
This project is part of the portfolio of the
G.3 - Embedded Systems and Control Unit
Information Society and Media Directorate-
General
European Commission

www.peppher.eu

Copyright © 2010 The PEPPHER Consortium

Contract Number:
248481

Total Cost [€]: 3.44
million

Starting Date: 2010-01-
01

Duration: 36 months

Work-stealing for mixed-mode
parallelism by deterministic team-
building

Martin Wimmer
Jesper Larsson Träff
University of Vienna

PEPPHER HiPeac workshop
22.01.2011

PEPPHER context

 PEPPHER focusses on performance
portability and programmability
aspects

 Component-based model

– algorithmic kernels as components
 DAG-structured model of computation

with component-tasks
 Scheduler sees component-task as

blackbox

– It may be scheduled to different
types of processors

– Explicit resource requirements

– It may be a parallel kernel

• e.g. OpenMP kernel

Martin Wimmer and Jesper Larsson Träff – University of Vienna 2

PEPPHER context

 Support for parallel component-tasks
requires extensions to classical DAG-
scheduling

– Co-scheduling on multiple
processors

– Support for blocking
synchronization between threads
of a task

– Subsequent numbering of threads
executing task

• Many algorithms require
numbering of threads

• Required for OpenMP kernels

– Memory locality issues

Martin Wimmer and Jesper Larsson Träff – University of Vienna 3

1

 2 1

 1 4 1

 1 1

Programmability aspect

 Some parallel algorithms are easier/more efficient to
implement in task-based models

– e.g. divide-and-conquer algorithms
 Others require SPMD-style programming with blocking

synchronization

– Difficult to map to task-based models

 Ability to compose both types of kernels in single
applications may be beneficial

 Term: mixed-mode parallel applications

 Model: Task can spawn other tasks with fixed thread-
requirement >= 1

Martin Wimmer and Jesper Larsson Träff – University of Vienna 4

Some solutions for mixed-mode parallelism

 Use continuations instead of blocking synchronization

– Difficult to implement

– Sometimes small granularity of tasks
 Language extension + compiler support

– Phasers in Habanero Java

– Clocks in X10
 Centralized scheduling approaches

– e.g. Communicating M-tasks

– Many others

Martin Wimmer and Jesper Larsson Träff – University of Vienna 5

Motivating example: Quicksort

 The classical, well-known task-parallel quicksort:

– Start off with single task

– Partition data

– Spawn one task for each generated subsequence

– Switch to sequential sorting algorithm for smaller
subsequences

Martin Wimmer and Jesper Larsson Träff – University of Vienna 6

if n ≤ CUTOFF then
return sequential_sort(data, n)

else
pivot ← partition(data, n)
async qsort(data, pivot)
async qsort(data + pivot +1, pivot −n − 1)
sync

end if

Quicksort scalability problems

 At start, no parallelism
 Partitioning is sequential, O(n)
 Partitioning must be done at least

once before first fork
 At least log p steps, before all

processors have work

 Sequential bottleneck at least O(n)

Martin Wimmer and Jesper Larsson Träff – University of Vienna 7

Data-parallel partitioning

 Attacking sequential bottleneck
 Proposed by P. Tsigas and Y. Zhang in 2003
 Block-wise decomposition of data
 Threads acquire blocks at each side - try to neutralize

(all data in neutralized blocks are larger or smaller than
pivot)

 Remaining blocks sequentially neutralized at end

Martin Wimmer and Jesper Larsson Träff – University of Vienna 8

Unfinished block Neutralized block

P1P2 P3 P1 P2P3

Quicksort with parallel tasks

 Start off with parallel tasks that do parallel partitioning
 For each newly spawned task determine best number of

threads
 For 1-processor tasks use sequential partitioning

Martin Wimmer and Jesper Larsson Träff – University of Vienna 9

if np = 1 then
return fork_join_qsort(data, n)

else
pivot ← parallel_partition(data, n)
if localId = 0 then

async(getBestNp(pivot))
par_qsort(data, pivot)

async(getBestNp(n−pivot−1))
par_qsort(data+pivot+1, n−pivot−1)

sync
end if

end if

A mixed-mode work-stealing scheduler

 Decentralized scheduling for mixed-mode parallelism

 Our solution: work-stealing with deterministic team-building

– Follows the work-stealing philosophy
• Local work queues
• Threads act autonomously
• Only communicate if out of work
• Depth-first scheduling

– Low overhead

Martin Wimmer and Jesper Larsson Träff – University of Vienna 10

Modifications to standard work-stealing

 Impose a hierarchy on processors in system

– Should take memory hierarchy into account
 At level 0 each processor is in a group of its own
 At higher levels, processors are grouped together

 Teams will be built out of processor groups
 We assume a binary tree for the hierarchy

– allows to calculate partner thread ids on the fly

Martin Wimmer and Jesper Larsson Träff – University of Vienna 11

P0 P1 P2 P3

P0,1 P2,3

P0-3

Socket 0 Socket 1

Level 0

Level 1

Level 2

Modified stealing procedure

 Deterministic stealing pattern

– Visit log p partners (one for each level
in hierarchy) until we find some work

 Partner for level l is selected by XOR of
thread-id with x in the range:

– Depending on policy, x may be fixed
(for completely deterministic
schemes) or random

Martin Wimmer and Jesper Larsson Träff – University of Vienna 12

P0 P1 P2 P3
1

22 l−1≤x2l

Modified stealing procedure (ctd.)

