi, yi) from nMD with smaller AHPC

if several nodes with same AHPC then
5 pick a node un(xi, yi) with smaller ACT in the result region
6 end
7 if several nodes with same ACT then
8 pick a node un(xi, yi) which xi→X

2
and yi→Y

2

9 end
10 Pop un(xi, yi) from nMD, and push un to R

11 end

44 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

7

Line 1 sets the starting node of the algorithm, which is the one with the
lowest AHPC. A list nMD contains nodes sorted based on MD from the starting
node. The adjacent nodes are always considered first, in terms of AHPC. ACT
will be calculated, in case several nodes are with the same AHPC. If ACTs for
the allocation strategies are still the same, a node closer to the center of the
network will be selected (considering the statistical variance of the coordinates
of two nodes, Equation 5). This is due to the fact that, nodes in the center
usually have lower AHPC than nodes in the border, following steps may have
better results from this heuristic.

V ar(n) =
1

2
× [(xi −

X

2
)2 + (xj −

Y

2
)2] (5)

1
/
6
.
2
5

1
/
6
.
7
5

1
/6
.2
5

1
/ 6
. 2
5

(a)
1
/
6
.
2
5

2
/
5
.
2
5

1
/6
.2
5

1
/ 6
. 7
5

(b)

1
/
5
.
2
5

2
/
5
.
2
5

1
/6
.2
5

1
/ 6
. 2
5

(c)

1
/
6
.
2
5

2
/
5
.
7
5

1
/6
.2
5

1
/ 6
. 7
5

(d)

1
/
6
.
2
5

2
/
5
.
7
5

1
/6
.7
5

1
/ 7
. 7
5

(e)

1
/
5
.
7
5

2
/
6
.
7
5

2
/6
.2
5

2
/ 6
. 7
5

(f)

1
/
6
.
7
5

2
/
7
.
7
5

1
/6
.7
5

1
/ 6
. 7
5

(g)

1
/
7
.
7
5

2
/
6
.
7
5

1
/7
.7
5

2
/ 6
. 2
5

(h)

Fig. 6: The node selection steps for the algorithm.

We analyze an example of the algorithm. Figures 6a to 6h shows the steps
for node selection, starting from node 19. The number between two nodes ni

and nj means MD(ni,nj) and AHPC(nj). Note that we only show 4 child nodes
in these figures. The actual list nMD and nFree may contain more nodes. As
illustrated in Figure 6a, node 19 has 4 adjacent nodes and 3 of them are with
the same AHPC and ACT. However, in terms of distance to the center, node 27 is
selected (V ar(27) < V ar(20) < V ar(18)). The selection of the next node follows
the similar rule: same AHPC, same ACT, same variance. In this case we choose
node 28, having a smaller node number than node 35. Figure 6c demonstrates
that, node 29 is selected due to its lowest MD and AHPC. The next step involves
different ACTs: both node 21 and node 30 have the lowest AHPC, however the
ACTs for the two nodes are different (2 for node 30, and 1.8 for node 21). Node 20
and 12 are selected as the sixth and seventh node, respectively, due to their lowest
AHPC. The next node (11) is picked out, on account of its lower ACT than the
others. It is noteworthy that the aforementioned greedy heuristic approximation
algorithm generates near-optimal scheduling solution in most cases. However,
in our algorithm we put adjacent nodes as the first priority, the AHPC and
ACT are considered next. This strategy may generate non-optimal scheduling
for certain applications.

Take a 4-thread application for example. As shown in Figure 7, the algorithm
will choose nodes 19, 27, 28 and 29 for allocation.

45HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

8

34 35 36 37 38

26

18

10

2

27

19

11

3

28

20

12

4

29

21

13

5

30

22

14

61

9

17

25

33

42 43 44 45 4641

Fig. 7: The execution of
our algorithm, starting
from node 19 and se-
lected 16 nodes.

An IPC-intensive application may suffer from the
long distance communication of node 19 and 29. In
this case, node 20 is a better choice than 29 since
the ACT is lower. Despite our goal is to find a near-
optimal scheduling using MD, AHPC and ACT, the
weight of these metrics should be considered as well.
Different applications have their own profile: some
have higher demand of caches, some have higher vol-
ume of IPC. It is difficult to determine the behavior of
an application automatically beforehand, since there
are millions of them and the number is still increas-
ing. One feasible way is to add an interface between
the application and the OS, the application will tell
the OS its behavior. Another way is to add a low overhead profiling module
inside the OS. Program access patterns are traced dynamically, and possibly
migrated for better allocations.

