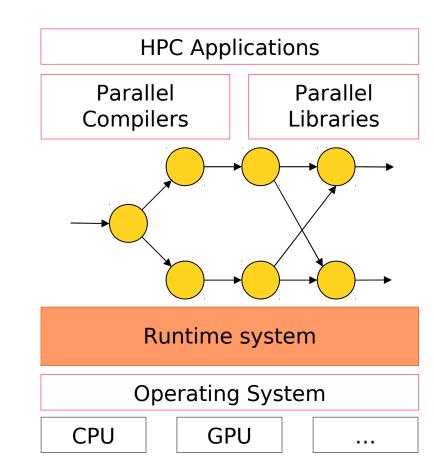


Running PEPPHER benchmarks on top of the StarPU runtime system

Cédric Augonnet Nicolas Collin Nathalie Furmento **Raymond Namyst** Samuel Thibault

INRIA Bordeaux, LaBRI, Université de Bordeaux

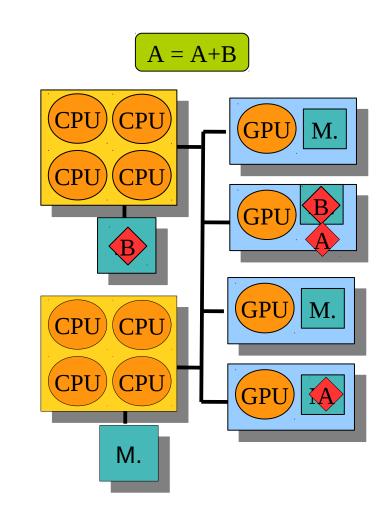

22th January 2011

NSTITUT NATIONAL DE RECHERCHE N INFORMATIQUE EN AUTOMATIQUE

Motivations

- "do dynamically what can't be done statically"
- Typical duties
 - Task scheduling
 - Memory management
- •Compilers and libraries generate (graphs of) parallel tasks
 - Additional information is welcome!

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

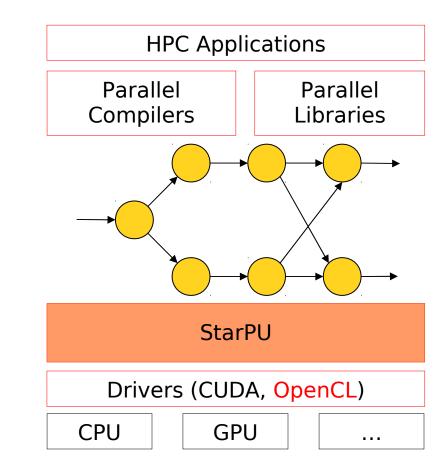


•Main Challenges

- Dynamically schedule tasks on all processing units
 - See a pool of heterogeneous cores
 - Scheduling \neq offloading
- Avoid unnecessary data transfers between accelerators
 - Need to keep track of data copies

INSTITUT NATIONAL

NRIA


centre de recherche

SUD-OUEST

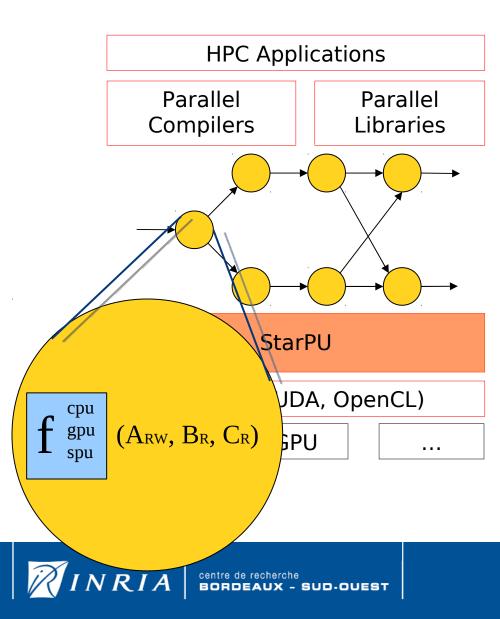
Memory Management

•StarPU provides a Virtual Shared Memory subsystem

- Weak Consistency
- Replication
- Single writer
- High level API
- Application registers data
- Input & ouput of tasks = reference to registered data

