
Supporting Lock-Free Composition
of Concurrent Data Objects

Daniel Cederman and Philippas Tsigas
Department of Computer Science and Engineering

Chalmers University of Technology
{cederman,tsigas}@chalmers.se

ABSTRACT
We present a lock-free methodology for composing highly
concurrent linearizable objects together by unifying their lin-
earization points. This makes it possible to relatively easily
introduce atomic lock-free move operations to a wide range
of concurrent objects. Experimental evaluation has shown
that the operations originally supported by the data objects
keep their performance behavior under our methodology.

1. INTRODUCTION
Lock-free data objects (i.e. lock-free concurrent data struc-
tures) offer several advantages over their blocking counter-
parts, such as being immune to deadlocks, priority inversion,
and convoying, and have been shown to work well in practice
[10, 14, 15]. However, the lack of a general, efficient, lock-
free method for composing them makes it difficult for the
programmer to perform multiple operations together atomi-
cally. To efficiently glue together multiple objects, and their
respective operations, one needs to perform an often chal-
lenging task that requires an efficient algorithmic design for
every particular composition. The task is made difficult by
the fact that lock-free data objects are often too complicated
to be trivially altered.

With the term composing we refer to the task of binding
together multiple operations in such a way that they can
be performed as one, without any intermediate state being
visible to other processes. In the literature the term is also
used for nesting, making one data object part of another,
which is an interesting problem, but outside the scope of
this paper.

Composing lock-free concurrent data objects, in the context
that we consider in this paper, has been an open problem in
the area of lock-free data objects. There exists customized

The results presented in this extended abstract appeared
before in the proceedings of the 7th ACM international con-
ference on Computing Frontiers [1].

compositions of specific concurrent data objects, including
the composition of lock-free flat-sets by Gidenstam et al.
that constitute the foundation of a lock-free memory alloca-
tor [4, 3], but no generic solution.

Using blocking locks to compose lock-free operations is not
a viable solution, as it would reduce the concurrency and
remove the lock-freedom guarantees of the operations. The
reason for this is that the lock-free operations would have
to acquire a lock before executing, in order to ensure that
they are not executed concurrently with any composed op-
erations. This would cause the operations to be executed
sequentially and lose their lock-free behavior. Simply put, a
generic way to compose concurrent objects, without foiling
the possible lock-freedom guarantees of the objects, has to
be lock-free itself.

2. CONTRIBUTIONS
The main contribution of this paper is to provide a method-
ology to introduce atomic move operations, that can move
elements between objects of different types, to a large class of
already existing concurrent objects without having to make
significant changes to them. It manages this while preserv-
ing the lock-free guarantees of the object and without intro-
ducing significant performance penalties to the previously
supported operations.

In our methodology we present a set of properties that can be
used to identify suitable concurrent objects and we describe
the mostly mechanical changes needed for our move opera-
tion to function together with the objects. The properties
required by our methodology are fulfilled by a wide variety of
lock-free data objects, among them lock-free stacks, queues,
lists, skip-lists, priority queues, hash-tables and dictionaries
[13, 9, 12, 2, 11, 16, 7, 6].

Our methodology is based on the idea of decomposing and
then arranging lock-free operations appropriately so that
their linearization points can be combined to form new com-
posed lock-free operations. The linearization point of a con-
current operation is the point in time where the operation
can be said to have taken effect. Most concurrent data ob-
jects that are not read- or write-only support an insert and
a remove operation, or a set of equivalent operations that
can be used to modify its content. These two types of opera-
tions can be composed together using the method presented
in this paper to make them appear to take effect simultane-
ously. By doing this we provide a lock-free atomic operation

that can move elements between objects of different types.
To the best of our knowledge this is the first time that such
a general scheme has been proposed.

3. THE METHODOLOGY
The methodology that we present can be used to unify the
linearization points of a remove and an insert operation for
any two concurrent objects, given that they fulfill certain
requirements. We call a concurrent object that fulfills these
requirements a move-candidate object.

3.1 Characterization
Definition 1. A concurrent object is a move-candidate

if it fulfills the following requirements:

1. It implements linearizable operations for insertion and
removal of a single element.

2. Insert and remove operations invoked on different in-
stances of the object can succeed simultaneously.

3. The linearization points of the successful insert and re-
move operations can be associated with successful CAS
operations, (on a pointer), by the process that invoked
it. Such an associated successful CAS can never lead
to an unsuccessful insert or remove operation.