4 Experimental Evaluation
4.1 Experiment Setup and Application

The simulation platform is based on a cycle-accurate NoC simulator which is
able to produce detailed evaluation results. The platform models the routers
and links accurately. The router includes a routing computation unit, a virtual
channel allocator, a switch allocator, a crossbar switch and 4 input buffers. De-
terministic XYZ routing algorithm has been selected to avoid deadlocks. We use
a 64-core multiprocessor which models a single-chip CMP for our experiments.
The 3D architecture in this paper has two layers; the first layer contains PEs
(each running at 2GHz with a private L1 cache, split I+D, each 16KB, 4-way
associative, 64-bit line, 3-cycle), the second layer consists of shared L2 caches
(unified 64 banks, each 1MB, 64-bit line, 6-cycle). The simulations are run on
Solaris 9 based on UltraSPARCIII+ instruction set in-order issue structure. The
simulated memory/cache architecture mimics Static Non-Uniform Cache Archi-
tecture. A two-level directory cache coherence protocol called MOESI, based on
MESI, has been implemented in our memory hierarchy in which each L2 bank
has its own directory. We use Simics [18] as our full system simulation platform.

We select FFT [19] and Radix [20] as experiment applications. The FFT al-
gorithm is a one-dimensional, radix-n, six-step algorithm optimized to minimize
IPC. The communication between processors only take place at the last stage
of the execution. However the network traffic and cache miss rate are very high.
The Radix sort algorithm assigns each processor a part of the sorting keys. For
every iteration in the algorithm, a permutation for the keys is required to cre-
ate a new array for the next iteration. This will incur all-to-all communication
among processes. Hence Radix represents an application with high IPC.

4.2 Result Analysis

We evaluate performance in terms of Average Network Latency (ANL), Execu-
tion Time (ET) and Cache Hit Latencies (CHL). ANL represents the average
number of cycles required for the transmission of all messages. The number of

46 HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

9

required cycles for each message is calculated from the injection of the message
header into the network at the source node, to the reception of the tail flit at the
destination node. Under the same configuration and workload, lower values are
favorable. We analyze two core allocations for a 2-thread task: T2-1 is from our
algorithm, which contains nodes 19 and 27. It has lowest ACT values, however
the AHPC is not optimal. T2-2 is an alternative allocation, which contains nodes
19 and 29. In this case, the AHPC is minimized. The T4-1, T4-2 and T4-3 are
three core allocations for a 4-thread task: T4-2 contains nodes 19, 20, 27 and
28, represents lowest ACT; T4-3 contains nodes 19, 29, 34 and 44, represents
lowest AHPC. Our algorithm selects T4-1, it has neither lowest ACT nor AHPC
numbers. However we believe it could be a good balance for the two metrics.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

FFT−ANL FFT−ET FFT−CHL Radix−ANL Radix−ET Radix−CHL

N
o

rm
a
li

z
e
d

 v
a
lu

e

T2−1

T2−2

T4−1

T4−2

T4−3

Fig. 8: Performance for FFT and Radix.

The results are illustrated
in Figure 8. The core allo-
cation of our scheduling al-
gorithm for 2 threads out-
performs the other in terms
of ANL. The improvement is
more notable in 2-thread FFT
and Radix, with 9.26% and
11.77% reduced latency, re-
spectively, compared with the
T2-2 allocation. This is pri-
marily due to the reduced
communication overhead between two PEs. We note that the reduced AHPC
in T2-2 failed to compensate the increasing ACT, in terms of ANL. The CHL in
T2-2 directly reflects the reduced AHPC. However, the average runtime of two
applications show that, our algorithm spends 15.58% shorter time than T2-2.
Considering a 4-thread task, we note that both ACT and AHPC play important
roles in overall performance. For example, despite the fact that T4-2 has low-
est ACT, the ANL for two applications is 3.76% higher than in our algorithm.
This leads to a higher ET as well. Allocation T4-3 performs better than our
scheduling in the 4-thread FFT. This is because of, in FFT, the communication
between threads only happens at the last stage of the execution. In this case, we
observe that the trade-off for ACT is worthy. However, applications that heavily
rely on IPC, e.g. Radix, will suffer from the T4-3. The ET of T4-3 is 24.24%
longer than in T4-1.

5 Conclusion and Future Work

In this paper, we studied the problem of process scheduling for future 3D mul-
ticore processors. A model for NoC-based 3D CMP was defined. We analyzed
process scheduling in terms of average hop counts for core-cache accesses (AHPC)
and average core access time (ACT) in 3D CMPs with constraints of inter-layer
connections. A greedy heuristic approximation algorithm was proposed to reduce
overall on-chip communication latencies and improve performance. Results have
shown that, with proper scheduling, performance improved significantly in most
cases. The impact of ACT and AHPC was discussed. The results of this paper

47HPPC 2011—the 5th Workshop on Highly Parallel Processing on a Chip, August 30, 2011, Bordeaux, France

10

give a guideline in designing schedulers for future 3D CMPs. Our next step is to
evaluate more applications with different access profiles and number of threads.
The weight of AHPC and ACT will be analyzed and compared, and the trade-off
for finding the best allocation strategy will be studied.

