

PEPPHER HiPeac workshop 22.01.2011

# Work-stealing for mixed-mode parallelism by deterministic teambuilding

*Martin Wimmer* Jesper Larsson Träff University of Vienna



This project is part of the portfolio of the G.3 - Embedded Systems and Control Unit Information Society and Media Directorate-General European Commission

www.peppher.eu

Contract Number: 248481 Total Cost [€]: 3.44 million Starting Date: 2010-01-



Copyright  $\ensuremath{\mathbb C}$  2010 The PEPPHER Consortium

### **PEPPHER context**



- PEPPHER focusses on performance portability and programmability aspects
- Component-based model
  - algorithmic kernels as components
- DAG-structured model of computation with component-tasks
- Scheduler sees component-task as blackbox
  - It may be scheduled to different types of processors
  - Explicit resource requirements
  - <u>It may be a parallel kernel</u>
    - e.g. OpenMP kernel



## **PEPPHER context**



- Support for parallel component-tasks requires extensions to classical DAG-scheduling
  - Co-scheduling on multiple processors
  - Support for blocking synchronization between threads of a task
  - Subsequent numbering of threads executing task
    - Many algorithms require numbering of threads
    - Required for OpenMP kernels
  - Memory locality issues



# **Programmability aspect**



- Some parallel algorithms are easier/more efficient to implement in task-based models
  - e.g. divide-and-conquer algorithms
- Others require SPMD-style programming with blocking synchronization
  - Difficult to map to task-based models
- Ability to compose both types of kernels in single applications may be beneficial
- Term: mixed-mode parallel applications
- Model: Task can spawn other tasks with fixed threadrequirement >= 1



- Use continuations instead of blocking synchronization
  - Difficult to implement
  - Sometimes small granularity of tasks
- Language extension + compiler support
  - Phasers in Habanero Java
  - Clocks in X10
- Centralized scheduling approaches
  - e.g. Communicating M-tasks
  - Many others

# **Motivating example: Quicksort**



The classical, well-known task-parallel quicksort:

- Start off with single task
- Partition data
- Spawn one task for each generated subsequence
- Switch to sequential sorting algorithm for smaller subsequences

```
if n ≤ CUTOFF then
    return sequential_sort(data, n)
else
    pivot ← partition(data, n)
    async qsort(data, pivot)
    async qsort(data + pivot +1, pivot -n - 1)
    sync
end if
```

## **Quicksort scalability problems**



PEPPHER

- Partitioning is sequential, O(n)
- Partitioning must be done at least once before first fork
- At least log p steps, before all processors have work

#### Sequential bottleneck at least O(n)



# **Data-parallel partitioning**



- Attacking sequential bottleneck
- Proposed by P. Tsigas and Y. Zhang in 2003
- Block-wise decomposition of data
- Threads acquire blocks at each side try to neutralize (all data in neutralized blocks are larger or smaller than pivot)
- Remaining blocks sequentially neutralized at end





- Start off with parallel tasks that do parallel partitioning
- For each newly spawned task determine best number of threads
- For 1-processor tasks use sequential partitioning



- Decentralized scheduling for mixed-mode parallelism
- Our solution: work-stealing with deterministic team-building
  - Follows the work-stealing philosophy
    - Local work queues
    - Threads act autonomously
    - Only communicate if out of work
    - Depth-first scheduling
  - Low overhead

# Modifications to standard work-stealing

- Impose a hierarchy on processors in system
  - Should take memory hierarchy into account
- At level 0 each processor is in a group of its own
- At higher levels, processors are grouped together



- Teams will be built out of processor groups
- We assume a binary tree for the hierarchy
  - allows to calculate partner thread ids on the fly

# **Modified stealing procedure**



### Deterministic stealing pattern

- Visit log p partners (one for each level in hierarchy) until we find some work
- Partner for level I is selected by XOR of thread-id with x in the range:  $2^{l-1} \le x < 2^{l}$ 
  - Depending on policy, x may be fixed (for completely deterministic schemes) or random



# Modified stealing procedure (ctd.)

For partner visited at level I:

PEPPHER

- Check whether it is building a team requiring at least  $2^{l}$  threads
  - If so, join team and exit
- Try to steal task requiring at most  $2^{l-1}$  threads
  - On success, exit and coordinate stolen task
- Move on to next level





- Required to build team to execute parallel task
- Executed by all threads already in the team
- If team is built, start task execution
- Otherwise go through hierarchy as in stealing
  - Only visit partners required for task execution
  - On successful steal exit coordination
  - Deterministic tie-breaking if conflicting teams are built





- Required to build team to execute parallel task
- Executed by all threads already in the team
- If team is built, start task execution
- Otherwise go through hierarchy as in stealing
  - Only visit partners required for task execution
  - On successful steal exit coordination
  - Deterministic tie-breaking if conflicting teams are built



Martin Wimmer and Jesper Larsson Träff - University of Vienna



- Required to build team to execute parallel task
- Executed by all threads already in the team
- If team is built, start task execution
- Otherwise go through hierarchy as in stealing
  - Only visit partners required for task execution
  - On successful steal exit coordination
  - Deterministic tie-breaking if conflicting teams are built





- Required to build team to execute parallel task
- Executed by all threads already in the team
- If team is built, start task execution
- Otherwise go through hierarchy as in stealing
  - Only visit partners required for task execution
  - On successful steal exit coordination
  - Deterministic tie-breaking if conflicting teams are built



### Implementation



- Implemented in C++ with pthreads
- Interface comparable to tasks in Intel TBB
- Lock-free implementation
  - Uses compare-and-swap (CAS) and fetch-and-add
  - Registration and deregistration for a team requires a single CAS per thread
  - One word per thread stores team-building information
- Standard lock-free queue implementation for task queues
- Completely deterministic, configurable stealing policy

