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Challenges on the way to Exascale 

• Efficiency ( …, power, … ) 

• Variability 

• Memory 

• Faults 

• Scale (…,concurrency, strong scaling,…) 

• Complexity (…Hierarchy /Heterogeneity,…) 

 

J. Labarta, et all,  “BSC Vision towards Exascale”  

IJHPCA vol 23, n. 4 Nov 2009 
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Supercomputer Development 

Application 

Algorithm 

Progr. Model 

Run time 

Architecture 

Is any of them more 

important than the 

others? 

 

 

Which? 

The sword to cut the “multicore” Gordian Knot  
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StarSs: a pragmatic approach 

• Rationale 

• Runtime managed, asynchronous data-flow execution 

models are key 

• Need to provide a natural migration towards dataflow 

• Need to tolerate “acceptable” relaxation of pure models 

• Focus on algorithmic structure and not so much on 

resources 

 

• StarSs: a family of task based programming models 

• Basic concept: write sequential on a flat single address 

space + directionality annotations 

• Order IS defined !!! 

• Dependence and data access related information (NOT 

specification) in a single mechanism 

• Think global, specify local 

• Power to the runtime !!! 
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void Cholesky( float *A ) { 

   int i, j, k; 

   for (k=0; k<NT; k++) { 

      spotrf (A[k*NT+k]) ;  

      for (i=k+1; i<NT; i++)  

         strsm (A[k*NT+k], A[k*NT+i]);  

      // update trailing submatrix 

      for (i=k+1; i<NT; i++) { 

         for (j=k+1; j<i; j++) 

            sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]); 

         ssyrk (A[k*NT+i], A[i*NT+i]); 

   } 

} 

StarSs: data-flow execution of sequential programs 

#pragma omp task inout ([TS][TS]A) 

void spotrf (float *A); 

#pragma omp task input ([TS][TS]T) inout ([TS][TS]B) 

void strsm (float *T, float *B); 

#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C ) 

void sgemm (float *A, float *B, float *C); 

#pragma omp task input ([TS][TS]A) inout ([TS][TS]C) 

void ssyrk (float *A, float *C); 

Write Decouple 

how we write 

form 

how it is executed 

Execute 
TS 

TS 

NB 

NB 

TS 

TS 
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void Cholesky( float *A ) { 

   int i, j, k; 

   for (k=0; k<NT; k++) { 

      spotrf (A[k*NT+k]); 

      #pragma omp parallel for 

      for (i=k+1; i<NT; i++)  

         strsm (A[k*NT+k], A[k*NT+i]);  

      for (i=k+1; i<NT; i++) { 

         for (j=k+1; j<i; j++) { 

            #pragma omp task  

            sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]); 

         } 

         #pragma omp task  

         ssyrk (A[k*NT+i], A[i*NT+i]); 

         #pragma omp taskwait 

      } 

   } 

} 

StarSs vs OpenMP 

void Cholesky( float *A ) { 

   int i, j, k; 

   for (k=0; k<NT; k++) { 

      spotrf (A[k*NT+k]); 

      #pragma omp parallel for 

      for (i=k+1; i<NT; i++)  

         strsm (A[k*NT+k], A[k*NT+i]);  

      // update trailing submatrix 

      for (i=k+1; i<NT; i++) { 

         #pragma omp task  

         { 

         #pragma omp parallel for 

         for (j=k+1; j<i; j++) 

            sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]); 

          } 

         #pragma omp task  

         ssyrk (A[k*NT+i], A[i*NT+i]); 

         } 

         #pragma omp taskwait 

   } 

} 

void Cholesky( float *A ) { 

   int i, j, k; 

   for (k=0; k<NT; k++) { 

      spotrf (A[k*NT+k]); 

      #pragma omp parallel for 

      for (i=k+1; i<NT; i++)  

         strsm (A[k*NT+k], A[k*NT+i]);  

      for (i=k+1; i<NT; i++) { 

         #pragma omp parallel for 

         for (j=k+1; j<i; j++) 

            sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]); 

         ssyrk (A[k*NT+i], A[i*NT+i]); 