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Task scheduling


•Tasks =

- Data input & output
- Dependencies with other tasks
- Multiple implementations

 e.g. CUDA and/or CPU
- Scheduling hints

•StarPU provides an Open Scheduling platform

 Scheduling algorithm = plug-ins

Peppher Benchmarks

- Fast Fourier Transform (FFT)
 - Mixing FFTW and CUFFTW
- Dense Linear Algebra
 - Mixing PLASMA and MAGMA
- Computational Fluid Dynamic (CFD)
 - Porting Rodinia's CFD

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Dense Linear Algebra

Mixing PLASMA and MAGMA

(Collaboration with UTK)

RINRIA

Mixing PLASMA and MAGMA with StarPU Background

- Background
 - Cholesky/LU/QR: Solve dense linear systems
 - UTK : ~ leaders for Dense Linear Algebra for 20 years
 - Need performance portability
- State of the art libraries
 - PLASMA (Multicore CPUs)
 - MAGMA (Multiple GPUs)
- Our approach
 - Use PLASMA algorithms
 - PLASMA kernels on CPUs, MAGMA kernels on GPUs
 - Schedule tasks with StarPU

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Mixing PLASMA and MAGMA with StarPU Productivity

- Programmability
 - Cholesky: ~half a week, QR: ~2 days of works, LU : ~time to write new kernels
 - Quick algorithmic prototyping

// Sequential Tile Cholesky
FOR k = 0..TILES-1
DPOTRF(A[k][k])
FOR m = k+1..TILES-1
DTRSM(A[k][k], A[m][k])
FOR n = k+1..TILES-1
DSYRK(A[n][k], A[n][n])
FOR m = n+1..TILES-1
DGEMM(A[m][k], A[n][k], A[m][n])

// Hybrid Tile Cholesky

FOR k = 0..TILES-1

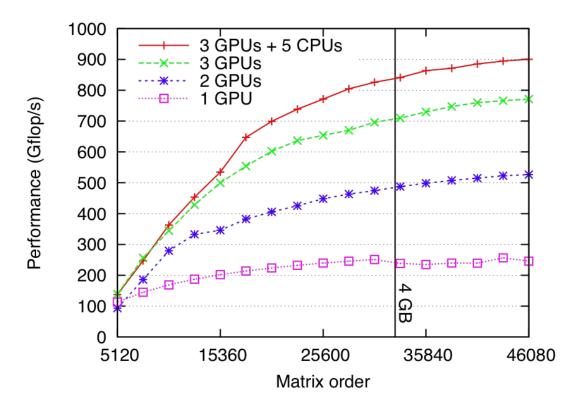
starpu_Insert_Task(DPOTRF, ...)

FOR m = k+1..TILES-1

starpu_Insert_Task(DTRSM, ...)