4. The element to be removed is accessible before the lin-
earization point.

To implement a move operation, the equivalent of a re-
move and insert operation needs to be available or be imple-
mented. A generic insert or remove operation would be very
difficult to write, as it must be tailored specifically to the
concurrent object, which motivates the first requirement.

Requirement 2 is needed since a move operation tries to
perform the removal and insertion of an element at the same
time. If a successful removal invalidates an insertion, or
the other way around, then the move operation can never
succeed. This could happen when the insert and remove
operations share locks between them or when they are using
memory management schemes such as hazard pointers [8],
if not dealt with explicitly. With shared locks there is the
risk of deadlocks, when the process could be waiting for
itself to release the lock in the remove operation, before it
can acquire the same lock in the insert operation. Hazard
pointers, which are used to mark memory that cannot yet
be reused, could be overwritten if the same pointers are used
in both the insert and remove operations.

Requirement 3 requires that the linearization points can be
associated with successful CAS operations. The lineariza-
tion points are usually provided together with the algorith-
mic description of each object. The requirement also states
that the CAS operation should be on a variable holding a
pointer. This is not a strict requirement; the reason for it
is that the DCAS operation used in our methodology often
needs to be implemented in a lock-free way in software, due
to lack of hardware support for such an operation. By only
working with pointers it makes it easier to identify words
that are taking part in a DCAS operation. The last part,

which requires the linearization point of an operation to be
part of the process that invoked it, prevents concurrent data
objects from using some of the possible helping schemes, but
not the majority of them. For example, it does not prevent
using the commonly used helping schemes where the pro-
cess that helps another process is not the one that defines
the linearization point of the process helped. As described
in Section 2, there is a large class of well-known basic and
advanced data objects that fulfills this requirement.

Requirement 4 is necessary as the insert operation needs to
be invoked with the removed element as an argument. The
element is usually available before the linearization point,
but there are data objects where the element is never re-
turned by the remove operation, or is accessed after the
linearization point for efficiency reasons.

3.2 The Algorithm
The main part of the algorithm is the actual move operation,
which is described in the following section.

3.2.1 The Move Operation
The main idea behind the move operation is based on the
observation that the linearization points of many concurrent
objects’ operations is a CAS and that by combining these
CASs and performing them simultaneously, it would be pos-
sible to compose operations. A move operation does not
need an expensive general multi-word CAS, so an efficient
two word CAS customized for this particular operation is
good enough. By definition a move-candidate operation has
a linearization point that consists of a successful CAS. We
call the part of the operation prior to this linearization point
the init-phase and the part after it the cleanup-phase. The
move can then be seen as taking place in five steps (where
step four and five can be performed in any order):

1st step The init-phase of the remove operation is per-
formed. If the removal fails, due for example to the
element not existing, the move is aborted. Otherwise
the arguments to the CAS at the potential lineariza-
tion point are stored. By requirement 4 of the defini-
tion of a move-candidate, the element to be moved can
now be accessed.

2nd step The init-phase of the insert operation is per-
formed using the element received in the previous step.
If the insertion fails, due for example to the object
being full, the move is aborted. Otherwise the argu-
ments to the CAS at the potential linearization point
are stored.

3rd step The CASs that define the linearization points,
one for each of the two operations, are performed to-
gether atomically using a DCAS operation with the
stored CAS arguments. Step two is redone if the DCAS
failed due to a conflict in the insert operation. Steps
one and two are redone if the conflict was in the remove
operation.

4th step The cleanup-phase for the insert operation is
performed.

5th step The cleanup-phase for the remove operation is
performed.

To be able to divide the insert and remove operations into
the init- and cleanup-phases without resorting to code du-
plication, it is required to replace all possible linearization
point CASs with a call to the scas operation. The task of
the scas operation is to restore control to the move oper-
ation and store the arguments intended for the CAS that
was replaced. The scas operation is described in detail in
our earlier paper [1], and comes in two forms, one to be
called by the insert operations and one to be called by the
remove operations. They can be distinguished by the fact
that the scas for removal requires the element to be moved
as an argument. If the scas operation is invoked as part of a
normal insert or remove, it reverts back to the functionality
of a normal CAS. This should minimize the impact on the
normal operations.

