
Efficient Lock-Free Queues that Mind the Cache

Anders Gidenstam
School of Business and

Informatics
University of Borås

Borås, Sweden
anders.gidenstam@hb.se

Håkan Sundell
School of Business and

Informatics
University of Borås

Borås, Sweden
hakan.sundell@hb.se

Philippas Tsigas
Department of Computer
Science and Engineering
Chalmers University of

Technology
Göteborg, Sweden

philippas.tsigas@chalmers.se

ABSTRACT
This paper discusses a lock-free FIFO queue data structure that is
presented in [3]. The algorithm supports multiple producers and
multiple consumers and weak memory models. It has been de-
signed to be cache-aware and work directly on weak memory mod-
els. It utilizes the cache behavior in concert with lazy updates of
shared data, and a dynamic lock-free memory management scheme
to decrease unnecessary synchronization and increase performance.
Experiments on an 8-way multi-core platform show significantly
better performance for the algorithm compared to previous fast
lock-free queue algorithms.

1. INTRODUCTION
Lock-free implementation of data structures is a scalable approach
for designing concurrent data structures. Lock-free data structures
offer high concurrency but also immunity to deadlocks and convoy-
ing, in contrast to their blocking counterparts. Concurrent FIFO
queue data structures are fundamental data structures that are key
components in applications, algorithms, run-time and operating sys-
tems. This paper discusses an efficient lock-free queue data struc-
ture for multiple producers and consumers presented in [3]. The
algorithm is cache-aware in order to minimize its communication
overhead. It works also on weak memory consistency models (e.g.
due to out-of-order execution) without need for additional fence [5]
instructions for reads and writes to shared memory done in the al-
gorithm.

With the strongly emerging multi-core architectures for main-stream
as well as high-performance computing, there is an increasing in-
terest for efficient concurrent data structures that allow maximal ex-
ploitation of the available parallelism. With the ever more complex
multithreaded architectures of applications and systems, there is
also likely to be an increasing need for stronger progress and safety
guarantees of components in supporting frameworks, and conse-
quently non-blocking synchronization would fit very well thanks to
both its possible advantages in performance and its progress prop-
erties.

Two basic non-blocking methods have been proposed in the lit-

erature, lock-free and wait-free [4]. Lock-free implementations of
shared data structures guarantee that at any point in time in any pos-
sible execution some operation will complete in a finite number of
steps. In cases with overlapping accesses, some of them might have
to repeat the operation in order to complete it. However, real-time
systems might have stronger requirements on progress, and thus in
wait-free implementations each task is guaranteed to correctly com-
plete any operation in a bounded number of its own steps, regard-
less of overlaps of the individual steps and the execution speed of
other processes; i.e., while the lock-free approach might allow (un-
der very bad timing) individual processes to starve, wait-freedom
ensures individual progress for every task in the system.

Large efforts have been made on designing efficient concurrent
queue data structures and blocking (or mixed with non-blocking
techniques) implementations are available in most contemporary
programming language frameworks supporting multithreading. In
this work, we focus only on strictly non-blocking queue algorithms
as implementations being just "concurrent" (and possibly efficient
as e.g. "lock-less") are still prune to problems as e.g. deadlocks.
Absence of explicit locks does not imply any non-blocking prop-
erties, unless the latter are proven to be fulfilled. A large number
of lock-free (and wait-free) queue implementations have appeared
in the literature, e.g. [7][1][12][9][10][6] being the most influen-
tial or recent and most efficient results. These results all have a
number of specialties or drawbacks as e.g. limitations in allowed
concurrency, static in size, requiring atomic primitives not avail-
able on contemporary architectures, and scalable in performance
but having a high overhead. The algorithm improves on previous
results by combining the underlying approaches and designing the
algorithm cache-aware and tolerant to weak memory consistency
models in order to maximize efficiency on contemporary multi-core
platforms. The lock-free algorithm has no limitations on concur-
rency, is fully dynamic in size, and only requires atomic primitives
available on contemporary platforms. Experiments on an 8-way
multi-core platform show significantly better performance for the
algorithm compared to previous lock-free implementations.

The rest of the paper is organized as follows. In Section 2, related
work is discussed. Section 3 describes the algorithm. In Section
4, some benchmark experiments are described. Finally, Section 5
concludes this paper. The full details and analysis of the algorithm
are available in [3].

