
1

Running PEPPHER benchmarks on top
of the StarPU runtime system

22th January 2011

Cédric Augonnet
Nicolas Collin

Nathalie Furmento
Raymond Namyst
Samuel Thibault

INRIA Bordeaux, LaBRI, Université de Bordeaux

2

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel
Libraries

• “do dynamically what can’t
be done statically”

•Typical duties
• Task scheduling
• Memory management

•Compilers and libraries
generate (graphs of) parallel
tasks

• Additional information is
welcome!

Motivations

GPU …

The StarPU runtime system

3

•Main Challenges
• Dynamically schedule

tasks on all processing
units

– See a pool of
heterogeneous cores

– Scheduling ≠ offloading

• Avoid unnecessary
data transfers between
accelerators

– Need to keep track of
data copies

Motivations

A = A+B

The StarPU runtime system

M.M.

CPU

CPU

CPU

CPU M.GPU

GPU

CPU

CPU

CPU

CPU

M.M.

B

M.GPU

M.GPU A

M.B

A

4

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

•StarPU provides a Virtual
Shared Memory subsystem

• Weak Consistency

• Replication

• Single writer

• High level API

• Application registers data

• Input & ouput of tasks =
reference to registered data

The StarPU runtime system
Memory Management

GPU …

5

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

•Tasks =
• Data input & output
• Dependencies with other

tasks
• Multiple implementations

– e.g. CUDA and/or CPU
• Scheduling hints

•StarPU provides an Open
Scheduling platform

• Scheduling algorithm =
plug-ins

The StarPU runtime system
Task scheduling

GPU …f
cpu
gpu
spu

(ARW, BR, CR)

6

• Fast Fourier Transform (FFT)

• Mixing FFTW and CUFFTW

• Dense Linear Algebra

• Mixing PLASMA and MAGMA

• Computational Fluid Dynamic (CFD)

• Porting Rodinia's CFD

Peppher Benchmarks

7

Dense Linear Algebra

Mixing PLASMA and MAGMA

(Collaboration with UTK)

8

• Background
• Cholesky/LU/QR: Solve dense linear systems
• UTK : ~ leaders for Dense Linear Algebra for 20 years
• Need performance portability

• State of the art libraries
• PLASMA (Multicore CPUs)

• MAGMA (Multiple GPUs)

• Our approach
• Use PLASMA algorithms
• PLASMA kernels on CPUs, MAGMA kernels on GPUs
• Schedule tasks with StarPU

Mixing PLASMA and MAGMA with StarPU
Background

9

Mixing PLASMA and MAGMA with StarPU
Productivity

// Sequential Tile Cholesky

FOR k = 0..TILES-1

DPOTRF(A[k][k])

FOR m = k+1..TILES-1

 DTRSM(A[k][k], A[m][k])

FOR n = k+1..TILES-1

 DSYRK(A[n][k], A[n][n])

FOR m = n+1..TILES-1

DGEMM(A[m][k], A[n][k], A[m][n])

// Hybrid Tile Cholesky

FOR k = 0..TILES-1

starpu_Insert_Task(DPOTRF, …)

FOR m = k+1..TILES-1

 starpu_Insert_Task(DTRSM, …)

FOR n = k+1..TILES-1

 starpu_Insert_Task(DSYRK, …)

 FOR m = n+1..TILES-1

 starpu_Insert_Task(DGEMM, …)

• Programmability
• Cholesky: ~half a week, QR: ~2 days of works, LU : ~time

to write new kernels
• Quick algorithmic prototyping

10

• Cholesky decomposition
• Hannibal: 8 CPU cores (Nehalem) + 3 GPUs (NV FX5800)

Mixing PLASMA and MAGMA with StarPU

11

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

12

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

MAGMA

13

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

+12 CPUs
~200GFlops

Peak : 12 cores
~150 GFlops

14

• Memory transfers during Cholesky decomposition

Mixing PLASMA and MAGMA with StarPU

~2.5x less
transfers

15

• Add more algorithms
• 2-sided Factorizations (eg. Hessenberg)
• Solvers

• Going to be released as a standalone library
• Toward a complete LAPACK implementation for hybrid

computing
• Need autotuning facilities!

• Next step: integrate MPI
• On-going work
• Accelerated SCALAPACK ?

Mixing PLASMA and MAGMA with StarPU
Perspective

16

Rodinia's CFD Solver

17

• The Rodinia benchmark suite
• Cover the different « Berkeley Dwarves »
• Available either in OpenMP or in CUDA
• Neither multi-GPU nor hybrid systems

• Rodinia's CFD Solver benchmark
• 3D Euler equations for incompressible flow
• Unstructured Grid Finite Volumes
• Memory intensive kernel
• Pre-processing and Post-processing are not available

– Need to create our own input meshes

Rodinia's CFD Solver
Background

18

• Pre-processing
• Generated a mesh of the

air around a sphere
• Very simple yet !

• Parallelizing the problem
• Partition the mesh using

SCOTCH
• 1 task = update 1 part
• Redundant computation
• Exchange part boundaries

Rodinia's CFD Solver
Methodology

19

Rodinia's CFD Solver
Post-processing

20

• Problem size
• 64x64x64 grid, 1.3 Millions tetrahedrons

• Reference CPU performance
• 1 core (Intel Westmere X5650)

– 1.4s per iteration

• 12 cores

– 0.15s per iteration

• Preliminary performance with StarPU

• 1 NVIDIA C2050

– 53ms per iteration

• 2 NVIDIA C2050

– 28ms per iteration

• We need large problems !

Rodinia's CFD Solver
Preliminary results

21

• Port in OpenCL

• Use hybrid platforms
• GPUs are much faster than CPUs

– Memory bound
– Rather few tasks

• Parallel CPU tasks
– large granularity

• Heterogeneity-aware data layout
• CPUs : Arrays of Structures (cache friendly)
• GPUs : Structures of Arrays (SIMD friendly)

Rodinia's CFD Solver
Perspective

22

• StarPU
• Data management & Task scheduling

• Freely available under LGPL on Linux, Mac and Windows

• Adapted 3 PEPPHER benchmarks
• FFTW + CUFFTW

• MAGMA + PLASMA

• Rodinia's CFD Solver

Conclusion

23

• Productive approach
• Rely on existing kernels for CPU/GPU

• Architecture independent task model

• Higher-level front-ends would help
– StarSs, HMPP, Codeplay's Offload

• Autotuning will be required
• Need to find optimal granularity

– Parallel tasks
– Divisible tasks

• Select code variants
– eg. with SkePU

Conclusion

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23

