
ENCORE
ENabling technologies for a programmable many-CORE

Alex Ramirez, BSC

25/01/2012 ENCORE Project Presentation - EPoPPEA 1

ENCORE consortium

 Funded under FP7 Objective ICT 2009.3.6 - Computing Systems

 3-year STREP project (March 2010 - February 2013)

ISRAEL INSTITUTE

OF TECHNOLOGY

Key issues – Programmability

Until now, we had faster processors Now, we have more processors

1x
1x 1x

1x 1x

If we want to run with

more processors,

… or find an alternative solution:

Original Code

 {

 int tid=0;

 int tids[nThreads];

 for(i=0; i<nThreads; i++) {

 tids[i]=i;

 bs_thread(&tids[i]);

 }

}

void bs_thread(void *tid_ptr)

{

...

}

Re-written Code using

ENCORE (OmpSs)

{

 int tid=0;

 int tids[nThreads];

 for(i=0; i<nThreads; i++) {

 tids[i]=i;

 bs_thread(&tids[i]);

 }

}

#pragma omp task input(tid_ptr)

void bs_thread(void *tid_ptr)

{

...

}

Re-written Code
 pthread_t _M4_threadsTable[MAX_THREADS];

pthread_mutexattr_t _M4_normalMutexAttr;

int _M4_numThreads = MAX_THREADS;

int tids[nThreads];

for(i=0; i<nThreads; i++) {

 tids[i]=i;

 {

 int _M4_i;

 for (_M4_i = 0; _M4_i < MAX_THREADS; _M4_i++) {

 if (_M4_threadsTable[_M4_i] == -1) break;

 }

 pthread_create(&_M4_threadsTable[_M4_i],

 NULL,(void *(*)(void *))bs_thread,(void *)&tids[i]);

 };

}

 {

 int _M4_i;

 void *_M4_ret;

 for (_M4_i = 0; _M4_i < MAX_THREADS;_M4_i++) {

if (_M4_threadsTable[_M4_i] == -1) break;

 pthread_join(_M4_threadsTable[_M4_i], &_M4_ret);

 }

 };

void bs_thread(void *tid_ptr)

{

...

}

ENCORE Programming Model is:

• Easy to use

• Fewer lines of code

• Same (or better performance)

2x 1x But more doesn’t necessarily mean better!

we need to re-write

the application a better programming model

25/01/2012 ENCORE Project Presentation - EPoPPEA 2

Key issues – Multicore Architecture

 Will the application run faster on a multi-core processor?

1x 1x

1x 1x

4x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

16x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

1x 1x

64x 256x+…

vs.

We also need to organize those 256+ cores in the right way

25/01/2012 ENCORE Project Presentation - EPoPPEA 3

25/01/2012 ENCORE Project Presentation - EPoPPEA 4

Project Objectives

 Objective 1: To define an easy to use parallel programming model that

offers code portability across several parallel architectures

 Extended OpenMP 3.0 specification

 Objective 2: To develop a runtime management system to dynamically

detect, manage, and exploit parallelism, data locality, and resources

across several parallel architectures

 Fine-tuned runtime libraries implementing the runtime calls

described in Objective 1

 Objective 3: To provide the right kind of hardware support for the

parallel programming and runtime environment that ensures scalability,

performance, and cost-efficiency

 Multicore architecture, fine-tuned to support scalable parallel

programming using an efficient runtime environment

25/01/2012 ENCORE Project Presentation - EPoPPEA 5

The ENCORE Toolchain

SMP GPGPU FPGA Simulation

Nanos++ Runtime

OmpSs source-to-source (mcc/mcxx)

OmpSs (C/C++)

Native Compiler (gcc, armcc, icc, nvcc)

C files
Intermediate files

(C/C++ + runtime API)

OS

Executable Executable Executable Trace

In
s
tr

u
m

e
n
ta

ti
o
n

Myrmics

Cluster

Executable

25/01/2012 ENCORE Project Presentation - EPoPPEA 6

ENCORE Applications

 Goal: porting applications to OmpSs

 HPC kernels and applications
 Fixedgrid, GROMACS…

 Embedded and Consumer Applications
 Raytracing, md5…

 Real Time
 Micro- and evaluation- benchmarks (e.g. H264)