   } 

} 
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StarSs: the potential of data access information  

• Flat global address space seen by 

programmer 

• Flexibility to dynamically traverse  dataflow 

graph “optimizing” 

• Concurrency. Critical path 

• Memory access: data transfers performed by 

run time 

 

• Opportunities for runtime to 

• Prefetch 

• Reuse 

• Eliminate antidependences (rename) 

• Replication management 

• Coherency/consistency handled by the runtime 
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Hybrid MPI/StarSs 

• Overlap communication/computation 

• Extend asynchronous data-flow 

execution to outer level 

• Linpack example: Automatic lookahead 

… 

for (k=0; k<N; k++) { 

   if (mine) { 

      Factor_panel(A[k]); 

      send (A[k]) 

   } else { 

      receive (A[k]); 

      if (necessary) resend (A[k]); 

   } 

   for (j=k+1; j<N; j++)  

      update (A[k], A[j]); 

… 

#pragma css task inout(A[SIZE]) 

void Factor_panel(float *A); 

#pragma css task input(A[SIZE]) inout(B[SIZE]) 

void update(float *A, float *B); 

#pragma css task input(A[SIZE]) 

void send(float *A); 

#pragma css task output(A[SIZE]) 

void receive(float *A); 

#pragma css task input(A[SIZE]) 

void resend(float *A); 

P0 P1 P2 

V. Marjanovic, et al, “Overlapping Communication and Computation by using a Hybrid MPI/SMPSs Approach” ICS 2010 
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All that easy/wonderful? 

• Difficulties for adoption 

• Chicken and egg issue users ↔ manufacturers 

• Availability.  

• Runtime implementations chasing new platforms 

• Development as we go 

• Fairly stable, minimal application update cost. 

• Happens to all models, by all developers ( companies, 

research,…) 

• Lack of program development support 

• Understand application dependences 

• Understand potential and best direction 

• Difficulties of the models themselves 

• Simple concepts take time to be matured 

• As clean/elegant as we claim? 

• Legacy sequential code less structured than ideal 

 

New  tools 

• Taskification 

• Performance prediction 

• Debugging 

 

New Platforms 

• ARM + GPUs 

• MIC 

• … 

Examples 

Training 

Education 

Early adopters and porting 

Research support: 

• Consolider (Spain) 

• ENCORE, TEXT, Montblanc, 

DEEP (EC) 

Standardization:  

• OpenMP, … 

• Maturity 
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The TEXT project 

• Towards EXaflop applicaTions (EC FP7 Grant  261580) 

 

• Demonstrate that Hybrid MPI/SMPSs addresses the Exascale challenges in a 

an productive and efficient way.  

• Deploy at supercomputing centers: Julich, EPCC, HLRS, BSC 

• Port Applications (HLA, SPECFEM3D, PEPC, PSC, BEST, CPMD, LS1 MarDyn) 

and develop algorithms. 

• Develop additional environment capabilities 

• tools (debug, performance) 

• improvements in runtime systems (load balance and GPUSs) 

• Support other users 

• Identify users of TEXT applications 

• Identify and support interested application developers  

• Contribute to Standards (OpenMP ARB, PERI-XML) 
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Deployment 
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Codes being ported 

• Scalapack: Cholesky factorization (UJI) 

• Example of the issues in porting legacy code 

• Demonstration that it is feasible 

• The importance of scheduling 

 

• LBC Boltzmann Equation Solver Tool (HLRS) 

• Solver for incompressible flows based on Lattice-Boltzmann methods (LBM) 

• LBM well suited for highly complex geometries. Simplified implementation: lbc 

• Stencil. Sub domains 

 

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 8  16  32  64  128  256  512  1024  2048

n
o

rm
a
liz

e
d

 w
a

llt
im

e

cores

weak scaling experiment

ideal
StarSs/MPI

MPI
OpenMP/MPI



13 Jesus Labarta. OmpSs @ EPoPPEA, January 2012                                                                                                                                    

StarSs: history/strategy/versions 

C, C++, Fortran 

OpenMP compatibility (~) 

Contiguous and strided args.  