2. RELATED WORK
Lamport [7] presented a lock-free (actually wait-free) implemen-
tation of a queue based on a static array, with limited concurrency
supporting only one producer and one consumer. In this algorithm,

Enqueue()T1

T2 Dequeue()T3 Dequeue()

Removed (NULL2)

Enqueued items

Empty (NULL)

globalTailBlock globalHeadBlock

Figure 1: A lock-free queue implemented using a linked list of arrays, where each thread is avoiding accesses to global pointers in
order to reduce number of cache misses.

synchronization is done via shared indices indicating the current
head and tail array element. Giacomoni et al. [1] presented a cache-
aware modification which instead synchronize directly on the array
elements. Tsigas and Zhang [12] presented a lock-free extension
of [7] where synchronization is done both directly on the array el-
ements and the shared head and tail indices using CAS1, thus sup-
porting multiple producers and consumers. In order to avoid the
ABA problem when updating the array elements, the algorithm ex-
ploits using two (or more) null values; the ABA problem is due to
the inability of CAS to detect concurrent changes of a memory word
from a value (A) to something else (B) and then again back to the
first value (A). Moreover, for lowering the memory contention the
algorithm alternates every other operation between scanning and
updating the shared head and tail indices.

In resemblance to [7][1][12] the algorithm described here uses ar-
rays to store (pointers to) the items, and in resemblance to [12] it
uses CAS and two null values. Moreover, shared indices [1] are
avoided and scanning [12] is preferred as much as possible. In
contrast to [7][1][12] the array is not static or cyclic, but instead
more arrays are dynamically allocated as needed when new items
are added, making our queue fully dynamic.

Michael and Scott [9] presented a lock-free queue based on a linked
list, supporting multiple producers and consumers. Synchroniza-
tion is done via shared pointers indicating the current head and tail
node as well via the next pointer of the last node, all updated us-
ing CAS. The queue is fully dynamic as more nodes are allocated
as needed when new items are added. The original presentation
used unbounded version counters, and therefore required double-
width CAS which is not supported on all contemporary platforms.
The problem with the version counters can easily be avoided by
using some memory management scheme as e.g. [8]. Moir et al.
[10] presented an extension where elimination is used as a back-off
strategy and increasing scalability when contention on the queue’s
head or tail is noticed via failed CAS attempts. However, elimina-
tion is only possible when the queue is close to be empty during the
operation’s invocation. Hoffman et al. [6] takes another approach
to increase scalability by allowing concurrent Enqueue operations
to insert the new node at adjacent positions in the linked list if con-
tention is noticed during the attempted insert at the very end of
the linked list. To enable these "baskets" of concurrently inserted
nodes, removed nodes are logically deleted before the actual re-
1The Compare-And-Swap (CAS) atomic primitive will update a
given memory word, if and only if the word still matches a given
value (e.g. the one previously read). CAS is generally available in
contemporary systems with shared memory, supported directly by
hardware or in other cases in combination with system software.

moval from the linked list, and as the algorithm traverses through
the linked list it requires stronger memory management than [8]
and a strategy to avoid the risk of long chains of logically deleted
nodes developing.

In resemblance to [9][10][6] the algorithm discussed here is dy-
namic, and in resemblance to [6] removed blocks are logically deleted,
blocks are being traversed and creation of long chains are avoided.
In contrast to [10][6] the algorithm employs no special strategy for
increasing scalability besides allowing disjoint Enqueue and De-
queue operations to execute in parallel.

3. THE ALGORITHM
The underlying data structure that our algorithmic design uses is a
linked list of arrays, and is depicted in Fig. 1. In the data struc-
ture every array element contains a pointer to some arbitrary value.
Both the Enqueue and Dequeue operations use increasing array in-
dices as each array element gets occupied or removed. To ensure
consistency, items are inserted or removed from array elements us-
ing the CAS atomic synchronization primitive. To ensure that a
Enqueue operation will not succeed with a CAS at an array index
where a concurrent Dequeue operation have already removed an
item, we need to enable the CAS primitive to distinguish (i.e., avoid
the ABA problem) between "used" and "unused" array indices. For
this purpose two null pointer values [12] are used; one (NULL) for
the empty indices and another (NULL2) for the removed indices.
As each array block gets fully occupied (or emptied), new array
blocks are added to (or removed from) the linked list data struc-
ture. Two shared pointers, globalHeadBlock and globalTailBlock,
are globally indicating the first and last active blocks respectively.
These shared pointers are concurrently updated using CAS opera-
tions as the linked list data structure changes. However, as these
updates are done lazily (not atomically together with the addition
of a new array block), the actually first or last active block might
be found by following the next pointers of the linked list.