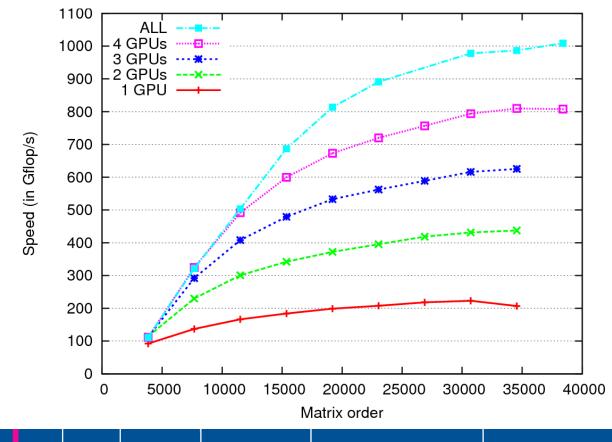
FOR n = k+1..TILES-1

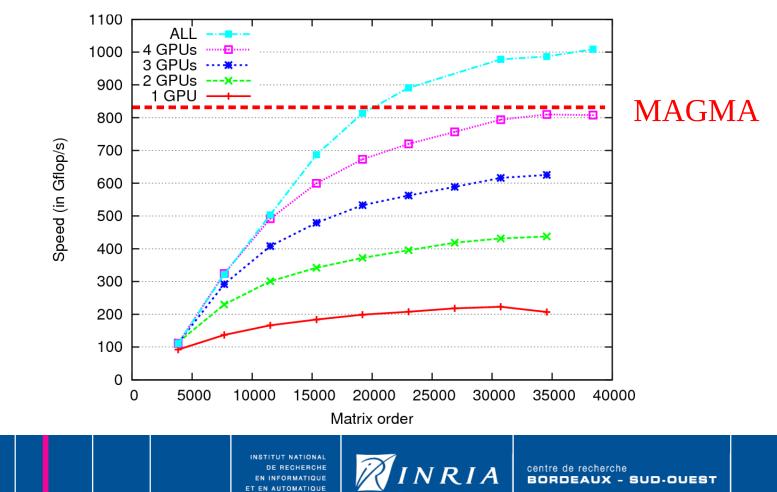
starpu_Insert_Task(DSYRK, ...)

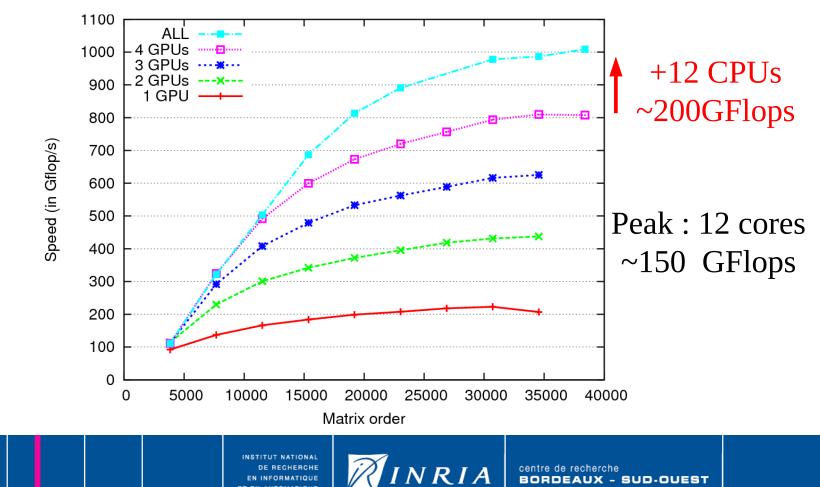

FOR m = n+1..TILES-1

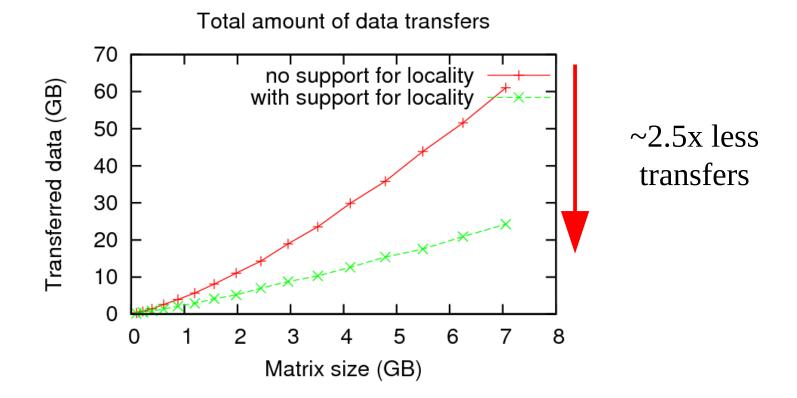
starpu_Insert_Task(DGEMM, ...)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE


- Cholesky decomposition
 - Hannibal: 8 CPU cores (Nehalem) + 3 GPUs (NV FX5800)


- QR decomposition
 - Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)




- QR decomposition
 - Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

- QR decomposition
 - Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Memory transfers during Cholesky decomposition

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Mixing PLASMA and MAGMA with StarPU Perspective

- Add more algorithms
 - 2-sided Factorizations (eg. Hessenberg)
 - Solvers
- Going to be released as a standalone library
 - Toward a complete LAPACK implementation for hybrid computing
 - Need autotuning facilities!
- Next step: integrate MPI
 - On-going work
 - Accelerated SCALAPACK ?