### **Experimental results**



- Measured on a 32 core Intel Nehalem EX system.
- Average time over 10 runs in seconds

| Size       | Seq/STL                                                                         | SeqQS                                                                                                                                                                                                                            | Fork                                                                                                                                    | SU                                                                                                                                                                        | Cilk++                                                                                                                                                                                        | SU                                                                                                                                                                                                                                 | MMPar                                                                                                                                                                                                                                                  | SU                                                                                                                                                                                                                                                                                         |
|------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1000000    | 1,231                                                                           | 1,352                                                                                                                                                                                                                            | 0,326                                                                                                                                   | 3,8                                                                                                                                                                       | 0,207                                                                                                                                                                                         | 5,9                                                                                                                                                                                                                                | 0,202                                                                                                                                                                                                                                                  | 6,1                                                                                                                                                                                                                                                                                        |
| 100000000  | 13,319                                                                          | 13,742                                                                                                                                                                                                                           | 2,891                                                                                                                                   | 4,6                                                                                                                                                                       | 2,421                                                                                                                                                                                         | 5,5                                                                                                                                                                                                                                | 1,372                                                                                                                                                                                                                                                  | 9,7                                                                                                                                                                                                                                                                                        |
| 1000000000 | 133,850                                                                         | 147,453                                                                                                                                                                                                                          | 25,359                                                                                                                                  | 5,3                                                                                                                                                                       | 23,971                                                                                                                                                                                        | 5,6                                                                                                                                                                                                                                | 17,750                                                                                                                                                                                                                                                 | 7,5                                                                                                                                                                                                                                                                                        |
| 8388607    | 1,028                                                                           | 1,123                                                                                                                                                                                                                            | 0,294                                                                                                                                   | 3,5                                                                                                                                                                       | 0,193                                                                                                                                                                                         | 5,3                                                                                                                                                                                                                                | 0,186                                                                                                                                                                                                                                                  | 5,5                                                                                                                                                                                                                                                                                        |
| 33554431   | 4,863                                                                           | 5,265                                                                                                                                                                                                                            | 0,903                                                                                                                                   | 5,4                                                                                                                                                                       | 0,657                                                                                                                                                                                         | 7,4                                                                                                                                                                                                                                | 0,587                                                                                                                                                                                                                                                  | 8,3                                                                                                                                                                                                                                                                                        |
| 134217727  | 15,888                                                                          | 16,617                                                                                                                                                                                                                           | 3,103                                                                                                                                   | 5,1                                                                                                                                                                       | 2,525                                                                                                                                                                                         | 6,3                                                                                                                                                                                                                                | 1,835                                                                                                                                                                                                                                                  | 8,7                                                                                                                                                                                                                                                                                        |
|            | Size<br>10000000<br>100000000<br>1000000000<br>8388607<br>33554431<br>134217727 | Size         Seq/STL           10000000         1,231           100000000         13,319           100000000         133,850           8388607         1,028           33554431         4,863           134217727         15,888 | SizeSeq/STLSeqQS100000001,2311,35210000000013,31913,7421000000000133,850147,45383886071,0281,123335544314,8635,26513421772715,88816,617 | SizeSeq/STLSeqQSFork100000001,2311,3520,32610000000013,31913,7422,891100000000133,850147,45325,35983886071,0281,1230,294335544314,8635,2650,90313421772715,88816,6173,103 | SizeSeq/STLSeqQSForkSU100000001,2311,3520,3263,810000000013,31913,7422,8914,6100000000133,850147,45325,3595,383886071,0281,1230,2943,5335544314,8635,2650,9035,413421772715,88816,6173,1035,1 | SizeSeq/STLSeqQSForkSUCilk++100000001,2311,3520,3263,80,20710000000013,31913,7422,8914,62,421100000000133,850147,45325,3595,323,97183886071,0281,1230,2943,50,193335544314,8635,2650,9035,40,65713421772715,88816,6173,1035,12,525 | SizeSeq/STLSeqQSForkSUCilk++SU100000001,2311,3520,3263,80,2075,910000000013,31913,7422,8914,62,4215,5100000000133,850147,45325,3595,323,9715,683886071,0281,1230,2943,50,1935,3335544314,8635,2650,9035,40,6577,413421772715,88816,6173,1035,12,5256,3 | SizeSeq/STLSeqQSForkSUCilk++SUMMPar100000001,2311,3520,3263,80,2075,90,20210000000013,31913,7422,8914,62,4215,51,372100000000133,850147,45325,3595,323,9715,617,75083886071,0281,1230,2943,50,1935,30,186335544314,8635,2650,9035,40,6577,40,58713421772715,88816,6173,1035,12,5256,31,835 |

More numbers in: M. Wimmer and J. L. Träff. Work-stealing for mixed-mode parallelism by deterministic team-building. CoRR, abs/1012.5030, 2010

### **Future Work**



- Investigate further mixed-mode parallel applications
  - PEPPHER benchmarks
- Integration into the PEPPHER framework
  - StarPU scheduler plugin
  - Standalone scheduler
- Support for malleable/moldable tasks within certain limits
  - Automatic selection of thread requirements on spawn
    - depending on processor utilization and task performance
  - Vary thread requirements after stealing

M. Wimmer and J. L. Träff. Work-stealing for mixed-mode parallelism by deterministic teambuilding. CoRR, abs/1012.5030, 2010

M. Wimmer and J. L. Träff. A work-stealing framework for mixed-mode parallel applications. Submitted, 2011