 For partner visited at level l:

– Check whether it is building a team
requiring at least threads

• If so, join team and exit

– Try to steal task requiring at most
 threads

• On success, exit and coordinate
stolen task

– Move on to next level

Martin Wimmer and Jesper Larsson Träff – University of Vienna 13

2 l−1

2 l

P0 P1 P2 P3
1

2

Team building (coordination) procedure

 Required to build team to execute parallel task
 Executed by all threads already in the team

 If team is built, start task execution
 Otherwise go through hierarchy as in stealing

– Only visit partners required for task execution

– On successful steal exit coordination

– Deterministic tie-breaking if conflicting teams are built

Martin Wimmer and Jesper Larsson Träff – University of Vienna 14

T

P0 P1 P2 P3
1

2

P4 P5 P6 P7

Team building (coordination) procedure

 Required to build team to execute parallel task
 Executed by all threads already in the team

 If team is built, start task execution
 Otherwise go through hierarchy as in stealing

– Only visit partners required for task execution

– On successful steal exit coordination

– Deterministic tie-breaking if conflicting teams are built

Martin Wimmer and Jesper Larsson Träff – University of Vienna 15

T

P0 P1 P2 P3 P4 P5 P6 P7

Team building (coordination) procedure

 Required to build team to execute parallel task
 Executed by all threads already in the team

 If team is built, start task execution
 Otherwise go through hierarchy as in stealing

– Only visit partners required for task execution

– On successful steal exit coordination

– Deterministic tie-breaking if conflicting teams are built

Martin Wimmer and Jesper Larsson Träff – University of Vienna 16

T

P0 P1 P2 P3 P4 P5 P6 P7

Team building (coordination) procedure

 Required to build team to execute parallel task
 Executed by all threads already in the team

 If team is built, start task execution
 Otherwise go through hierarchy as in stealing

– Only visit partners required for task execution

– On successful steal exit coordination

– Deterministic tie-breaking if conflicting teams are built

Martin Wimmer and Jesper Larsson Träff – University of Vienna 17

T

P0 P1 P2 P3 P4 P5 P6 P7

Implementation

 Implemented in C++ with pthreads
 Interface comparable to tasks in Intel TBB
 Lock-free implementation

– Uses compare-and-swap (CAS) and fetch-and-add

– Registration and deregistration for a team requires a
single CAS per thread

– One word per thread stores team-building information
 Standard lock-free queue implementation for task queues
 Completely deterministic, configurable stealing policy

Martin Wimmer and Jesper Larsson Träff – University of Vienna 18

Experimental results

 Measured on a 32 core Intel Nehalem EX system.
 Average time over 10 runs in seconds

Martin Wimmer and Jesper Larsson Träff – University of Vienna 19

Type Size Seq/STL SeqQS Fork SU Cilk++ SU MMPar SU

10000000 1,231 1,352 0,326 3,8 0,207 5,9 0,202 6,1

100000000 13,319 13,742 2,891 4,6 2,421 5,5 1,372 9,7

Random 1000000000 133,850 147,453 25,359 5,3 23,971 5,6 17,750 7,5

8388607 1,028 1,123 0,294 3,5 0,193 5,3 0,186 5,5

33554431 4,863 5,265 0,903 5,4 0,657 7,4 0,587 8,3

134217727 15,888 16,617 3,103 5,1 2,525 6,3 1,835 8,7

More numbers in: M. Wimmer and J. L. Träff. Work-stealing for mixed-mode parallelism by
deterministic team-building. CoRR, abs/1012.5030, 2010

Future Work

 Investigate further mixed-mode parallel applications

– PEPPHER benchmarks
 Integration into the PEPPHER framework

– StarPU scheduler plugin

– Standalone scheduler

 Support for malleable/moldable tasks within certain limits

– Automatic selection of thread requirements on spawn

• depending on processor utilization and task performance

– Vary thread requirements after stealing

M. Wimmer and J. L. Träff. Work-stealing for mixed-mode parallelism by deterministic team-
building. CoRR, abs/1012.5030, 2010

M. Wimmer and J. L. Träff. A work-stealing framework for mixed-mode parallel applications.
Submitted, 2011

Martin Wimmer and Jesper Larsson Träff – University of Vienna 20

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