As a successful update of a shared pointer will cause a cache miss to
other threads that concurrently access that pointer, the overall strat-
egy for improving performance and scalability is to avoid accessing
pointers that can be concurrently updated [6]. Moreover, our algo-
rithm achieves fewer updates by not having shared variables with
explicit information regarding which array index is currently the
next active for the Enqueue or Dequeue. Instead each thread is
storing its own2 pointers indicating the last known (by this thread)
first and active block as well as active indices for inserting and re-

2Each thread have their own set of variables stored in separate
memory using thread-local storage (TLS).

moving items. When a thread recognizes its own pointers to be
inaccurate and stale, it performs a scan of the array elements and
array blocks towards the right, and only resorts to reading the global
pointers when we expect it to be beneficial compared to scanning.
The Dequeue operation to be performed by thread T3 in Fig. 1 illus-
trates a thread that has a stale view of the status of the data structure
and thus needs to scan. As array elements are adjacent in memory,
scanning can normally be done without extra cache misses (besides
those caused by concurrent successful Enqueue and Dequeue oper-
ations) and also without any constraints on in which order memory
updates are propagated through the shared memory, thus allowing
weak memory consistency models without the need for additional
memory fence instructions.3

For our implementation of the lock-free queue algorithm we have
selected the lock-free memory management scheme proposed by
Gidenstam et al. [2] which uses the CAS and FAA atomic synchro-
nization primitives. Using this scheme we can assure that an array
block is not reclaimed when there is any next pointer in the linked
list pointing to it or any local references to it from pending con-
current operations or from pointers in thread-local storage. When
supplied with appropriate callback functions the scheme automat-
ically reduces the length of possible chains of deleted nodes (held
from reclamation by late threads holding a reference to an old array
block), and thus enables an upper bound on the maximum memory
usage for the data structure. The task of the callback functions
CleanUpNode is to break chains of deleted array blocks by updat-
ing the next pointer of a deleted array block such that it points to
an active array block, in a way that is consistent with the semantics
of the Enqueue and Dequeue operations.

The linked list data structure always contains at least one array
block. Each array block contains the additional fields head and
tail that are used only to indicate either fullness or emptiness of the
whole array block.

The Enqueue operation operates as follows: after scanning for the
first empty (i.e., an array element containing NULL) array index in
its current array block, it tries to insert the new item by updating
the array element with CAS. If this fails (due to a concurrent suc-
cessful Enqueue), it continues scanning until the end of the array.
If the end of the array is reached, it first assures lock-freedom and
accuracy of the global head pointer:
(i) If the global head pointer is not pointing to the current block, the
operation (after it verifies that the global head pointer is pointing to
the previous block) updates the head pointer to do so by using a
CAS operation.
(ii) If the global head pointer is pointing to the current array block,
the algorithm tries to insert a new array block by updating the next
pointer using a CAS. If this fails, this is due to some concurrent
Enqueue operation having already added a new block, so the oper-
ation continues scanning for an empty array index in that block.

The Dequeue operation operates as follows: after scanning for
the first non-empty (i.e., an array element with neither NULL or
NULL2) array index in its current array block, it tries to remove the
found item by updating the array element with a CAS. If this fails
(due to a concurrent successful Dequeue), it continues scanning un-
til the end of the array block. If NULL is found during scanning, the
queue is (after also ensuring the NULL value to be globally consis-

3We require only that CAS operations are atomic and that each CAS
operation behaves as a memory barrier for the thread’s own reads
and writes to memory.

tent using CAS4) recognized to be empty and the operation returns
an empty value. If the end of the array is reached, the algorithm
first assures lock-freedom and accuracy of the global tail pointer:
(i) If the global tail pointer is pointing to the current array block, it
tries to logically mark the block as deleted using a CAS.
(ii) If the global tail pointer was not pointing to the current block, it
is (after verified that it is pointing to the previous block) updated to
do so using a CAS. Whenever the global tail pointer is successfully
updated (either when helping or after a successful logical deletion),
the previously global tail-block is sent for memory reclamation.