Separate dependences/transfers 

Inlined/outlined pragmas 

Nesting 

Heterogeneity: SMP/GPU/Cluster 

No renaming, 

Several schedulers: “Simple” locality aware sched,… 

OMPSs 

C, No Fortran 

must provide directionality argument 

ovelaping &strided 

Reshaping strided accesses 

Priority and locality aware scheduling 

SMPSs regions  

must provide directionality argument 

Contiguous, non partially overlapped 

Renaming 

Several schedulers (priority, locality,…) 

No nesting 

C/Fortran 

MPI/SMPSs optims. 

Basic SMPSs  

Evolving research since 2005 
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OmpSs 

• What; Our long term infrastructure 

• “Acceptable” relaxation of basic StarSs concept 

• Reasonable merge/evolution of OpenMP 

 

• Basic features 

• Inlined/outlined task specifications 

• Support multiple implementations for outlined tasks 

• Separation of information to compute dependences and data movement 

• Not necessary to specify directionality for an argument 

• Concurrent: Breaking inout chains (for reduction implementation) 

• Nesting 

• Heterogeneity: CUDA, OpenCL (in the pipe) 

• Strided and partially aliased arguments 

• C, C++ and Fortran 
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OmpSs: Directives 

#pragma omp task [ input (...)] [ output (...)] [ inout (...)] [ concurrent (...)] 

 { function or code block }  

To compute dependences To allow concurrent execution of 

commutative tasks 

Master wait for sons or specific data 

availability 

Relax consistency to main program 

#pragma omp taskwait [on (...)] [noflush]  

Task implementation for a GPU device 

The compiler parses CUDA kernel invocation syntax 
Support for multiple implementations of a task 

Ask the runtime to ensure consistent data is 

accessible in the address space of the device 

#pragma omp target device ({ smp | cuda })     \ 

                      [ implements ( function_name )]           \ 

                      { copy_deps | [ copy_in ( array_spec ,...)] [ copy_out (...)] [ copy_inout (...)] }  
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#pragma omp target device(cuda) 

__global__ void cuda_perlin (pixel output [], float time,  

                             int j, int rowstride) 

{ 

    unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; 

    unsigned int off = blockIdx.y * blockDim.y + threadIdx.y; 
    float vdx = 0.03125f; 

    float vdy = 0.0125f; 

    float vs = 2.0f; 

    float bias = 0.35f; 

    float vx = 0.0f; 

    float red, green, blue; 

    float xx, yy; 

    float vy, vt; 

 

    vx = ((float) i) * vdx; 

    vy = ((float) (j+off)) * vdy; 

    vt = time * vs; 

 

    xx = vx * vs; 

    yy = vy * vs; 

 

    red = noise3(xx, vt, yy); 

    green = noise3(vt, yy, xx); 

    blue = noise3(yy, xx, vt); 

 

    red += bias; 

    green += bias; 

    blue += bias; 

 

    // Clamp to within [0 .. 1] 

    red = (red > 1.0f) ? 1.0f : red; 

    green = (green > 1.0f) ? 1.0f : green; 

    blue = (blue > 1.0f) ? 1.0f : blue; 

 

    red = (red < 0.0f) ? 0.0f : red; 

    green = (green < 0.0f) ? 0.0f : green; 

    blue = (blue < 0.0f) ? 0.0f : blue; 

 

    red *= 255.0f; 

    green *= 255.0f; 

    blue *= 255.0f; 

 

    output[(off * rowstride) + i].r = (unsigned char) red; 

    output[(off * rowstride) + i].g = (unsigned char) green; 

    output[(off * rowstride) + i].b = (unsigned char) blue; 

    output[(off * rowstride) + i].a = (unsigned char) 255;  

