

The OmpSs Programming Model

Jesus Labarta

Director Computer Sciences Research Dept.

BSC

2 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Challenges on the way to Exascale

• Efficiency (…, power, …)

• Variability

• Memory

• Faults

• Scale (…,concurrency, strong scaling,…)

• Complexity (…Hierarchy /Heterogeneity,…)

J. Labarta, et all, “BSC Vision towards Exascale”

IJHPCA vol 23, n. 4 Nov 2009

3 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Supercomputer Development

Application

Algorithm

Progr. Model

Run time

Architecture

Is any of them more

important than the

others?

Which?

The sword to cut the “multicore” Gordian Knot

4 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs: a pragmatic approach

• Rationale

• Runtime managed, asynchronous data-flow execution

models are key

• Need to provide a natural migration towards dataflow

• Need to tolerate “acceptable” relaxation of pure models

• Focus on algorithmic structure and not so much on

resources

• StarSs: a family of task based programming models

• Basic concept: write sequential on a flat single address

space + directionality annotations

• Order IS defined !!!

• Dependence and data access related information (NOT

specification) in a single mechanism

• Think global, specify local

• Power to the runtime !!!

5 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

void Cholesky(float *A) {

 int i, j, k;

 for (k=0; k<NT; k++) {

 spotrf (A[k*NT+k]) ;

 for (i=k+1; i<NT; i++)

 strsm (A[k*NT+k], A[k*NT+i]);

 // update trailing submatrix

 for (i=k+1; i<NT; i++) {

 for (j=k+1; j<i; j++)

 sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

 ssyrk (A[k*NT+i], A[i*NT+i]);

 }

}

StarSs: data-flow execution of sequential programs

#pragma omp task inout ([TS][TS]A)

void spotrf (float *A);

#pragma omp task input ([TS][TS]T) inout ([TS][TS]B)

void strsm (float *T, float *B);

#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C)

void sgemm (float *A, float *B, float *C);

#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)

void ssyrk (float *A, float *C);

Write Decouple

how we write

form

how it is executed

Execute
TS

TS

NB

NB

TS

TS

6 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

void Cholesky(float *A) {

 int i, j, k;

 for (k=0; k<NT; k++) {

 spotrf (A[k*NT+k]);

 #pragma omp parallel for

 for (i=k+1; i<NT; i++)

 strsm (A[k*NT+k], A[k*NT+i]);

 for (i=k+1; i<NT; i++) {

 for (j=k+1; j<i; j++) {

 #pragma omp task

 sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

 }

 #pragma omp task

 ssyrk (A[k*NT+i], A[i*NT+i]);

 #pragma omp taskwait

 }

 }

}

StarSs vs OpenMP

void Cholesky(float *A) {

 int i, j, k;

 for (k=0; k<NT; k++) {

 spotrf (A[k*NT+k]);

 #pragma omp parallel for

 for (i=k+1; i<NT; i++)

 strsm (A[k*NT+k], A[k*NT+i]);

 // update trailing submatrix

 for (i=k+1; i<NT; i++) {

 #pragma omp task

 {

 #pragma omp parallel for

 for (j=k+1; j<i; j++)

 sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

 }

 #pragma omp task

 ssyrk (A[k*NT+i], A[i*NT+i]);

 }

 #pragma omp taskwait

 }

}

void Cholesky(float *A) {

 int i, j, k;

 for (k=0; k<NT; k++) {

 spotrf (A[k*NT+k]);

 #pragma omp parallel for

 for (i=k+1; i<NT; i++)

 strsm (A[k*NT+k], A[k*NT+i]);

 for (i=k+1; i<NT; i++) {

 #pragma omp parallel for

 for (j=k+1; j<i; j++)

 sgemm(A[k*NT+i], A[k*NT+j], A[j*NT+i]);

 ssyrk (A[k*NT+i], A[i*NT+i]);

 }

}

7 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs: the potential of data access information

• Flat global address space seen by

programmer

• Flexibility to dynamically traverse dataflow

graph “optimizing”

• Concurrency. Critical path

• Memory access: data transfers performed by

run time

• Opportunities for runtime to

• Prefetch

• Reuse

• Eliminate antidependences (rename)

• Replication management

• Coherency/consistency handled by the runtime

8 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Hybrid MPI/StarSs

• Overlap communication/computation

• Extend asynchronous data-flow

execution to outer level

• Linpack example: Automatic lookahead

…

for (k=0; k<N; k++) {

 if (mine) {

 Factor_panel(A[k]);

 send (A[k])

 } else {

 receive (A[k]);

 if (necessary) resend (A[k]);

 }

 for (j=k+1; j<N; j++)

 update (A[k], A[j]);

…

#pragma css task inout(A[SIZE])

void Factor_panel(float *A);

#pragma css task input(A[SIZE]) inout(B[SIZE])

void update(float *A, float *B);

#pragma css task input(A[SIZE])

void send(float *A);

#pragma css task output(A[SIZE])

void receive(float *A);

#pragma css task input(A[SIZE])

void resend(float *A);

P0 P1 P2

V. Marjanovic, et al, “Overlapping Communication and Computation by using a Hybrid MPI/SMPSs Approach” ICS 2010

9 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

All that easy/wonderful?