References

1. Dally, W.J., Towles, B.: Route packets, not wires: on-chip inteconnection networks.
In: Proceedings of the 38th conference on Design automation. (June 2001) 684–689

2. Intel: Intel research areas on microarchitecture (May 2011)
http://techresearch.intel.com/projecthome.aspx?ResearchAreaId=11.

3. Sylvester, D., Keutzer, K.: Getting to the bottom of deep submicron. In: ICCAD
98. (Nov 1998) 203–211

4. Velenis, D., Stucchi, M., Marinissen, E., Swinnen, B., Beyne, E.: Impact of 3d
design choices on manufacturing cost. In: IEEE 3DIC 2009. (Sept. 2009) 1–5

5. Xu, T.C., Liljeberg, P., Tenhunen, H.: Optimal number and placement of through
silicon vias in 3d network-on-chip. In: Proc. of the 14th DDECS, IEEE (2011)

6. Leutenegger, S.T., Vernon, M.K.: The performance of multiprogrammed multipro-
cessor scheduling algorithms. In: Proc. of the SIGMETRICS. (April 1990) 226–236

7. Chen, C., Lee, C., Hou, E.: Efficient scheduling algorithms for robot inverse dy-
namics computation on a multiprocessor system. Systems, Man and Cybernetics,
IEEE Transactions on 18(5) (1988) 729 –743

8. Hakem, M., Butelle, F.: Dynamic critical path scheduling parallel programs onto
multiprocessors. In: In Proceedings of 19th IEEE IPDPS. (2005) 203b

9. Sharma, D.D., Pradhan, D.K.: Processor allocation in hypercube multicomputers:
Fast and efficient strategies for cubic and noncubic allocation. IEEE Transactions
on parallel and distributed systems 6(10) (October 1995) 1108–1123

10. Laudon, J., Lenoski, D.: The sgi origin: a ccnuma highly scalable server. In: Proc. of
the 24th international symposium on Computer architecture. (June 1997) 241–251

11. Chen, Y.J., Yang, C.L., Chang, Y.S.: An architectural co-synthesis algorithm for
energy-aware network-on-chip design. J. Syst. Archit. 55(5-6) (2009) 299–309

12. Hu, J., Marculescu, R.: Energy-aware communication and task scheduling for
network-on-chip architectures under real-time constraints. In: DATE ’04, Wash-
ington, DC, USA, IEEE Computer Society (2004) 10234

13. IBM: Ibm power 7 processor. In: Hot chips 2009. (August 2009)
14. Shyamkumar, T., Naveen, M., Ho, A.J., P., J.N.: Cacti 5.1. Technical Report

HPL-2008-20, HP Labs
15. Association, S.I.: The international technology roadmap for semiconductors (itrs)

(2007) http://www.itrs.net/Links/2007ITRS/Home2007.htm.
16. Lau, J.H.: Tsv manufacturing yield and hidden costs for 3d ic integration. In:

Proc. of the 60th ECTC. (2010) 1031 –1042
17. Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a

network on chip architecture. In: DSD, 2003. (sep. 2003) 180 – 187
18. Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hog-

berg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation
platform. Computer 35(2) (February 2002) 50–58

19. Bailey, D.H.: Ffts in external or hierarchical memory. The Journal of Supercom-
puting 4 (1990) 23–35 10.1007/BF00162341.

20. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha,
M.: A comparison of sorting algorithms for the connection machine cm-2. In:
Proceedings of the 3rd SPAA, New York, NY, USA, ACM (1991) 3–16

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititin

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititinP

rni
C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititin

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititin

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititinP

rni
C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititin

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititin

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititin

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititin

P
rni

C

M

S

rni

S

rni

re

S

rni

S

S

P
rni

C

M

S S

re

rni

L

S

S S

P
rni

C

M

S S

S S S S

C

M re

re
C

M

rniC

M re
re

rniC

M L

rnire
C

M

P
rniD

M D

rniC

M re

rniC

M re

rni

rni

re

P

rni

L

D

D

D

D D

D

P Prosessoriydin
D DSP-ydin
L Dedikoitu logiikka
re Uudelleenkonfiguroitava logiikka

C Välimuisti
M Muisti
rni Resurssin verkkoliitäntä
S Kytkin/reititin

the 5th Workshop on
Highly Parallel Processing
on a Chip

