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The Problem
Manycore Processors and Shared Memory

Shared memory can be hard to scale to many cores
I Cache coherence becomes expensive
I Causes excessive communication, memory contention

Manycore processors that relax shared memory abstraction
I AMD Opteron: 12 cores, NUMA, MMU per core
I Cell Broadband Engine: 1 + 8 cores, no shared memory
I GPUs: Thousands of cores, small shared memories between few cores
I Intel Single Chip Cloud: 48 cores, no shared memory

Increased demand for parallel software development
I Threads and shared memory: accessible, error-prone
I Message-passing: tedious, experts-only
I Both are non-deterministic: difficult to debug and understand
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Task-parallelism for distributed and shared memory

Available in several contemporary programming models (Sequoia,
Cilk, OMPSs)

Recursive task-parallelism
I Parallel programs are composed from nested parallel tasks

Annotate each task with its memory footprint

Runtime system performs dependency analysis, scheduling, all
required data transfers

Support region-based memory management
I Easier to express irregular task footprints
I Enables use of dynamic data structures
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Benefits

Shared memory abstraction
I Resemble shared memory programming
I Runtime system hides data transfers among core memories
I Use memory footprints to transfer required data locally before starting

a task
I Alternatively, schedule a task near the data

Message-passing execution semantics
I Tasks compute on local data
I Hierarchical scheduling, easier to scale to more cores
I Remove shared-memory bottleneck
I No need for complicated SDSM protocol on every access

Deterministic
I Implicit, correct synchronization
I Repeatable behavior
I Formal proof
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Motivation for Regions

Task memory footprints are easy to express if the are composed of
few objects, contiguous in memory

What if the task memory footprint is:
I A linked list or part of it?
I A tree or part of it?
I A graph or part of it?

Hard to use many common linked data structures

Hard to express irregular algorithms and applications
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Example
Region-based Memory Management

region G, L, R;
Object ∗v0;
init () {
G = newregion();
L = newsubregion(G);
R = newsubregion(G);
v0 = ralloc (G, sizeof (Object));
v0->left = ralloc (L, sizeof (Object));
v0->right = ralloc (R, sizeof (Object));
}
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Example
Tasks and Regions

f(Object ∗v0) {
if (done) return;
spawn f(v0->left) [ inout region L];
spawn f(v0->right) [ inout region R];
spawn h(v0->left) [ inout v0->left ];
spawn h(v0->right) [inout v0->right ];
}

region G

region L region R

v0

v1 v2
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Deterministic Scheduler Operational Semantics

Define small-step operational semantics
I 〈T ,D,S ,R〉 →p 〈T ′,D ′,S ′,R ′〉

Memory model:
I Global address space: the store S includes all memory addresses
I Distributed memory implementation: each task only accesses memory

locations declared in its footprint

Scheduling algorithm:
I Dependency metadata D maintain a task queue per memory location
I Always possible to spawn a task
I But, it can only run when at the head of queue for all locations in the

footprint

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 11 / 25



Deterministic Proof Technique
(Pratikakis et. al, MSPC’11)

Define sequential operational semantics
I 〈S , e〉 →s 〈S ′, e′〉

Prove sequential equivalence on execution traces
I Intuitively: Every parallel execution will produce the same value and

memory state as the sequential execution
I More precisely: Given a program e and a finite (terminating) parallel

execution trace for e that produces a value v and a memory state S ,
we can always construct a sequential execution trace for e that also
returns v and produces S

Proof by induction on the parallel trace
I We can always reorder steps in the parallel trace to bring the next

“sequential” step to the front of the trace
I Proof does not require scoped parallelism (sync)
I Similar to a confluence proof
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Distributed Memory Management API

• Object allocation:

void *sys_alloc(size_t size, rid_t region);

void sys_balloc(size_t size, rid_t region,

int num_objects, void **objects);

void sys_free(void *ptr);

void *sys_realloc(void *ptr, size_t size, rid_t rgn);

• Region allocation:

rid_t sys_ralloc(rid_t parent, char level_hint);

void sys_rfree(rid_t region);
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Distributed Memory Implementation by Example
A = malloc(10);
B = malloc(20);
C = malloc(5);
D = malloc(80);

A: 0

alloc() hash dep waiting ready queue

B: 1

C: 0

D: 2

core0

A, C

core1

B

core2

D
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Hierarchical schedulers topology
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Splitting region trees for hierarchical scheduling
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Barnes-Hut, 1.1M bodies, Single scheduler
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Barnes-Hut, 1.1M bodies, Two-level scheduler hierarchy
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UPC comparison, 16 worker cores
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UPC comparison, 15,000 504-B objects
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Conclusions

Regions language construct:
I arbitrary task memory footprints, better productivity
I shared memory programming abstractions
I distributed memory execution semantics
I scalability

Work in progress:
I Distributed memory task-based runtime (Myrmics)
I Compiler support for regions (SCOOP)
I Implementation and testing on FPGA prototype (Formic)

Acknowledgments:

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 24 / 25



CARV (FORTH-ICS) Formic 512-core FPGA Prototype

Dimitrios S. Nikolopoulos (FORTH-ICS) Region-Based Memory Management EPoPPEA 2012 25 / 25


	Introduction
	Contribution

	Memory Management with Nested Regions
	Task and Region Semantics
	By example
	Formal Definition

	Distributed Memory Regions
	Early Experimental Results
	Conclusions