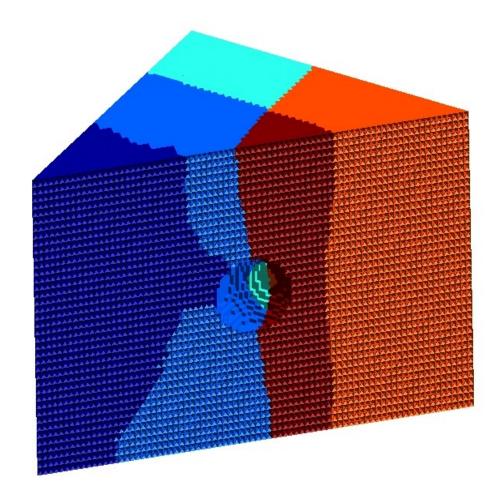
INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Rodinia's CFD Solver

Rodinia's CFD Solver Background

- The Rodinia benchmark suite
 - Cover the different « Berkeley Dwarves »
 - Available either in OpenMP or in CUDA
 - Neither multi-GPU nor hybrid systems
- Rodinia's CFD Solver benchmark
 - 3D Euler equations for incompressible flow
 - Unstructured Grid Finite Volumes
 - Memory intensive kernel
 - Pre-processing and Post-processing are not available
 - Need to create our own input meshes

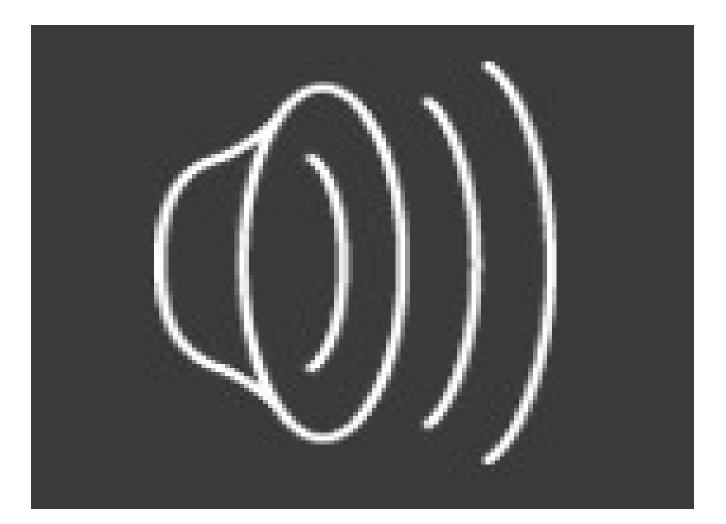
INSTITUT NATIONA DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU



Rodinia's CFD Solver

Methodology

Pre-processing


- Generated a mesh of the air around a sphere
- Very simple yet !
- Parallelizing the problem
 - Partition the mesh using SCOTCH
 - 1 task = update 1 part
 - Redundant computation
 - Exchange part boundaries

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Rodinia's CFD Solver Post-processing

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN <u>AUTOMATIQUE</u>

Rodinia's CFD Solver

Preliminary results

- Problem size
 - 64x64x64 grid, 1.3 Millions tetrahedrons
- Reference CPU performance
 - 1 core (Intel Westmere X5650)
 - 1.4s per iteration
 - 12 cores
 - 0.15s per iteration
- Preliminary performance with StarPU
 - 1 NVIDIA C2050
 - 53ms per iteration
 - 2 NVIDIA C2050
 - 28ms per iteration
 - We need large problems !

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Rodinia's CFD Solver

Perspective

- Port in OpenCL
- Use hybrid platforms
 - GPUs are much faster than CPUs
 - Memory bound
 - Rather few tasks
 - Parallel CPU tasks
 - large granularity
- Heterogeneity-aware data layout
 - CPUs : Arrays of Structures (cache friendly)
 - GPUs : Structures of Arrays (SIMD friendly)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Conclusion

StarPU

- Data management & Task scheduling
- Freely available under LGPL on Linux, Mac and Windows
- Adapted 3 PEPPHER benchmarks
 - FFTW + CUFFTW
 - MAGMA + PLASMA
 - Rodinia's CFD Solver

INSTITUT NATION DE RECHERCH EN INFORMATIQU ET EN AUTOMATIQU

Conclusion

- Productive approach
 - Rely on existing kernels for CPU/GPU
 - Architecture independent task model
 - Higher-level front-ends would help
 - StarSs, HMPP, Codeplay's Offload
- Autotuning will be required
 - Need to find optimal granularity
 - Parallel tasks
 - Divisible tasks
 - Select code variants
 - eg. with SkePU

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