 MapReduce
 MapReduce runtime

 Expected improvements

 Better scalability of the applications

 Improving the portability of applications

 Demonstrating the ‘ease-of-use’ of the OmpSs

25/01/2012 ENCORE Project Presentation - EPoPPEA 7

OmpSs Programming Model

 Integration of StarSs features to OpenMP 3.0 standard

 From OpenMP 3.0

 Loop parallelism, iteration scheduling and tasking

 From StarSs

 Expressiveness

 Data direction (input/output hints)

 Dependency checking at runtime and automatic data movement

 Possibility to run on various platforms

 SMPSs, CellSs, ClusterSs, GPUSs

25/01/2012 ENCORE Project Presentation - EPoPPEA 8

OmpSs: An example

for (i=0; i<height; i+=16)

 for (j=0; j<width; j+=16)

 mb_decode(&frame[i][j]);

Imperative code

for (i=0; i<height; i+=16)

 for (j=0; j<width; j+=16)

#pragma omp target device(encore)\

 copy_deps \

 require (…)

#pragma omp task inout(frame[i][j]) \

 deadline(deadline_frame_1 + frame_no * 0.02) \

 onerror(OMP_ERR_DEADLINE_EXPIRED:OMP_SKIP)

 mb_decode(&frame[i][j]);

Annotated code

OmpSs

for (i=0; i<n; i+=16)

 for (j=0; j<n; j+=16) {

 wd = nanos_create_wd(...,

 dependences_info,

 copies_info);

 nanos_submit(wd);

 }

ENCORE application

Mercurium

OmpSs: Embedded and Consumer applications

Initial results

25/01/2012 ENCORE Project Presentation - EPoPPEA 9

25/01/2012 ENCORE Project Presentation - EPoPPEA 10

Runtime: Scheduling

Sequential

thread(s)

create-task

Task dependency

graph
Ready

queue

Worker 1

Worker 2

Worker 3

…

Workers

complete-task

Scheduler

25/01/2012 ENCORE Project Presentation - EPoPPEA 11

Architecture

 ENCORE targets several architectures

A9

L1

A9

L1

A9

L1

A9

L1

L2

MIC MIC

PE

P
L1

P
L1

P
L1

P
L1

L2

MIC

P
L1

P
L1

P
L1

P
L1

L2

MIC

P
L1

P
L1

P
L1

P
L1

L2

MIC

P
L1

P
L1

P
L1

P
L1

L2

MIC

A-B B-C

C-D D-E

P

PCIe

GPU

PCIe

GPU

PCIe

GPU

PCIe

SMP

cc-NUMA/Cluster

GPGPU

FPGA

Expected Improvements

 Programming model

 Support for C++

 More expresiveness to the programmer

 e.g. Multi-dimensional regions, QoS, dynamic memory

 Runtime

 Scheduling improvements

 e.g. resource-aware scheduling, real-time, optimizations for SIMT

 Support for more platforms

 FPGA, DSM

 Architecture

 HW support

 e.g. task management, explicit memory management

 Prototyping – FPGA, virtual many-core platform

25/01/2012 ENCORE Project Presentation - EPoPPEA 12

Long Term Impact

 Enable exploitation of many-core heterogeneous systems

 Increased performance and power-efficiency

 Improved scalability

 Code portability across platforms

 Accelerated system development and production

 Shorter time to market

 Extended OpenMP specification

25/01/2012 ENCORE Project Presentation - EPoPPEA 13

Beyond ENCORE

 Parallel programming

 Debug and performance analysis of parallel systems

 Runtime management

 Locality management

 Work at object granularity vs. fixed-size blocks

 Dealing with indirect accesses

 Possibly with architecture support

 Scalable system architecture

 Beyond the one-chip many-core (10K-core systems)

 Design of heterogeneous processors

 Focus on performance / power-efficiency for a particular application domain

 Coping with unreliable hardware + out-of-order delivery

 Simulation of large-scale systems

 Scalability issues only detected on the full-scale system

25/01/2012 ENCORE Project Presentation - EPoPPEA 14