If the DCAS in step 3 should fail, this could be for one of
two reasons. First, it could fail because the CAS for the in-
sert failed. In this case the init-phase for the insert needs to
be redone before the DCAS can be invoked again. Second,
it could fail because the CAS for the remove failed. Now
we need to redo the init-phase for the remove, which means
that the insert operation needs to be aborted. For concur-
rent objects such as linked lists and stacks there might not
be a preexisting way for the insert to abort, so code to handle
this scenario must be inserted. The code necessary usually
amounts to freeing allocated memory (or bookkeeping it for
later use in subsequent invocations) and then return. The
reason for this simplicity is that the abort always occurs be-
fore the operation has reached its linearization point. If the
insertion operation can fail for reasons other than conflicts
with another operation, there is also a need for the remove
operation to be able to handle the possibility of aborting.

Depending on whether one uses a hardware implementation
of a DCAS or a software implementation, it might also be
required to alter all accesses to memory words that could
take part in DCAS, so that they access the word via a special
read-operation designed for the DCAS.

A concurrent object that is a move-candidate (Definition 1)
and has implemented all the above changes is called a move-
ready concurrent object. This is described formally in the
following definition.

Definition 2. A concurrent object is move-ready if it is
a move-candidate and has implemented the following changes:

1. The CAS at each linearization point in the insert and
remove operations have been changed to scas.

2. The insert (and remove) operation(s) can abort if the
scas returns ABORT.

3. (All memory locations that could be part of a scas are
accessed via the read operation.)

The changes required are mostly mechanical once the object
has been found to adhere to the move-ready definition. This
object can then be used by our move operation to move
items between different instances of any concurrent move-
ready objects. Requirement 3 is not required for systems
with a hardware based DCAS.

The move operation is linearizable and lock-free if used to-
gether with two move-ready lock-free concurrent data ob-
jects [1].

4. EXPERIMENTS
The evaluation was performed on a machine with an Intel
Core i7 950 3 GHz processor and 6 GB DDR3-1333 memory.
The processor has four cores with hyper-threading, provid-
ing us with eight virtual processors in total. The experiment
was performed using a move-ready version of the lock-free
queue by Michael and Scott [9]. More experiments are avail-
able in our earlier paper [1].

The Intel Core i7 does not support a hardware DCAS, so
we performed the experiments using a software DCAS based
on the same idea as the one by Harris et al. [1, 5]. Lock-
freedom is achieved by using a two-phase locking scheme
with helping, so that a concurrent operation can help the
DCAS operation finish. A full description is available in our
earlier paper [1].

In the experiment two types of threads were used, one that
performed only insert/remove operations, and one that only
performed move operations. The number of threads, as well
as the number of move-only threads, were varied between
one and sixteen. We ran the experiment for five seconds
and measured the number of operations performed in to-
tal per millisecond. Move operations were counted as two
operations to normalize the result.

For reference we compared the lock-free concurrent object
with a blocking implementation of the same object, using
test-test-and-set to implement the locks. We did the experi-
ment both with and without a backoff function. The backoff
function was used to lower the contention so that every time
a process failed to acquire the lock, or, in case of the lock-
free object, failed to insert or remove an element due to a
conflict, the time it waited before trying again was doubled.

5. DISCUSSION
In Figure 1, in the leftmost graph, we see that the perfor-
mance increase sharply up to four threads, the number of
cores on the processor, and then increases more slowly up
to eight threads, the number of cores times two for hyper-
threading. After eight threads there is no increase in per-
formance as there are no more processing units. After this
point the blocking version drops in performance when more
threads are added.

When more move operation are performed, the performance
does not scale as well, as can be seen in the two other graphs.
The move operations are more expensive as they involve
performing two operations and affects both data objects,
which lowers the possible parallelism.

Regarding the backoff, we can see that with few move op-
erations it hurts performance, whereas when the number of
move operations increases it helps the performance. Unfor-
tunately, it is typically hard to predict when this happens,
making it difficult to design an optimal backoff function that
works well in all scenarios.

 0

 5000

 10000

 15000

 20000

 1 2 4 6 8 10 12 14 16

T
o
t
a
l

o
p
e
r
a
t
i
o
n
s

p
e
r

m
s

Threads

Insert/Remove (0% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Insert/Remove/Move (50% Move-only threads)

 1 2 4 6 8 10 12 14 16

Threads

Move (100% Move-only threads)

Lockfree without backoff
Lockfree with backoff

Blocking without backoff
Blocking with backoff

Figure 1: Results from the queue evaluation.