Whenever an array element is successfully updated with NULL2
using CAS, the found item is returned by the Dequeue operation.

4. EXPERIMENTS
We have evaluated the performance of our lock-free queue algo-
rithm by the means of some custom micro-benchmarks. The pur-
pose of these experiments is to help estimate how well the algo-
rithm compares with other known lock-free queues under high con-
tention and increasing concurrency. The benchmarks are the fol-
lowing:
(i) Random 50%/50%. Each thread is randomly (the sequence is
decided beforehand) executing either an Enqueue or a Dequeue
operation.
(ii) Random 50%/50% Bias 1000. Performed as the previous bench-
mark, but with the queue initialized with 1000 items.
(iii) 1 Producer / N-1 Consumers. Each thread (out of N) is either
a producer or consumer, throughout the whole experiment. The
producer is repeatedly executing Enqueue operations, whereas the
consumers are executing Dequeue.
(iv) N-1 Producers / 1 Consumer. Same as the previous benchmark,
with the producer and consumer distributions interchanged.

For comparison we have implemented the dynamic lock-free queues
by Michael and Scott [9], ditto with elimination [10], the baskets
queue [6], and the static cyclic array lock-free queue presented in
[12]. All dynamic queues have been implemented to support queue
sizes only limited by the system’s memory, i.e., using lock-free
management schemes [8] or [2] and lock-free free-lists where ap-
propriate. For the new implementation, the size of the array block
is chosen to fit within one cache line. All implementations are writ-
ten in C and compiled with the highest optimization level. In our
experiments, each concurrent thread is started at the very same time
and each benchmark runs for one second for each implementation.
Exactly the same sequence of operations was performed for all dif-
ferent implementations compared. A clean-cache operation was
performed just before each run.

The results from the experiments with up to 8 threads are shown
in Fig. 2. The benchmarks have been executed on an Intel Core
i7 920 2.67 GHz with 6 GB DDR3 1333 MHz system running
Windows 7 64-bit. This processor has 4 cores, capable of exe-
cuting 2 threads each. The results of benchmarks 1-2 show the
number of successful (Dequeues finding the queue empty are not
counted) operations executed per second in the system in total. The
results of benchmarks 3-4 show the number of items per second
that have passed through the queue (i.e., the number of success-
ful Dequeue operations). In all of the benchmarks, the two array-
based implementations perform significantly better than the other
implementations. The worse performance of the other implemen-
tations compared to the static array-based implementation can be

4CAS is faster than using memory barriers on the platform we used.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8S
u
c
c
e
s
s
f
u
l

O
p
e
r
a
t
i
o
n
s
/
s

(
*
1
0
0
0
0
0
0
)

Threads

Queue - Intel core i7 2.67 GHz, Win7
Random 50%/50%

New Algorithm
Tsigas-Zhang
Elimination

Michael-Scott
Basket

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8S
u
c
c
e
s
s
f
u
l

O
p
e
r
a
t
i
o
n
s
/
s

(
*
1
0
0
0
0
0
0
)

Threads

Queue - Intel core i7 2.67 GHz, Win7
Random 50%/50% Bias 1000

New Algorithm
Tsigas-Zhang
Elimination

Michael-Scott
Basket

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8

T
h
r
o
u
g
h
p
u
t

I
t
e
m
s
/
s

(
*
1
0
0
0
0
0
0
)

Threads

Queue - Intel core i7 2.67 GHz, Win7
1 Producer / N-1 Consumers

New Algorithm
Tsigas-Zhang
Elimination

Michael-Scott
Basket

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8

T
h
r
o
u
g
h
p
u
t

I
t
e
m
s
/
s

(
*
1
0
0
0
0
0
0
)

Threads

Queue - Intel core i7 2.67 GHz, Win7
N-1 Producers / 1 Consumer

New Algorithm
Tsigas-Zhang
Elimination

Michael-Scott
Basket

Figure 2: Experiments on a 8-way Intel Core i7 processor system.

explained to be mainly due to the costs of having dynamic allo-
cation of nodes. Interestingly, the dynamic implementation of the
algorithm described here performs significantly better than the im-
plementation with a static array. This can be explained by the ben-
efits of the cache-awareness (also causing fewer shared updates)
apparently being significantly higher than the corresponding costs
of having dynamic allocation of array blocks.