• Difficulties for adoption

• Chicken and egg issue users ↔ manufacturers

• Availability.

• Runtime implementations chasing new platforms

• Development as we go

• Fairly stable, minimal application update cost.

• Happens to all models, by all developers (companies,

research,…)

• Lack of program development support

• Understand application dependences

• Understand potential and best direction

• Difficulties of the models themselves

• Simple concepts take time to be matured

• As clean/elegant as we claim?

• Legacy sequential code less structured than ideal

New tools

• Taskification

• Performance prediction

• Debugging

New Platforms

• ARM + GPUs

• MIC

• …

Examples

Training

Education

Early adopters and porting

Research support:

• Consolider (Spain)

• ENCORE, TEXT, Montblanc,

DEEP (EC)

Standardization:

• OpenMP, …

• Maturity

10 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

The TEXT project

• Towards EXaflop applicaTions (EC FP7 Grant 261580)

• Demonstrate that Hybrid MPI/SMPSs addresses the Exascale challenges in a

an productive and efficient way.

• Deploy at supercomputing centers: Julich, EPCC, HLRS, BSC

• Port Applications (HLA, SPECFEM3D, PEPC, PSC, BEST, CPMD, LS1 MarDyn)

and develop algorithms.

• Develop additional environment capabilities

• tools (debug, performance)

• improvements in runtime systems (load balance and GPUSs)

• Support other users

• Identify users of TEXT applications

• Identify and support interested application developers

• Contribute to Standards (OpenMP ARB, PERI-XML)

11 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Deployment

12 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Codes being ported

• Scalapack: Cholesky factorization (UJI)

• Example of the issues in porting legacy code

• Demonstration that it is feasible

• The importance of scheduling

• LBC Boltzmann Equation Solver Tool (HLRS)

• Solver for incompressible flows based on Lattice-Boltzmann methods (LBM)

• LBM well suited for highly complex geometries. Simplified implementation: lbc

• Stencil. Sub domains

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 8 16 32 64 128 256 512 1024 2048

n
o

rm
a
liz

e
d

 w
a

llt
im

e

cores

weak scaling experiment

ideal
StarSs/MPI

MPI
OpenMP/MPI

13 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs: history/strategy/versions

C, C++, Fortran

OpenMP compatibility (~)

Contiguous and strided args.

Separate dependences/transfers

Inlined/outlined pragmas

Nesting

Heterogeneity: SMP/GPU/Cluster

No renaming,

Several schedulers: “Simple” locality aware sched,…

OMPSs

C, No Fortran

must provide directionality argument

ovelaping &strided

Reshaping strided accesses

Priority and locality aware scheduling

SMPSs regions

must provide directionality argument

Contiguous, non partially overlapped

Renaming

Several schedulers (priority, locality,…)

No nesting

C/Fortran

MPI/SMPSs optims.

Basic SMPSs

Evolving research since 2005

14 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

OmpSs

• What; Our long term infrastructure

• “Acceptable” relaxation of basic StarSs concept

• Reasonable merge/evolution of OpenMP

• Basic features

• Inlined/outlined task specifications

• Support multiple implementations for outlined tasks

• Separation of information to compute dependences and data movement

• Not necessary to specify directionality for an argument

• Concurrent: Breaking inout chains (for reduction implementation)

• Nesting

• Heterogeneity: CUDA, OpenCL (in the pipe)

• Strided and partially aliased arguments

• C, C++ and Fortran

15 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

OmpSs: Directives

#pragma omp task [input (...)] [output (...)] [inout (...)] [concurrent (...)]

 { function or code block }

To compute dependences To allow concurrent execution of

commutative tasks

Master wait for sons or specific data

availability

Relax consistency to main program

#pragma omp taskwait [on (...)] [noflush]

Task implementation for a GPU device

The compiler parses CUDA kernel invocation syntax
Support for multiple implementations of a task

Ask the runtime to ensure consistent data is

accessible in the address space of the device

#pragma omp target device ({ smp | cuda }) \

 [implements (function_name)] \

 { copy_deps | [copy_in (array_spec ,...)] [copy_out (...)] [copy_inout (...)] }

16 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

#pragma omp target device(cuda)

__global__ void cuda_perlin (pixel output [], float time,

 int j, int rowstride)