} 

CUDA support 

for (j = 0; j < img_height; j+=BS) {        // BS image rows per task 

        pixel *out = &output[j*rowstride];   

        #pragma omp target device(cuda) copy_deps 

        #pragma omp task output([rowstride*BS]out) 

        { 

            dim3 dimBlock; 

            dim3 dimGrid; 

            dimBlock.x = (img_width < BSx) ? img_width : BSx; 

            dimBlock.y = (BS < BSy) ? BS : BSy; 

            dimBlock.z = 1; 

            dimGrid.x = img_width/dimBlock.x; 

            dimGrid.y = BS/dimBlock.y; 

            dimGrid.z = 1; 

 

            cuda_perlin <<<dimGrid, dimBlock>>> (out, time, j, rowstride); 

        } 

    } 

#pragma omp taskwait noflush 
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One source  many configurations of clusters with CUDA 

1GPU 2 GPUs 

4 Nodes 

2 Nodes 

1 Node 

 J. Bueno et al, “Productive Programming of GPU Clusters with OmpSs”, IPDPS2012  
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StarSs NOT only «scientific computing» 

• Plagiarism detection 

• Histograms, sorting, … 

 

• Trace browsing 

• Paraver 

 

• Clustering algorithms 

• G-means 

 

• Image processing 

• Tracking 

 

• Embedded and consumer 

 

Colab. C. Grozea 

FIRST 
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Limitations? 

• Discrete/atomic task 

• Run to completion task. Start and end only interaction points. No dependencies 

in/out to/from inside a task 

• Interactions half way through a task? 

 

• Late dependence binding 

• Dependences are computed at task instantiation time. 

• Do we need mechanisms for later dependence computation?  

 

• OmpSs relaxation of functional model 

• No need to specify directionality for all arguments, Commutative clause,… 

• Flexibility – risk  tradeoff? 
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Limitations? 

• Limitation in data access patterns 

• Contiguous/Strided regions 

• Need/can afford  further structures?  Irregularly scattered, pointer traversal, nested, 

…  

 

• Granularity: flexibility vs. cost 

• Parallelism and lookahead more important than overhead 

 

• When: determined at instantiation time: may be too early if too much lookahead 

 

 

 

 

 

• How much of a limitation, alternatives, worthwhile? needed usage feedback 

J.M. Perez et al, “Handling task dependencies under strided and aliased references”  ICS 2010 
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StarSs: Enabler for exascale 

 Can exploit very unstructured 

parallelism 

 Not just loop/data parallelism 

 Easy to change structure 

 Supports large amounts of 

lookahead 

 Not stalling for dependence satisfaction 

 Allow for locality optimizations to 

tolerate latency 

 Overlap data transfers, prefetch 

 Reuse 

 Nicely hybridizes into MPI/StarSs 

 Propagates to large scale the node level 

dataflow characteristics 

 Overlap communication and computation 

 A chance against  Amdahl’s law 

 Homogenized view at heterogeneity 

 Any # and combination of CPUs, GPUs 

 Support autotuning 

 Malleability: Decouple program from 

resources 

 Allowing dynamic resource allocation and 

load balance 

 Tolerate noise 

 

21 

Data-flow; Asynchrony 

Potential is there; 

Can blame runtime 

Compatible with proprietary  

low level technologies 
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A quiet revolution 

• A change in mentality 

 

 

 

 

 

• Deeply rooted (in or genes), but need to overcome our fears.  

• May require some effort, but it is possible and there is a lot to gain. 

• Understanding and confidence through tools will be key 

• Need education from very early levels (shape instead of reshape minds) 

 

• Adaptability/Flexibility is key to survive in rapidly changing environments 

Top down, potentials and hints 

rather than how-tos, 

 

Asynchrony, data flow, automatic 

locality management 

 Bottom up and being in total control 

 

 

Fork join, data parallel, explicit data 

placement 