6. CONCLUSION
We present a lock-free methodology for composing highly
concurrent linearizable objects by unifying their lineariza-
tion points. Our methodology introduces atomic move op-
erations that can move elements between objects of different
types, to a large class of already existing concurrent ob-
jects without having to make significant changes to them.
Our experimental results demonstrate that the methodol-
ogy presented in the paper, applied to the classical lock-free
implementations, offers better performance and scalability
than a composition method based on locking. These results
also demonstrate that it does not introduce noticeable per-
formance penalties to the previously supported operations
of the concurrent objects.

Acknowledgments
This work was partially supported by the EU as part of FP7
Project PEPPHER (www.peppher.eu) under grant 248481
and by the Swedish Research Council under grant number
37252706. Daniel Cederman was supported by Microsoft Re-
search through its European PhD Scholarship Programme.

7. REFERENCES
[1] D. Cederman and P. Tsigas. Supporting Lock-Free

Composition of Concurrent Data Objects. In CF ’10:
Proceedings of the 7th ACM international conference
on Computing Frontiers, pages 53–62, 2010.

[2] M. Fomitchev and E. Ruppert. Lock-free linked lists
and skip lists. In PODC ’04: Proceedings of the
twenty-third annual ACM symposium on Principles of
distributed computing, pages 50–59, 2004.

[3] A. Gidenstam, M. Papatriantafilou, and P. Tsigas.
Allocating Memory in a Lock-Free Manner. In ESA
’05: Proceedings of the 13th Annual European
Symposium on Algorithms, pages 329–342, 2005.

[4] A. Gidenstam, M. Papatriantafilou, and P. Tsigas.
NBmalloc: Allocating Memory in a Lock-Free
Manner. Algorithmica, 2009.

[5] T. Harris, K. Fraser, and I. A. Pratt. A Practical
Multi-word Compare-and-Swap Operation. In DISC
’02: Proceedings of the 16th International Conference
on Distributed Computing, pages 265–279, 2002.

[6] T. L. Harris. A pragmatic implementation of

non-blocking linked-lists. In DISC ’01: Proceedings of
the 15th International Conference on Distributed
Computing, pages 300–314, 2001.

[7] M. M. Michael. High performance dynamic lock-free
hash tables and list-based sets. In Proceedings of the
fourteenth annual ACM symposium on Parallel
algorithms and architectures, pages 73–82, 2002.

[8] M. M. Michael. Hazard Pointers: Safe Memory
Reclamation for Lock-Free Objects. IEEE
Transactions on Parallel and Distributed Systems,
15(6):491–504, 2004.

[9] M. M. Michael and M. L. Scott. Simple, Fast, and
Practical Non-Blocking and Blocking Concurrent
Queue Algorithms. In PODC ’96: Proceedings of the
fifteenth annual ACM symposium on Principles of
distributed computing, pages 267–275, 1996.

[10] H. Sundell and P. Tsigas. In Proceedings of the 6th
Workshop on Languages, Compilers and Run-time
Systems for Scalable Computers.

[11] H. Sundell and P. Tsigas. Scalable and lock-free
concurrent dictionaries. In SAC ’04: Proceedings of
the 2004 ACM symposium on Applied computing,
pages 1438–1445, 2004.

[12] H. Sundell and P. Tsigas. Fast and lock-free
concurrent priority queues for multi-thread systems.
Journal of Parallel and Distributed Computing,
65(5):609–627, 2005.

[13] R. K. Treiber. Systems programming: Coping with
parallelism. In Technical Report RJ 5118, April 1986.

[14] P. Tsigas and Y. Zhang. Evaluating the Performance
of Non-Blocking Synchronization on Shared-Memory
Multiprocessors. ACM SIGMETRICS Performance
Evaluation Review, 29(1):320–321, 2001.

[15] P. Tsigas and Y. Zhang. Integrating Non-Blocking
Synchronisation in Parallel Applications: Performance
Advantages and Methodologies. In WOSP ’02:
Proceedings of the 3rd international workshop on
Software and performance, pages 55–67, 2002.

[16] J. D. Valois. Lock-free linked lists using
compare-and-swap. In PODC ’95: Proceedings of the
fourteenth annual ACM symposium on Principles of
distributed computing, pages 214–222, 1995.