{

 unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;

 unsigned int off = blockIdx.y * blockDim.y + threadIdx.y;
 float vdx = 0.03125f;

 float vdy = 0.0125f;

 float vs = 2.0f;

 float bias = 0.35f;

 float vx = 0.0f;

 float red, green, blue;

 float xx, yy;

 float vy, vt;

 vx = ((float) i) * vdx;

 vy = ((float) (j+off)) * vdy;

 vt = time * vs;

 xx = vx * vs;

 yy = vy * vs;

 red = noise3(xx, vt, yy);

 green = noise3(vt, yy, xx);

 blue = noise3(yy, xx, vt);

 red += bias;

 green += bias;

 blue += bias;

 // Clamp to within [0 .. 1]

 red = (red > 1.0f) ? 1.0f : red;

 green = (green > 1.0f) ? 1.0f : green;

 blue = (blue > 1.0f) ? 1.0f : blue;

 red = (red < 0.0f) ? 0.0f : red;

 green = (green < 0.0f) ? 0.0f : green;

 blue = (blue < 0.0f) ? 0.0f : blue;

 red *= 255.0f;

 green *= 255.0f;

 blue *= 255.0f;

 output[(off * rowstride) + i].r = (unsigned char) red;

 output[(off * rowstride) + i].g = (unsigned char) green;

 output[(off * rowstride) + i].b = (unsigned char) blue;

 output[(off * rowstride) + i].a = (unsigned char) 255;

}

CUDA support

for (j = 0; j < img_height; j+=BS) { // BS image rows per task

 pixel *out = &output[j*rowstride];

 #pragma omp target device(cuda) copy_deps

 #pragma omp task output([rowstride*BS]out)

 {

 dim3 dimBlock;

 dim3 dimGrid;

 dimBlock.x = (img_width < BSx) ? img_width : BSx;

 dimBlock.y = (BS < BSy) ? BS : BSy;

 dimBlock.z = 1;

 dimGrid.x = img_width/dimBlock.x;

 dimGrid.y = BS/dimBlock.y;

 dimGrid.z = 1;

 cuda_perlin <<<dimGrid, dimBlock>>> (out, time, j, rowstride);

 }

 }

#pragma omp taskwait noflush

17 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

One source  many configurations of clusters with CUDA

1GPU 2 GPUs

4 Nodes

2 Nodes

1 Node

 J. Bueno et al, “Productive Programming of GPU Clusters with OmpSs”, IPDPS2012

18 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs NOT only «scientific computing»

• Plagiarism detection

• Histograms, sorting, …

• Trace browsing

• Paraver

• Clustering algorithms

• G-means

• Image processing

• Tracking

• Embedded and consumer

Colab. C. Grozea

FIRST

19 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Limitations?

• Discrete/atomic task

• Run to completion task. Start and end only interaction points. No dependencies

in/out to/from inside a task

• Interactions half way through a task?

• Late dependence binding

• Dependences are computed at task instantiation time.

• Do we need mechanisms for later dependence computation?

• OmpSs relaxation of functional model

• No need to specify directionality for all arguments, Commutative clause,…

• Flexibility – risk tradeoff?

20 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

Limitations?

• Limitation in data access patterns

• Contiguous/Strided regions

• Need/can afford further structures? Irregularly scattered, pointer traversal, nested,

…

• Granularity: flexibility vs. cost

• Parallelism and lookahead more important than overhead

• When: determined at instantiation time: may be too early if too much lookahead

• How much of a limitation, alternatives, worthwhile? needed usage feedback

J.M. Perez et al, “Handling task dependencies under strided and aliased references” ICS 2010

21 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

StarSs: Enabler for exascale

 Can exploit very unstructured

parallelism

 Not just loop/data parallelism

 Easy to change structure

 Supports large amounts of

lookahead

 Not stalling for dependence satisfaction

 Allow for locality optimizations to

tolerate latency

 Overlap data transfers, prefetch

 Reuse

 Nicely hybridizes into MPI/StarSs

 Propagates to large scale the node level

dataflow characteristics

 Overlap communication and computation

 A chance against Amdahl’s law

 Homogenized view at heterogeneity

 Any # and combination of CPUs, GPUs

 Support autotuning

 Malleability: Decouple program from

resources

 Allowing dynamic resource allocation and

load balance

 Tolerate noise

21

Data-flow; Asynchrony

Potential is there;

Can blame runtime

Compatible with proprietary

low level technologies

22 Jesus Labarta. OmpSs @ EPoPPEA, January 2012

A quiet revolution

• A change in mentality

• Deeply rooted (in or genes), but need to overcome our fears.

• May require some effort, but it is possible and there is a lot to gain.

• Understanding and confidence through tools will be key

• Need education from very early levels (shape instead of reshape minds)

• Adaptability/Flexibility is key to survive in rapidly changing environments

Top down, potentials and hints

rather than how-tos,

Asynchrony, data flow, automatic

locality management

 Bottom up and being in total control

Fork join, data parallel, explicit data

placement