5. CONCLUSIONS
We have described an algorithm for implementing a lock-free queue
data structure, originally presented in [3]. To the best of our knowl-
edge, this is the first lock-free queue algorithm with all of the fol-
lowing properties:
(i) Cache-aware algorithmic handling of shared pointers including
lazy updates to decrease communication overhead.
(ii) Linked-list of arrays as underlying structure for efficient dy-
namic algorithmic design.
(iii) Exploitation of thread-local static storage for efficient commu-
nication.
(iv) Fully dynamic in size via lock-free memory management.
(v) Lock-free design for supporting concurrency.
(vi) Algorithmic support for weak memory consistency models, al-
lowing more efficient implementation on contemporary hardware.

The algorithm has been shown to be lock-free and linearizable.
Experiments on a contemporary multi-core platform show signif-
icantly better performance for the algorithm compared to previous
state-of-the-art lock-free implementations. We believe that our im-
plementation should be of highly practical interest to contemporary
and emerging multi-core and multi-processor system thanks to its
high performance, its strong progress guarantees, and its support
for weak memory consistency models. We are currently incorpo-
rating it into the NOBLE [11] library.

Acknowledgments
This work was partially supported by the EU as part of FP7 Project PEP-
PHER (www.peppher.eu) under grant 248481 and the Swedish Research
Council under grant number 37252706 and 13671-60582-29.

6. REFERENCES
[1] J. Giacomoni, T. Moseley, and M. Vachharajani. Fastforward for

efficient pipeline parallelism: a cache-optimized concurrent lock-free
queue. In Proc. of the 13th ACM SIGPLAN Symp. on Principles and
practice of parallel programming (PPoPP ’08), pages 43–52. ACM,
2008.

[2] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas.
Efficient and reliable lock-free memory reclamation based on
reference counting. IEEE Trans. on Parallel and Distributed Systems,
20(8):1173–1187, 2009.

[3] A. Gidenstam, H. Sundell, and P. Tsigas. Cache-aware lock-free
queues for multiple producers/consumers and weak memory
consistency. In Proc. of the 14th Int. Conf. on Principles of
Distributed Systems (OPODIS 2010), 2010. To appear.

[4] M. Herlihy. Wait-free synchronization. ACM Trans. on Programming
Languages and Systems, 11(1):124–149, Jan. 1991.

[5] L. Higham and J. Kawash. Impact of instruction re-ordering on the
correctness of shared-memory programs. In Proc. of the 8th Int.
Symp. on Parallel Architectures, Algorithms and Networks, pages
25–32. IEEE, 2005.

[6] M. Hoffman, O. Shalev, and N. Shavit. The baskets queue. In Proc.
of the 11th Int. Conf. on Principles of Distributed Systems (OPODIS
2007), volume 4878 of LNCS, pages 401–414. Springer, 2007.

[7] L. Lamport. Specifying concurrent program modules. ACM Trans.
Program. Lang. Syst., 5(2):190–222, 1983.

[8] M. M. Michael. Hazard pointers: Safe memory reclamation for
lock-free objects. IEEE Trans. on Parallel and Distributed Systems,
15(8), Aug. 2004.

[9] M. M. Michael and M. L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In Proc. of
the 15th annual ACM Symp. on Principles of distributed computing,
pages 267–275. ACM, 1996.

[10] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using elimination
to implement scalable and lock-free fifo queues. In Proc. of the 17th
annual ACM Symp. on Parallelism in algorithms and architectures
(SPAA ’05), pages 253–262. ACM, 2005.

[11] H. Sundell and P. Tsigas. Noble: non-blocking programming support
via lock-free shared abstract data types. SIGARCH Comput. Archit.
News, 36(5):80–87, 2008.

[12] P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking
concurrent FIFO queue for shared memory multiprocessor systems.
In Proc. of the 13th annual ACM Symp. on Parallel Algorithms and
Architectures (SPAA ’01), pages 134–143. ACM, 2001.

